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A triple increase in global river basins with
water scarcity due to future pollution

Mengru Wang 1 , Benjamin Leon Bodirsky 2, Rhodé Rijneveld 1,
Felicitas Beier 2,3, Mirjam P. Bak 1, Masooma Batool 4, Bram Droppers 5,
Alexander Popp 2, Michelle T. H. van Vliet 5 & Maryna Strokal 1

Water security is at stake today. While climate changes influence water avail-
ability, urbanization and agricultural activities have led to increasing water
demand as well as pollution, limiting safe water use. We conducted a global
assessment of future clean-water scarcity for 2050s by adding the water pol-
lution aspect to the classical water quantity-induced scarcity assessments. This
was done for >10,000 sub-basins focusing on nitrogen pollution in rivers by
integrating land-system, hydrological andwater qualitymodels.We found that
water pollution aggravates water scarcity in >2000 sub-basins worldwide. The
number of sub-basins with water scarcity triples due to future nitrogen pol-
lution worldwide. In 2010, 984 sub-basins are classified as water scarce when
considering only quantity-induced scarcity, while 2517 sub-basins are affected
by quantity & quality-induced scarcity. This number even increases to 3061
sub-basins in the worst case scenario in 2050. This aggravationmeans an extra
40million km2 of basin area and3billionmorepeople thatmaypotentially face
water scarcity in 2050. Our results stress the urgent need to address water
quality in future water management policies for the Sustainable Develop-
ment Goals.

Water is an essential resource for our life and nature. Yet only 0.02% of
the water on Earth is available to people, plants, and animals. Water
availability ismostly assessed throughflows from rivers to seas,with an
estimated global annual discharge of 45,500 km3/year, largely
depending on the spatial and temporal distribution of precipitation
and evaporation1,2. Current global annual withdrawals are lower than
global annual discharge. However, their spatial and temporal varia-
tions cause a mismatch, leading to water scarcity among regions1–5.

Water scarcity generally refers to the condition wherein the water
availability cannot meet the demand of nature and society6. Water
scarcity is expected to be exaggerated in the future, being largely
affected by both climate and socio-economic changes. Climate change
alters spatial and temporal patterns of the hydrological cycle, leading

to changes in water availability, such as river discharge7,8. For example,
Hagemann, et al.9 state that in 2100, water availability is expected to
increase in many river basins but also severely decrease in other river
basins due to climate change. Furthermore, socio-economic changes,
such as land-use change, irrigation, and dam constructions, directly
affect the hydrological cycle by altering the timing and magnitude of
water discharge10,11. Fekete et al.12 state that direct anthropogenic
alterations in basins of major economic areas, such as India and China,
exceed the effect of climate change considerably, leading to a larger
decline in runoff in the future. In addition, socio-economic changes
also affect water demand. Population and economic growth have been
themain drivers for growing food demand, increased living standards,
changing food and energy consumption patterns, and expansions of
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irrigated agriculture. These changes have led to ever-increasing global
water demand, causing water scarcity3,13,14.

Until a few years ago, global water scarcity assessments focused
mainly on changes in the quantity perspective of water
availability4,6,8,11,15,16. However, decreasing water quality caused by
increasing and newly emerging pollutants also became an important
reason for limiting water to be safely used by nature and humans,
aggravating the water scarcity problems. For example, agricultural
intensification and urbanization have added excessive pollutants such
as nutrients, pathogens, plastics, and other chemicals to the water
bodies17–21. Among the pollutants, excessive nitrogen (N) inputs to
aquatic ecosystems can have negative consequences such as harmful
algaeblooms, hypoxia, andfish kills and complicate the use as drinking
water22–25. This leads to an aggravation of water scarcity because pol-
lution limits water to be safely used.

Two studies have quantified regional water scarcity by innova-
tively integrating assessments of both water quality and quantity26,27.
Van Vliet et al.28,29 have been the first to assess water scarcity on a
global scale using a sector-specific approach focusing on multiple
pollutants including nitrogen for the historical period of 2000–2010.
In their studies, water scarcity is assessed as the ratio of sectoral water
withdrawals of acceptablewater quality to the overall water availability
taking into consideration of environmental flow requirements (EFRs –
water flows to sustain freshwater and estuarine ecosystems). To our
knowledge, there is a lack of global assessment that quantifies future
water scarcity based on nitrogen pollution in rivers under climate and
socio-economic scenarios. Such an assessment is essential because a
better understanding of future global hotspots of water scarcity under
socio‐economic and climate changes will contribute to formulating
effective water management policies6,28,30,31. Subsequently, this facil-
itates the supply of clean water for all, one of the United Nations
Sustainable Development Goals (SDGs) for 203032.

This study aims to assess future global clean-water scarcity in
2050 under climate and socio-economic changes. ‘Clean-water scar-
city’ is assessedwith two indicators: awater quantity-based and awater
quality-based indicator (seeMethods).We define ‘clean-water scarcity’
as the availability of surface water with acceptable quality. Our
assessment is done for >10,000 sub-basins worldwide based on their
river discharges (water quantity) and nitrogen pollution levels (water
quality). To this end, we combine the MARINA-Nutrients (Model to

Assess River Inputs of pollutaNts to seAs), MAgPIE (Model of Agri-
cultural Production and its Impact on the Environment), and VIC
(Variable Infiltration Capacity) models into an integrated modeling
framework (Fig. 1, Methods). Results of this modeling framework are
used to calculate the indicators for ‘clean-water scarcity’ for 2010 and
2050 under three scenarios assuming different storylines of climate
changes and socio-economic activities that affect water scarcity (see
Methods). Next, we identify the future global hotspots of severe clean-
water scarcity and whether this is mainly driven by water quantity or
water quality issues (i.e., nitrogen pollution). Last, we discuss the
interactions between water scarcity, food production, and society (i.e.
population and sewage) in the hotspots, taking the perspective of
achieving the SDGs in thesehotspots.Our results contribute to abetter
understanding of future water scarcity caused by changes in both
water availability and water pollution. The hotspot analysis also facil-
itates proactive water management strategies for sub-basins where
water scarcity will be potentially high in the future.

Results
Water scarcity hotspots of clean water
We find that current and future water scarcity becomes a substantially
more severe issue globally when implementing our clean-water scar-
city assessment. The number of sub-basins facing severe scarcity
doubles in 2010 andmay even triple in 2050 inour clean-water scarcity
assessment, compared to the classical water scarcity assessment that
only considers water availability from the quantity perspective (Fig. 2).
Due to their high nitrogen pollution levels, many sub-basins in South
China, Central Europe, North America, and Africa become water scar-
city hotspots. This also impliesmore than a doubling of the global area
and population affected by severe water scarcity in both 2010 and
2050, meaning that up to 40million km2 of extra global drainage area,
including highly biodiverse aquatic ecosystems and an additional 3
billion people are facing water scarcity challenges due to nitrogen
pollution (Table 1).

In 2010, one-fourth (2517 out of 10,226) of the global sub-basins
face severe scarcity of clean water, according to our assessment
(hotspots, Table 2). These hotspot sub-basins aremainly distributed
in southern parts of North America, Europe, parts of Northern
Africa, the Middle East, Central Asia, India, China, and Southeast
Asia (Fig. 2). These sub-basins cover 32% of the global land area.

MARINA-Nutrients-
Global-1.0

MARINA-Mul�-Global-1.0
(point sources)

MAgPIE
(diffuse sources)

SSP-RCP-N 
scenarios

Water Availability
&

Sectoral Water Withdrawals
(Q and D in equa�on 1)

N Pollu�on in Sub-basins 
(L in equa�on 2)

Scenarios Models Model outputs

Quan�ty-based Scarcity Quality-based Scarcity

Clean Water Scarcity

VIC

Fig. 1 | A modeling framework for the ‘clean-water scarcity’ assessment in
our study. SSP-RCP-N is the scenario along the Nitrogen futures in the Shared
Socio-economic Pathways79 developed based on the Shared-economic pathways
(SSPs) and Representative Concentration Pathways (RCPs). VIC is the Variable

Infiltration Capacitymodel. MAgPIE is the Model of Agricultural Production and its
Impact on the Environment. MARINA-Nutrients is theModel to Assess River Inputs
of pollutaNts to seAs.
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About 80% of the total population lives there, contributing to 84%
of global total nitrogen (N) losses to rivers from human waste.
Agricultural activities are usually intensive in these regions. They
cover 44% of the global agricultural land, receive 84% and 53% of the
global N applications from fertilizer and manure, and produce 69%
of N in global harvested crops.

The majority (2218; 88%) of the hotspot sub-basins experience
clean-water scarcity dominated by nitrogen pollution. Quality-based
water scarcity hotspots occurred in southern parts of North America,
Europe, the Middle East, Southeast Asia, China, India, and parts of
Northern Africa (Fig. 2 and Supplementary Fig. S3). These sub-basins
cover 24% of the global drainage area, and 76% of the population lives
there (Supplementary Table S7). Whereas the ‘classical water scarcity’
assessment based solely on water quantity indicates 984 hotspot sub-
basins, covering 18% of the global land area and 42% of the global
population (Table 1). Compared to the clean-water scarcity assess-
ment, the classical assessment shows a much lower level of water
scarcity in South China, Europe, and North America, where water
pollution levels are high as the result of urbanization and agricultural
activities, and the relatively high runoff that transports N to rivers
(Fig. 2, Supplementary Figs. S4 and S8). Clearly, quality-induced water
scarcity hotspots affectedmore ecosystems and people than quantity-
induced water scarcity hotspots in 2010 (Supplementary Figs. S5 and
S6 in SI).

Like hotspot regions, scarcity of clean water in non-hotspot sub-
basins where clean-water scarcity is estimated at low or moderate

levels was also dominated by nitrogen pollution. In 2010, more than
2000 sub-basins face potential water scarcity due to moderate water
pollution, distributed mainly in South America and Africa, but also in
North America, Northern Asia, and Australia (Fig. 2). These sub-basins
cover 39% of the global drainage area and 18% of the population lives
there. Sub-basins that currently do not face water scarcity issues with
high water quality and high water quantity are mostly in sparsely
populated regions such as northern parts of North America and Asia,
and central parts of Australia (Fig. 2).

In 2050, the number of clean-water scarcity hotspot sub-basins
is projected to remain high (2587 in SSP1-RCP2p6, 2785 in SSP2-
RCP2p6) or even increase (3061 in SSP5-RCP8p5), with quality-
induced scarcity dominating the globe (Figs. 2 and 3). In the worst-
case scenario (SSP5-RCP8p5), the clean-water scarcity hotspots are
calculated to cover 48% of the total drainage area, compared to 32%
in 2010, and with 91% of the total global population living there,
compared to 80% in 2010 (Fig. 2). Like in 2010, water scarcity hot-
spots are mostly found in sub-basins with intensive agricultural
activities (Fig. 4). In 2050, the shares of agricultural area, nitrogen
inputs, and surpluses in the hotspot sub-basins to the global total
have large increases among the scenarios. For example, in SSP5-
RCP8p5, the hotspots regions cover 68% (44% in 2010) of the global
agricultural land. These regions are projected to receive 89% and
80% of the global nitrogen inputs from fertilizer and manure,
respectively, in 2050 (this was 84% for fertilizers and 53% for man-
ure in 2010). They are projected to contribute to 84% of the global
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agricultural N surplus in 2050 (this was 69% in 2010). Another
important contributor to water pollution in the hotspot sub-basins
in SSP5-RCP8p5 is the N losses to rivers from human waste. These N
losses are projected to account for 91% of the total global losses due
to the high sewage connections and poor wastewater treatment in
this economic-first and highly urbanized future scenario.

The spatial distribution of the clean-water scarcity hotspots in
2050 is similar to 2010, but it is estimated to expand to many con-
tinents,mostly in Africa (Figs. 3 and 4). Africa is projected to have large
increases in water scarcity, mainly caused by severe water pollution. In
2010, water scarcity hotspots in Africa cover 20% of the continental
area, with 27% of the continental population living in the African sub-
basins in 2010. This is projected to increase to 66% (drainage area) and
88% (population) if no improved water management options are
adopted in 2050 (SSP5-RCP8p5). Yet even with improved water man-
agement (SSP1), we still project an increase to 27% (drainage area) and
41% (population) in the hotspots. The water scarcity issues will remain
severe in other continents, particularly in Asia, Central America, Eur-
ope, and North America.

Water pollution is an important cause of water scarcity
Ourwater scarcity assessment shows that nitrogenpollution in rivers is
an important cause of water scarcity in 2010 and will likely continue
causingwater scarcity in 2050. This calls for urgent proactive pollution
control strategies to reduce the impact of future potential water
scarcity on nature and humans. A better understanding of the spatial
distribution and main sources of nitrogen pollution to develop such
strategies is needed. We, therefore, use the MARINA-Nutrients (Model
to Assess River Inputs of pollutaNts to seAs) model and analyze
nitrogen inputs to rivers at the sub-basin scale by sources for 2010
and 2050.

In 2010, we estimate a total amount of 106 Tg/year total dissolved
nitrogen (TDN) inputs to rivers, with the highest loads occurring in
China, India, Central Africa, SouthAmerica, andparts of NorthAmerica
(Fig. 5 and Supplementary Fig. S7). In 2050, the total TDN inputs to
rivers are expected to be 112–147 kton/year among the three scenarios.
This corresponds to an increase of 6–39% compared to 2010. Taking
the worst-case scenario (SSP5-RCP8p5), this increase can be explained
by the increased anthropogenic sources such as human waste and
synthetic fertilizers (Fig. 5). In this scenario, sewage is projected to
become thedominant sourceofnitrogenpollution in riversmainly due
to the activities around fast urbanization (i.e., population growth,
more population connected to sewage systems in cities), and insuffi-
cient wastewater treatment technologies and infrastructures in this
scenario. The dominant source of nitrogen pollution in the SSP1-
RCP2p6 and SSP2-RCP2p6 scenarios differ from SSP5-RCP8p5. Agri-
culture (i.e. fertilizer application) is themost important source in these
two scenarios as the result of food production activities to feed the
growing population. Sewage has much smaller contributions in these
two scenarios, benefiting from the improved sewage connection as
well as improved treatment. The highest TDN inputs in SSP1-RCP2p6
and SSP2-RCP2p6 are found in similar regions as described for
2010 (Fig. 5).Ta
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Table 2 | Thresholds andmatrix for clean-water (quantity- and
quality-based) scarcity

Clean-Water Scarcity Quantity-based (Squantity)

Low (0–0.2) Moderate (0.2–0.4) High (>0.4)

Quality-based (Squality) Low (0–0.45) Hotspot

Moderate (0.45–1) Hotspot

High (>1) Hotspot Hotspot Hotspot

The rows and columns with High quantity-based, quality-based, or both quantity- and quality-
based water scarcities are identified as hotspots of clean-water scarcity. More information of
how the thresholds are derived is available in Section Hotspot analysis in Methods.
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SSP1-RCP2p6

SSP5-RCP8p5

SSP2-RCP2p6

Fig. 3 | Changes in clean-water scarcity between2010and2050.The changes are
projected for three scenarios: SSP1-RCP2p6, SSP2-RCP2p6, SSP5-RCP8p5. Details
of the scenarios based on the Shared-economic pathways (SSPs) and Repre-
sentative Concentration Pathways (RCPs) are available in Supplementary

Tables S9–S11 in the Supporting Information. Hotspots are sub-basins where
either the levels of scarcity for water quantity or quality or both are considered
high in Table 2.
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Fig. 4 | Characteristics of the clean-water scarcity hotspots in 2010 and 2050.
The spider charts show the shares of area (sub-basin drainage area), population, N
(nitrogen) inputs to rivers from human waste, agriculture land, N fertilizer appli-
cation in agriculture, Nmanure application in agriculture, N in harvested crops, and
N surplus in agriculture (defined as total N inputs to agricultureminus N outputs by
crop uptake and animal grazing) in the clean-water scarcity hotspots (% of the
continental total) in 2010 and 2050. Clean-water scarcity hotspots are sub-basins

where either the levels of scarcity for water quantity-driven or quality-driven or
both are considered high in Table 2. For 2050, clean-water scarcity is calculated for
three scenarios: SSP1-RCP2p6, SSP2-RCP2p6, SSP5-RCP8p5. Details of the scenarios
based on the Shared-economic pathways (SSPs) and Representative Concentration
Pathways (RCPs) are available in Supplementary Tables S9–S11 in the Supporting
Information.
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Water quantity remains important
In addition to the increasing scarcity of clean water caused by water
pollution, quantity-induced scarcity driven by water availability and
water withdrawals remains an important issue in 2050 scenarios. This
is due to the climate change-induced changes in water availability
through alterations in the hydrological cycle and the increasing
water demand or withdrawals driven by socio-economic
developments.

Water availability is projected to increase in more than two-
thirds (69–72%) of the sub-basins and decrease in the rest of the sub-
basins among the scenarios between 2010 and 2050 (Supplementary
Fig. S8). In our study, water availability is defined as the cumulative
natural river discharges at the sub-basin outlets. However, the
changes in water availability vary largely among the continents and
individual sub-basins. For example, the total water availability (the
sum of river discharges of sub-basins) in Africa, Asia and North
America is expected to increase by 4–6% between 2010 and 2050 for
the three scenarios. In contrast, the total water availability in Central
America, Europe, Oceania and South America is projected to
decrease by up to 4% during 2010–2050. The changes among the
individual sub-basins vary from −156 to +117 km3/year between 2010
and 2050, showing large extremes in water availability which may
exaggerate water scarcity in dry regions in 2050. Global water with-
drawals are projected to increase by 10–12% among SSP-RCP sce-
narios in 2050 (Supplementary Figs. S10 and S11 in SI), leaving future
generations under increasing pressure of water scarcity. This
increase is due to the future higher water demand, mostly from
urbanization and food production.

Different challenges among hotpots
While future hotspots of clean-water scarcity are identified mainly in
China, India, Europe, North America and in the worst-case scenario
(SSP5-RCP8p5) also in Central Africa. The causes of water scarcity
differ among these regions, presenting different challenges that need
to be addressed to reduce water scarcity.

For quantity-induced scarcity, the main causes are the excessive
withdrawals (high water withdrawal over water availability). The share
of water withdrawals among sectors varies largely across continents
(Supplementary Fig. S12 in SI). Irrigation contributes most to surface
water withdrawals on the global scale and is themost important driver
of quantity-induced scarcity inmost regions includingChina, India and
South America. However, this differs in Europe, where irrigation con-
tributes to less than 30% of water withdrawals. The most important
waterwithdrawal is the industrial sector inEurope. A similar situation is
observed inNorth America,where the industry takes almost 50%of the
continental water withdrawal due to the large water demand for
energy production (e.g., thermoelectric power plant) and
manufacturing33.

For quality-induced scarcity, the main causes of high TDN inputs
to rivers are also different among hotspots. In 2010, TDN inputs to
rivers are mainly driven by the low nitrogen use efficiencies in China
and India (Supplementary Table S3 in SI), high production in Europe
and North America (Supplementary Fig. S19 in SI), and by atmospheric
Ndeposition and fixation on natural land in South America andCentral
Africa. In the future, the main cause of TDN inputs to rivers is similar
across most hotspots in SSP1 and SSP2, which is agricultural produc-
tion. It is important to note that although the nitrogen use efficiencies
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Details of the scenarios based on the Shared-economic pathways (SSPs) and
Representative Concentration Pathways (RCPs) are available in Supplementary
Tables S9–S11 in the Supporting Information.
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have improved to high levels, the high food production in China, India,
Europe and North America (e.g., Mississippi river) driven by food
demand still leads to high N surpluses in agriculture (Supplementary
Fig. S20 in SI). In SSP5, pollution is driven worldwidemainly by sewage
as described above due to global urbanization and inadequate devel-
opment of sewage treatment. Atmospheric N deposition and fixation
on natural land remain the main source of TDN inputs to rivers in
South America and Central Africa in the future, while agricultural N
surpluses become increasingly more important in SSP5 (Supplemen-
tary Fig. S20 in SI).

Discussion
There is a growing awareness that water quality aggregates water
scarcity in many regions. Nonetheless, most global water scarcity
studies focused solely on water quantity aspects6. To our knowledge,
there are two indicators that consider water quality explicitly. The first
is the water quality dilution (WSq) indicator28,29, which has been
applied for several water quality constituents (e.g. temperature, sali-
nity, organic pollution, total nitrogen and total phosphorus) on a
global scale. The second is the Quantity-Quality-Environmental flow
requirement (QQE) indicator26,27, which has only been applied in China.
Based on these indicators, we introduce ‘clean-water scarcity’ as a
terminology and present a global assessment accounting for both
water quantity and quality based on global nitrogen pollution under
different scenarios of climatic and socio-economic developments. To
do this, we developed and applied two water scarcity indicators (a
water quantity-based and quality-based indicator) for global rivers at
the sub-basin scale.

Overall, our assessment identifies similar hotspot regions for 2010
as those existing studies based only on the water quantity aspects of
water scarcity in the period of 1971–20051,7,13,34,35. However, our sce-
nario analysis reveals a higher number of water scarcity hotspots than
the existing quantity-focused studies. Moreover, our assessment pro-
vides a more detailed view on non-hotspot areas by differentiating
between low, moderate, and high levels of scarcity, considering both
quantity and quality aspects. Such information has the added value of
identifying those regions facing potential water scarcity challenges if
water resources and pollution are poorly managed. For example, the
baseline simulation (1971–2000) in the study of Hanasaki et al.13

identifies similar water scarcity regions as we do for 2010. Whereas
their study predicts reduced future water scarcity in Central Europe,
India, China, and Africa, we find increased scarcity in those regions
because of poor water quality. While the use of different models and
datasets in the above-mentioned studies affects the distribution of
water scarcity regions, the differences originate largely from neglect-
ing the impact of water pollution (nitrogen in our study) on water
scarcity.

Estimations of the population experiencing scarcity of cleanwater
in our study are generally higher than inprevious studies focusing only
on water quantity3,4,7,36. Previous studies estimated that between 25%
and 65% of the population lived in severely water-scarce areas in
1995–2005. Looking only at water quantity, we estimated that 45% of
the global population lived in areas with severe water scarcity in 2010.
Yet, if we also take into account water quality issues, our estimate rises
to 80% of the global population living in water-scarce regions in the
same year. This strongly agrees with the study of Vörösmarty et al.37

who found that nearly 80% of the world’s population lives in areas
facing water security challenges from both water quantity and quality
perspectives.

We consider quality-based water scarcity as severe if nitrogen
concentrations exceed the threshold (1mg/L TDN) to avoid eutrophi-
cation in aquatic ecosystems, following De Vries et al.38, Yu et al.39. This
may lead to a bias toward environmental water scarcity. Another way
to deal with the different thresholds could be to focus on N thresholds
for specific sectoral uses rather than the total water availability in line

with the study of vanVliet et al.29, who identified a similar global spatial
distribution of clean-water scarcity as we identify. For example, the
threshold for the agricultural sector is linked to irrigation withdrawals
(80mg/L N), while the threshold for drinking water (11mg/L N) is used
to calculate domestic withdrawals. Water scarcity could be assessed
for each sector specifically instead of computing a total water scarcity.
However, water allocation-related issues arise here, such as how to
include water allocation among sectors. Here we decided to take the
stringent threshold for the aquatic ecosystem whose ecosystem
functions (e.g., irrigation water supply, fishery, recreation) will nega-
tively impact both nature and humans. While one can argue that this
strict threshold may lead to an overestimation of quality-based water
scarcity, even stricter standards (0.25–0.5mgN/L for rivers, compar-
able to the moderate levels in our assessment) have been introduced
by United Nations to assess water security for ecosystem and human
use in their SDG guidelines40.

We conducted a clean-water scarcity analysis on annual temporal
and sub-basin spatial scales with a focus on nitrogen pollution. The
assumption is that the annual cumulative natural river discharge at
sub-basin outlets represents water availability, annual summed grid-
ded sectoral withdrawals represent water withdrawals, and the annual
cumulative N load represents water quality in the sub-basins. Conse-
quently, the water scarcity indicators generate an average value for
each sub-basin, which aggregates the differences in time and space.
Yet, our assessment masks intra- and inter-annual variabilities in the
freshwater resources3,41. Most importantly, the annual discharge does
not represent the proportions of river flow that derive from base flow
and stormflow. Thismeans that the annualdischargemight consist of a
constant base flow available throughout the year but could also
represent a high storm flow with a relatively low base flow. Whilst the
former limits water scarcity, the latter aggravates among seasons. This
issue is apparent in the future climate change scenario, particularly in
RCP8p5 regional higher water availability might originate from higher
seasonal fluctuations with higher stormflows42. This holds the same for
the EFRs in our study, forwhichwe calculated annual EFRs as a fraction
(ranging between 30–38%) of the total available water for sub-basins
based the Variable Monthly Flow Method approach on Pastor et al.43.
The intra-annual variabilities in very wet or dry rivers may lead to a
higher or lower monthly EFR in these rivers, ranging from 30 to 60%
among sub-basins and seasons globally. Additionally, conducting a
water scarcity analysis on an annual scale does not consider seasonal
variability in nitrogen pollution44,45. Exner-Kittridge et al.45 have
observed a seasonal trend in nitrogen concentrations in rivers that
increases inwinter anddecreases in summer. This phenomenon canbe
attributed to various factors such as higher in-stream nitrogen uptake
and denitrification rates during the summer compared to the winter,
seasonal biochemical changes, or the seasonal timing of fertilizer
application and plant uptake. Thus, whilst our results indicate overall
annual water scarcity, the level of scarcity may vary largely among
seasons. This means that our assessment should be used and inter-
preted to estimate the global distribution of clean-water scarcity and
their trends over time rather than zoom into the details of intra-annual
scarcity in specific regions.

We assessed clean-water scarcity based on the integrated mod-
eling framework (Fig. 1) that links land use and agriculture, hydro-
logical and water quality models. While the models provide great
opportunities for exploring future trends and causes of water scarcity,
there are uncertainties around the model inputs and modeling
approaches of MAgPIE, VIC and MARINA-Nutrients. Below we discuss
why we consider our modeling approach reliable and sufficient in
assessing future clean-water scarcity.

Uncertainties in our assessment from MAgPIE are mainly related
to the estimated nitrogen (N) budgets (see SectionMAgPIE in SI for the
modeling approach). To build trust in our assessment, we compared
our N budget from MAgPIE with a recent high-resolution (5 arc min
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degree) N dataset from Tian et al.21. The result shows a promising
comparison. The global total nitrogen inputs to agriculture (cropland
and pasture) and non-agriculture are very comparable, despite small
differences among the sources as fertilizer, manure, and deposition
(Supplementary Tables S8 in the SI). For example, the global total N
input in 2010s is 267 Tg/year in Tian et al.21 and 287 Tg/year in this
study. The spatial distribution of N inputs is also comparable between
Tian et al.21 and our study (Supplementary Fig. S21 in SI). High total N
inputs are observed in China, South Asia, Europe, United States and
Brazil in both studies. There is an exception for atmospheric deposi-
tion. Some regions such as South Africa have higher deposition than in
other regions in Tian et al.21 but not in our study. However, the N load
quantified by the MARINA model is not sensitive to changes in atmo-
spheric deposition due to its small contribution to water pollution
compared to other sources. This was revealed in the thorough sensi-
tivity analysis in Appendix E of Wang et al.46, −/+10% changes in
atmospheric deposition in the MARINA model hardly result in any
difference in river export of N inMARINA. Considering the comparable
total N inputs on land between the two studies, we believe that our
results of quality-induced water scarcity hotspots will not change
muchwhen using N data fromTian et al.21. This comparison provides a
high confidence in using the MAgPIE model for our assessment.

VIC’s simulated historical discharge and sectoral water with-
drawals compared well against observed discharge47 and reported
domestic, industrial and irrigation water withdrawals33. However,
multi-model intercomparison studies have shown that differences
between hydrological models are the main source of uncertainty in
discharge and irrigationwater demandprojections8,48,49. Therefore, the
selection of a single model, the VIC hydrological model in our study
impacts the water scarcity results. Nevertheless, we believe the model
validation results showan acceptableperformanceof VIC for assessing
water scarcity. VIC model estimates are mostly near the multi-model
ensemblemeans for discharge50 and irrigation51. Moreover, the explicit
representation of the energy balance in the VIC model allows the
model to comprehensively capture the impacts of radiation changes
under climate change, which is highly important for, for example,
snow dynamics50.

MARINA-Nutrients-Global-1.0 was developed and applied in this
study to quantify N load at the sub-basin outlets. The previous versions
of thismodel17,46,52 have been evaluatedwith a convincing performance
at both global and regional scales based on the ‘building trust circle’
approach including 1) compare model outputs with measurements
and existing studies, 2) compare spatial pattern of pollution
hotspots, 3) sensitivity analysis, and 4) compare model inputs with
independent datasets. The MARINA model, however, does not con-
sider the legacy pools of N. Considering the historical N use can have
an impact onNpollution in groundwater53 and rivers54, while the legacy
effects balance out over longer time periods. If N legacy effects were
considered, this would likely increase the modeled water pollution in
most of the hotspot regions such as China, Europe, North America
where historical N use was high, confirming our conclusion that water
pollution will become an important cause of clean-water scarcity in
these regions. Here, we consider that the MARINA version developed
in this study provides a robust assessment of quality driven-water
scarcity because of the following reasons. First, the simulation of point
source pollution from wastewater has been evaluated as promising in
the global study of Strokal et al.17. Second, for diffuse source pollution
we used data from MAgPIE, which shows good performance as dis-
cussed above when compared to N budget in other studies. Third, our
modeled results compare very well with other global studies that
quantify historical or future N pollution in rivers. For example, our
global spatial patterns of N pollution are comparable to the total N
patterns for 2000–2010 shown by van Vliet et al.29. This is the same for
the future that we estimate similar hotspots of N pollution in 2010 and
2050 compared to Beusen et al.55.

Our assessment has important Implications for future water
management and policies. Strategies to adapt to or mitigate future
water scarcity are urgently needed, especially as socio-economic
developments continuously increase theworld’s dependenceonwater
resources. Adaptation strategies currently focus on quantity-based
water scarcity, varying from water-saving irrigation techniques at the
sectoral scale to water diversion or reallocation through dams at the
catchment scale31,56–58. Mitigation strategies that reduce water pollu-
tion surely need more attention, as revealed by this study, that low
water quality will be a critical or even dominant cause of water scarcity
in many river basins in the future, and controlling nitrogen pollution is
very challenging.

The challenge to control nitrogen pollution mainly arises from
current urbanization trends and increasing food demands and waste
which both contribute to additional nitrogen losses to water46,59–64.
Even in the ambitious SSP1-RCP2p6 scenario, assuming optimistic
water management, as well as diet, changes towards lower shares of
animal products and food waste, the scarcity of clean water remains
high in many regions due to water pollution. Based on source attri-
bution of nutrients in our study and previous water quality
assessments17,29,63, improving nutrient management in food produc-
tion and sewage connection and treatment are urgently needed in
densely populated sub-basins to reduce water scarcity.

We took nitrogen pollution as the water quality indicator in our
study.However,manyother indicators (e.g., salinity, dissolvedoxygen,
biological demand, pH, temperature, and heavy metals) and newly
emerging pollutants (e.g., pathogens, antibiotics, plastics, and pesti-
cides) will likely cause severe water degradation in the future17,18,65–67.
Research is thus needed to identify the impacts of these indicators or
pollutants on future water scarcity among sectors as a joint effort of
the water quality community. The advantage of our clean-water scar-
city indicators is that they are not limited to specific pollutants and
specific temporal or spatial scales. Therefore, the indicators can be
quantified for various individual pollutants across temporal and spatial
scales depending on the purpose of the assessment. Another oppor-
tunity is to combine our assessment approach with the Water Quality
Index (WQI) models68–71. WQI models are powerful tools based on
aggregation functions to convert varying water quality datasets to a
single water quality index to assess the quality of the waterbody. Such
models can thus help to aggregate the quality-based indicators
(Squality) for individual pollutants to a simple single indicator for the
water scarcity assessment. Additionally, a better understanding of the
interactions between multiple water pollutants and their sources is
very useful for developing strategies to simultaneously control the
pollution of multiple pollutants. For example, nutrients, antibiotics,
and pathogens share the same source (manure) in animal production.
Improved manure management, such as treatment and recycling, will
then have synergetic effects in controlling water pollution by all three
pollutants.

Moreover, addressing water quality is of significant importance
for achieving several Sustainable Development Goals (SDGs)32. Studies
show that there are many interactions (synergies and trade-offs)
between SDG 6 and other SDGs, such as those goals ensuring food
security (SDG 2), sustainable urbanization (SDG 11), responsible pro-
duction and consumption (SDG 12), and mitigated climate change
(SDG 13)46,72–75. Our results show similar potential synergies and trade-
offs between the SDGs. For example, we found that water scarcity
mostly exists in sub-basins with intensive agricultural production (SDG
2) or/and are densely populated (SDG 11), leading to high pollutant
loads and high water withdrawals (SDG 12) from the relatively low
water availability due to climate change-induced hydrological changes
(SDG 13). Strategies such as reducing fertilizer use to control water
pollution in these hotspots may lead to trade-offs that challenge food
provision. Such trade-offs can be turned into synergies by applying
agricultural practices (e.g., alternative varieties, fertilizing crops based
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on their nutrient requirement) to improve nutrient efficiencies of
crops such that the crop yield ismaintained and fooddemand ismet. It
is thus essential to consider the interactions between the above-
mentioned SDGs in the water scarcity strategies to avoid negative
impacts on achieving the goals for food, cities, and climate. Our results
about the clean-water scarcity hotspots and their socio-economic and
climate characteristics provide a very valuable indication of where and
what interactions need to be addressed to mitigate water scarcity as
well as ensure sustainable development for other domains of society.

Methods
Clean-water scarcity assessment
Many water scarcity indicators consider water quantity, yet only a few
consider both water quantity and water quality aspects6,26,28,29,76,77. For
example, the Quantity-Quality-EFR (QQE) indicator in Liu et al.26 was
the first being developed and applied to assess both quality and
quantity-based water scarcity based on the blue water footprint, gray
water footprint, and environmental flow requirements (EFRs). Another
example is the water quality dilution (WSq) indicator developed and
applied globally to assess historical water scarcity as a proportion of
sector-specific water withdrawals of suitable water quality to the total
water availability28,29,77. In this study we developed and applied clean-
water scarcity indicators considering both aspects, inspired by the
Quantity-Quality-EFR (QQE) indicator which has an advantage in
quantifying the quality and quantity-based water scarcity separately.
Therefore, these clean-water scarcity indicators will enhance the
understanding of overall water scarcity, aiding in the determination of
whether the scarcity is predominantly due to issues of quantity or
quality.

Indicators for clean-water scarcity
We assessed the scarcity of clean water for >10,000 sub-basins
worldwide based on two indicators: a quantity-based indicator
(Squantity, Eq. (1)) and a quality-based indicator (Squality, Eq. (2)).

Squantity =

Pn
j = 1 Dj

� �

Qnat � EFR
ð1Þ

Squantity is the quantity-based indicator, calculated based on the
criticality ratio, i.e., the rate of water use to water availability78. Dj

stands for the water withdrawals for sector j in the sub-basins (km3/
year), Qnat for the natural river discharge at the sub-basins outlets
which stands for total water availability (km3/year), and EFR for the
environmental flow requirements in the sub-basins (km3/year).

Squality =
L

Qact � Cmax
ð2Þ

Squality is the quality-based indicator. L stands for the pollutant
(nitrogen in our study) load at the sub-basins outlets (kton/year), Qact

for the actual river discharge at the sub-basins outlets (km3/year), Cmax

for the maximum water quality threshold of the pollutant (mg/L) for
specific purposes of water use (1mg/L total dissolved nitrogen the
threshold for sustaining the aquatic ecosystem from
eutrophication38,39). See Section Data for clean-water scarcity assess-
ment in Supporting Information (SI) for a detailed description of the
data that we derived for the above variables.

Modeling framework to assess clean-water scarcity
To calculate the indicators for clean-water scarcity (Eqs. (1) and (2)), we
combined the MARINA-Nutrients (Model to Assess River Inputs of
pollutaNts to seAs), MAgPIE (Model of Agricultural Production and its
Impact on the Environment), and VIC (Variable Infiltration Capacity)
models into an integrated modeling framework (in Fig. 1). We used
modeled results of this modeling framework to calculate the quantity-

based (Squantity) and quality-based (Squality) clean-water scarcity indi-
cators.Wedid this for 2010 and 2050under theNitrogen futures in the
Shared Socio-economic Pathways79 developed based on the Shared-
economic pathways (SSPs) and Representative Concentration Path-
ways (RCPs). The Squantity and Squality indicators were calculated for the
outlets of the sub-basins to assess the level of water scarcity in rivers.
Supplementary Table S1 in the SI presents in detail howeachvariable in
Eqs. (1) and (2) was derived using the models in Fig. 1 for 2010
and 2050.

Quantity-based indicator (Squantity) was calculated mainly based
on simulations of river discharge and sectoral water withdrawal by the
VIC model (Fig. 1). VIC is a macro-scale grid-based hydrological model
that simulates water balance and surface energy balance (e.g., inter-
ception, evapotranspiration, surface and subsurface runoff, and river
discharges) and anthropogenic water use. Here we took domestic,
industrial, livestock and irrigation water withdrawals (Dj) in 2010
derived from VIC by the study of Droppers et al.33. Future sectoral
water withdrawals in 2050were derived based on the changes in water
withdrawals between 2010 and 2050 from the MARINA-Nutrients-
Global-1.0 model developed in this study and water withdrawals in
2010 from VIC as derived above. Natural river discharge (Qnat) was
based on the cumulative natural river discharge, i.e., discharge before
water withdrawals, at the sub-basins outlets, simulated by VIC47. Fol-
lowing the approach of Pastor et al.43, we calculated the sub-basin
specific EFR for the environment, withheld from human usage to keep
ecosystems in a fair ecological condition. More details on the variables
(Dj, Qnat, and EFR) used to assess Squantity are available in Supplemen-
tary Table S1 in Supplementary Information (SI).

Quality-based indicator (Squality) was calculated from the nitrogen
pollution perspective based on VIC, MAgPIE and MARINA-Nutrients
(Fig. 1). Actual water availability (Qact) for Squality was based on the
cumulative actual river discharge, i.e., discharge after water with-
drawals within the sub-basins, at the sub-basins outlets, derived from
MARINA-Nutrients that incorporated hydrology from VIC (see Sup-
plementary Table S1 in SI for details). For Cmax, we took 1 TDNmg/L as
the threshold for sustaining the aquatic ecosystem from eutrophica-
tion, basedon the studyofDeVries et al.38, Yu et al.39. Here, L is the total
dissolvedN (TDN) load at the sub-basins outlets (kton/year). TDN is the
sumof dissolved inorganic (DIN) and organic nitrogen (DON). DIN and
DON loads at the sub-basin outlets are simulated separately by linking
MAgPIE and MARINA-Nutrients (referred as OTF :y:j in Eq. (S3) for
individual rivers or tributaries, and OCF :y:j in Eq. (S4) for main channel;
see Supplementary Fig. S1 for the definition of tributary and main
channel).

MAgPIE is a global land-system modeling framework64,80 that
simulates long-term scenarios for the global land and food system. It is
a recursively dynamic model that simulates how food, feed and
material demand can be fulfilled under different possible future
pathways. The model estimates the extent and distribution of agri-
cultural land (cropland and pastureland), forest areas and other nat-
ural lands for the futureuntil the year 2100.MAgPIE estimates nitrogen
budgets on the level of 18 global world regions, which are downscaled
to 0.5° grid level in the model post-processing and used as inputs for
MARINA-Nutrients to simulate nitrogen pollution from diffuse sour-
ces. A detailed description of MAgPIE is available in Section
MAgPIE in SI.

MARINA quantifies the annual river export of multiple pollutants
(i.e. nitrogen (N), phosphorus, micro- and macro plastic, pathogens,
and chemicals) to seas from point and diffuse sources for
>10,000 subbasins worldwide65. In our study, we developed the
MARINA-Nutrients-Global-1.0 model to assess river and coastal water
pollution by total dissolved N (TDN) to seas from both diffuse and
point sources in 2010 and 2050. TDN includes dissolved inorganic and
organic N (DIN and DON). N from diffuse sources in agriculture
and non-agriculture land is based on MAgPIE, while N from point
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sources is based on MARINA-Multi-Global-1.0 developed by Strokal
et al.17 to quantify nitrogen inputs to global rivers from sewage systems
(Fig. 1). Details in model equations and model inputs for MARINA-
Nutrients are available in Section MARINA in SI.

While developing this modeling framework, we also acknowledge
that there are many other very useful models which could be adopted
to assess clean-water scarcity. Many global hydrological models exist
to assess water availability47,50,81. The land use and agriculture model
IMAGE, for example, is another well-known model in the field for
simulating land use and nitrogen budget82. Moreover, many water
quality models exist to assess water pollution from various pollutants
across temporal (e.g. daily, seasonal, annual) and spatial scales (e.g.,
catchment, sub-basin, basin). For example, SWAT83, WorldQual82,84,
and RTM85 and IMAGE-GNM55 have been proven to be advanced
models for assessing N pollution in rivers. In this study, we decided to
use the MARINA-Nutrients-Global-1.0 model as the starting point for
clean-water assessment, in combinationwithMAgPIE andVIC, because
of the following strengths. First, theMARINAmodel allows quantifying
water pollution by source (i.e., fertilizer, manure, sewage and etc)
which helps to better understand the main causes of water pollution.
Second, the sub-basin approach of MARINA provides an opportunity
to analyze water scarcity in large river basins inmore detail. Moreover,
not all models are available to assess future trends in clean-water
scarcity under the SSPs and RCPs, while the combination of MAgPIE,
VIC and MARINA is capable for such future assessment.

Hotspot analysis
Based on the quantity- and quality-based indicators, we identified the
global hotspots for clean-water scarcity. First, we determined the water
scarcity levels for the sub-basins by low,moderate, and severe levels for
both quantity and quality (Table 2). For quantity-based water scarcity
(Squantity, Eq. (1)), we used the generally accepted thresholds of >0.2 for
moderate water scarcity and >0.4 for severewater scarcity. These levels
were derived from existing studies6,29,86,87. For example, quantity-based
water scarcity is considered severewhenmore than 40%of the available
water – available river discharge after subtracting the amount for sus-
taining the environmental flow requirement - is used (Squantity > 0.4)

29.
For quality-basedwater scarcity (Squality, Eq. (2)), we used the thresholds
of >0.45 formoderate water pollution and >1 for severe water pollution
in viewof avoiding eutrophication in aquatic ecosystems. The threshold
of >0.45means that TDN concentrations at the outlets of the sub-basins
are higher than 0.45mgN/L, indicating that the surface water bodies
start to switch from the oligotrophic (clear water) to mesotrophic or
eutrophic (turbid water) states, according to the trophic state index
(TSI)88. The threshold of >1 means that nitrogen concentrations in the
water bodies are higher than 1.0mgN/L which can result in eutrophi-
cation in aquatic ecosystems38,39. Next, we identified the hotspots as the
sub-basins where there is a severe quantity-based, quality-based, or
both quantity- and quality-based water scarcity (see rows and columns
with High in Table 2).

Scenarios
We assessed water scarcity for the current (2010) and future (2050)
years. For 2050, three scenarios along the storylines of the Nitrogen
futures in the Shared Socio-economic Pathways79 and storylines of
future urbanization andwastewatermanagement17 developed based on
the Shared-economic pathways (SSPs) and Representative Concentra-
tion Pathways (RCPs) were applied. These scenarios are: SSP1-RCP2p6,
SSP2-RCP2p6, and SSP5-RCP8p5 (Supplementary Table S9 in SI). SSP1-
RCP2p6 assumes a future focusing on sustainable socio-economic
development, high-ambition N policies and an ambitious diet shift to a
lowmeat diet, improved sewage connection and treatment, sustainable
water withdrawal, combined with strong climate mitigation and its
impacts on hydrology. SSP2-RCP2p6 assumes a socio-economic
development following the historical trends, moderate-ambition N

policies and medium meat & dairy diet, not much-improved sewage
connection and treatment, not much-changes in water withdrawal,
combined with strong climatemitigation and its impacts on hydrology.
SSP5-RCP8p5 assumes an urbanized futurewith fossil-fuel-driven socio-
economic development, low-ambition N policies and meat & dairy-rich
diet, improved sewage connection but limited improvements in sewage
treatment, high water withdrawal, combine with low climatemitigation
and its impacts on hydrology. The scenario assumptions for sewage
connection and treatment are available in Supplementary Table S10 in
SI and in Strokal et al.17, which are implemented in MARINA-Nutrients-
Global-1.0 for modeling nutrient pollution in rivers from point sources.
The scenario assumptions for land use and agriculture are described in
further detail in Supplementary Table S11 in SI, which is implemented in
the MAgPIE model to produce model inputs for MARINA-Nutirents-
Global-1.0 for modeling nutrient pollution in rivers from diffuse
sources.

Data availability
All data of the clean-water scarcity assessment newly generated and
analyzed in this study are publicly available in the Data Archiving and
Networked Services (DANS Easy) repository https://doi.org/10.17026/
PT/3ICWZM.

Code availability
All equations for the MARINA model are provided in the Supple-
mentary information files of the following open access publication:
Wang, M., Kroeze, C., Strokal, M., van Vliet, M.T.H. & Ma, L. Global
change can make coastal eutrophication control in China more dif-
ficult. Earth’s Future 8, e2019EF001280, https://doi.org/10.1029/
2019ef001280 (2020).
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