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Toward grouped-reservoir computing:
organic neuromorphic vertical transistor
with distributed reservoir states for efficient
recognition and prediction

ChangsongGao1,2, Di Liu1,2, Chenhui Xu1,2, Weidong Xie1,2, Xianghong Zhang 1,2,
Junhua Bai3, Zhixian Lin1,4, Cheng Zhang5, Yuanyuan Hu 6, Tailiang Guo1,2 &
Huipeng Chen 1,2

Reservoir computing has attracted considerable attention due to its low
training cost. However, existing neuromorphic hardware, focusing mainly on
shallow-reservoir computing, faces challenges in providing adequate spatial
and temporal scales characteristic for effective computing. Here, we report an
ultra-short channel organic neuromorphic vertical transistor with distributed
reservoir states. The carrier dynamics used to map signals are enriched by
coupled multivariate physics mechanisms, while the vertical architecture
employed greatly increases the feedback intensity of the device. Conse-
quently, the device as a reservoir, effectively mapping sequential signals into
distributed reservoir state space with 1152 reservoir states, and the range ratio
of temporal and spatial characteristics can simultaneously reach 2640 and
650, respectively. The grouped-reservoir computing based on the device can
simultaneously adapt to different spatiotemporal task, achieving recognition
accuracy over 94% and prediction correlation over 95%. This work proposes a
new strategy for developing high-performance reservoir computing networks.

With the rapid development of artificial intelligence, the hardware
artificial neural network (HW-ANN) technology, inspired by the human-
brain, is seen as an effective solution to overcome the bottleneck of von
Neumann architecture1–5. In recent years, HW-ANN has made major
breakthroughs in applications such as pattern recognition6, artificial
vision7 and cross-modal information processing8, and so on, which has
attracted great attention in the fields of intelligent driving, remote
sensing imaging9 and military industry. However, depending on the
direction of the information flow in the neural network, feed-forward

neural network (FNN) just allows signals to be passed from input to
output, which is detrimental to the processing of spatiotemporal
signal10. On the other hand, although recurrent neural network (RNN)
have achieved excellent results in many tasks of processing spatio-
temporal signals, the need for backpropagation through time (BPTT)
algorithms to optimize recursive weights lead to slow convergence
speed, difficulty in training, gradient vanishment/explosion and
other problems11. Therefore, in recent years, the concept of reservoir
computing (RC) with the ability to circumvent the problem of error
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accumulation in recursive networks has been proposed. Unlike tradi-
tional ANN techniques, only the weights connected to the output layer
need to be trained in RC networks, and only extremely simple algo-
rithms, such as linear regression, are required to perform recognition of
input signals. Therefore, compared to traditional ANN, RC greatly
reduces the training cost of the network11–13 and attracts the attention of
a large number of researchers14–18.

Although a significant number of neuromorphic devices applied
to RC have been reported in recent years, the majority of these efforts
have focused on shallow-RC with monotonic reservoir state spaces19.
This can be attributed to the heavy reliance on monotonic carrier
dynamics when using reported neuromorphic devices as reservoirs to
mapsequence signals, whichgives rise to several noteworthy issues for
RCwhenperformingdifferent spatiotemporal tasks. Onemajor issue is
that the narrow range ratio of spatial characteristics makes it difficult
to extract the diversity spatial feature of sequence signal, whichgreatly
limits the richness of the reservoir space state. As a result, during the
process of mapping complex sequence signals, the reservoir state
tends to overlap, making it difficult to effectively separate the spatial
characteristics within complex information and subsequently redu-
cing recognition accuracy. Another issue is the limited rang ratio of
temporal characteristic, which hinders efficient extraction of temporal
feature from sequential signals with diverse time-scales. For example,
when performing dynamic trajectory prediction with abundant time-
scales, the limited range ratio of temporal characteristic is difficult to
adapt to the signalwithdifferent temporal feature, which severely limit
the correlation of prediction. Despite researchers have achievedmulti-
scale temporal characteristics by increasing the number of signal
modes in the input layer based on shallow-RC networks20, as shown in
the Supplement Information Fig. S1, the limitation of shallow-RC on
spatial characteristics remain unresolved. Furthermore, increasing the
input layer also means the requirement of more encoding design for
sequencesignals and theutilizationofmorephysical devices to receive
different modes of physical signals. This significantly increases the
signal error rate and pre-processing cost of the input signals, which
is detrimental to the robustness of RC. Therefore, developing new
neuromorphic reservoir devices along with new RC networks to
simultaneously meet large-scale spatial and temporal characteristics
are highly required, which is crucial for achieving high-performance
recognition and prediction in complex spatiotemporal tasks for RC
networks.

Interestingly, primates in nature are able to quickly and accurately
recognize complex object information, such as facial recognition, with
the help of advanced synaptic dynamics mechanisms. Brain science
researchonprimates has confirmed20–22 that primates use adistributed
memory characteristic for processing complex information. When the
nervous system processes a task, each neuron and neural circuit pro-
cesses only a part of the information and generates a part of the out-
put. For example, as shown in Fig. 1a, when a primate observes an
unfamiliar face, neurons in the temporal polar (TP) region (blue)
respond to familiar eye features, forming TP feature memory. Neuron
cells in the anterior-medial (AM) region respond to unfamiliar lip fea-
tures, forming AM feature memory23. In this way, all outputs are inte-
grated by the cerebral cortex to form the final output result,
significantly improving the computational efficiency and accuracy for
complex information processing. The physiological significance of
distributed memory characteristics in primates serves as inspiration
for the design of physical node devices with distributed reservoir
states in the reservoir layer of the RC system. These devices are
intended to facilitate the distributed mapping of spatiotemporal sig-
nals. However, to date, no such devices have been demonstrated.

In this work, inspired by the distributed memory characteristic of
primates, an ultra-short channel organic neuromorphic vertical field
effect transistor with distributed reservoir states is proposed and used
to implement grouped-RC networks. By couplingmultivariate physical

mechanisms into a single device, the dynamic states of carriers are
greatly enriched. As reservoir nodes, sequential signals can bemapped
to a distributed reservoir state space by various carrier dynamics,
rather than by monotonic carrier dynamics. Additionally, a vertical
architecturewith ultra-short nanometers transport distance is adopted
to eliminate the driving force of the dissociation exciton, thereby
improving the feedback strength of the device and the reducing the
overlap between different reservoir state space, which only cause
negligible additional power. Consequently, the device serves as a
reservoir capable of mapping sequential signals into distributed
reservoir state space with 1152 reservoir states, and the range ratio of
temporal (key parameters for prediction) and spatial characteristics
(key parameters for recognition) can simultaneously reach 2640 and
650, respectively, which are superior to the reported neuromorphic
devices. Therefore, the grouped-RC network implemented based on
the device can simultaneously meet the requirements of two different
spatiotemporal types task (broad-spectrum image recognition and
dynamic trajectory prediction) and exhibits over 94% recognition
accuracy and over 95% prediction correlation, respectively. This work
proposes a strategy for developing neural hardware for complex
reservoir computing networks and has great potential in the devel-
opment of a new generation of artificial neuromorphic hardware and
brain-like computing.

Result
Grouped-RC and device design
The face recognition process in primates, as shown in Fig. 1a, involves a
unique memory mechanism of distributed processing in synaptic
dynamics. When the monkey brain receives facial information S1 from
each other, nerve cells and neural circuits in different regions of the
brain process the feature information in S1 separately, and obtain dif-
ferent spatial-temporal featurememories, such asN1, N2, N3, and so on.
Eventually, the cerebral cortex fuses these memories and makes
judgments. Given the efficient distributed memory processing of the
primate brain, we expect to introduce this physiological mechanism
into RC systems so that the system has richer reservoir state space.
Therefore, as shown in Fig. 1b, inspired by the distributed memory
characteristic of monkeys, the reservoirs in the RC system process the
input signal in parallel based on different carrier dynamics (such as
marked yellow, purple, blue, and red). The final input signal ismapped
to the reservoir state space of different dimensions, allowing the sys-
tem to obtain a wide range ratio of spatial-temporal characteristics
ratios, i.e. grouped-reservoir computing. However, achieving this
process at the physical device level is a challenge, as it requires
reservoir devices to possess device attributes of non-linear response
characteristics and short-term memory characteristics, while also
needing a wide dynamic range of feedback intensity and time char-
acteristics to meet the demands of a large number of reservoir states.
(details are discussed in Supplementary Information Note 1). Although
the use of dynamic memristors has been widely reported, its limited
number of terminals can easily cause the reservoir to become a rela-
tively fixed nonlinear function24. At the same time, the limitations of
the photogenerated charge transport efficiency due to the long
transport distance of conventional transistors can easily lead to a
narrow range of feedback intensities F. Here, we propose an organic
neuromorphic vertical field effect transistor with distributed reservoir
states (VOFET-DR) as the reservoir, whose structure is shown in Fig. 1c
and Supplementary Information Fig. S2. In particular, we achieve large-
scale τ using organic semiconductor materials with broad spectral
absorption characteristics and couple it with the vertical architecture
to broaden the F range of the reservoir.

An organic semiconductor layer consisting of a bulk heterojunc-
tion (BHJ) of N2200(poly{[N,N′-bis(2-octyldodecyl)-naphthalene-1,
4,5,8-bis(dicarboximide)−2,6-diyl]-alt-5,5′-(2,2′-bithiophene)]}) (n-
type): P0FDIID (conjugated polymers of fluorinated iso-indigo [7,6-g]
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iso-indigo) (p-type) is used as the active layer. In particular, N2200 is
used as an electron acceptor for charge trapping, while P0FDIID with
broad-spectrum absorption properties is used as a light absorbing
layer and the main channel material to ensure efficient charge trans-
port. The absorption spectra, as well as the chemical structures of the
active layer materials, are shown in Supplementary Information
Figs. S3 and S4, respectively. Since photogenerated charge transfer25

and trapping effects26–28 occur readily between p-type and n-type
organic semiconductor interfaces, whenphotonswithdifferent energy
are fed into the device, the device is able to generate short-term
memory photocurrents with different temporal characteristics to
capture different features of the physical signal. Due to the nanoscale
channel length of the adopted vertical field effect transistor structure
(the channel length is the thickness of an active layer, which is ~65 nm,
as shown in the Supplementary Information Fig. S5), it provides an
uneven and large electric field that greatly promotes the separation
and transport of photogenerated carriers29–31. This effectively reduces
non-radiative recombination and improves the device feedback
intensity, which provides a wide range of spatial characteristics. The

network source electrode of the vertical transistor is composed of
MXene thin film containing perforations to avoid the shielding effect
of the gate electric field from the source32. In Supplementary Infor-
mation Figs. S6–S8,MXene films are further characterized by scanning
electron microscopy (SEM), the X-ray photoelectron spectroscopy
(XPS) spectra and atomic force microscopy (AFM), respectively. Al2O3

(1 nm)/PVA (polyvinyl alcohol) is used as a charge-trapping layer to
trap dark-state carriers to avoid excessive off-state currents. The spe-
cific fabrication process of the device is described in detail in the
experimental method.

In conventional shallow-RC10,19,24,33–36, as shown in Fig. 1d, physical
node devices in the reservoir layer map the inputting sequence signal
based on relatively simple carrier dynamics, resulting in monotonous
reservoir state space, which is defined as X0(t). This greatly limits the
range ratio of spatial and temporal characteristics of RC. In this work,
as shown in Fig. 1e, we utilize the VOFET-DR as a single physical node in
the reservoir layer, enabling the design of grouped-RC. The device is
capable of sensing optical sequence signals with different wavelengths
and generating memory currents, thereby allowing the nonlinear

SiO2

Si (Gate)

MXene
Al2O3

PVA

P0FDIID : N2200 BHJ

Au

Au

Source

Drain

Reservoir
space state

Distributed
reservoir

input

X4(t)

GL
1

SL
1

……

……

BL1

BL2

GL
n-3

SL
n-3
GL
n-2

SL
n-2
GL
n-1

SL
n-1input signal

Primate brain systema b
Ef
fic
ac
y

Time

N1
N2

Nn
Nn-1

……

Different memory features

……

N1

N2

Nn

S1

St
im
ul
us

Same stimulus signal

Distributed-memory
characteristics

Eye features

Lip features

e

The grouped-reservior computing
network architecture

Reservoir layers have the distributed reservoir
state space Xn (t)

O
ut
pu
tl
ay
er

In
pu
tl
ay
er

Reservior layer
y(t1)y(t1)

U

U

U

U

……

y(t2)

y(t3)

y(tn)

y(t4)

M
ul
tis
ca
le
fe
at
ur
e
fu
si
on

u(t1)u(t1)

U

U

U

U

……

u(t2)

u(t3)

u(tn)

u(t4)

… … …

…

…

…

Distributed
reservoir state

space
t

I

Pin

d

The reservoir layer only has a monotonous reservoir state
space X0 (t)

Traditional shallow-reservoir
computing network architecture

O
ut
pu
tl
ay
e r

In
pu
tl
ay
er

Reservior layer

u(t1)u(t1)

U

U

U

U

……

u(t2)

u(t3)

u(tn)

u(t4)

y(t1)y(t1)

U

U

U

U

……

y(t2)

y(t3)

y(tn)

y(t4)

X0(t)

Monotonous
reservoir state

space
t

I
Pin Same stimulus signal Same stimulus signal

Distributed-memory fusion by
cerebral cortex

c

In this work

X0(t)

X1(t)

X2(t)

X3(t)

X0(t) : X1(t) : X2(t) : … Xn(t)

X0(t)
Xn(t)
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wavelength of the input optical signal or the applied gate voltage. d Schematic
diagram of network architecture for traditional shallow-reservoir computing.
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temporal characteristics of the sequence signals to bemapped into the
reservoir space X0(t). Due to the varying single-photon energies
associated with input light sequence signals of different wavelengths,
the resulting memory current exhibits distinct temporal character-
istics depending on the wavelength. Consequently, the physical node
can first map the input optical sequence signal to different reservoir
spaces X1(t), X2(t), X3(t), X4(t), and so on, based on the specific wave-
length. Additionally, the vertical field-effect transistor has the cap-
ability tomanipulate the Schottky barrier between the active layer and
the source interface through gate bias, which allows the device to
adjust the charge injection and overall current of the device, resulting
in memory currents with different spatial characteristics. By further
setting the gate biasof thedevice, it becomespossible tomapdifferent
spatial characteristics X1(t), X2(t), X3(t), X4(t), and so on, based on the
original spatial characteristic X0(t). As a result, the physical nodes can
map different spatial-temporal characteristics based on different car-
rier dynamics, effectively meeting the requirements of grouped RC.

Field effect characteristics of the device
Figure 2a shows the operatingmode of VOFET-DR as a physical node in
grouped-RC. The device utilizes vertical field effect transistor archi-
tecture and a p-n organic semiconductor bulk heterojunction (BHJ) as
the active layer. Thus, the device has threemodes of operation tomap
the nonlinear temporal characteristics of the sequence signal to
reservoir space. The first mode is inputting voltage sequence pulse
signals to the device. The second mode is inputting laser sequence
pulse signals to the device. The third mode is simultaneously applying
gate bias while inputting laser sequence pulse signals to the device.
As the field-effect mechanism of the vertical transistor can modulate
the efficiency of photogenerated charge separation in bulk hetero-
junction and facilitate the injection of source charge29,32, the third
mode is able to map the temporal characteristics of light signal into
different reservoir spaces. To verify the viability of this strategy, the
field effect transistor properties of the device are initially investigated.
Figure 2b illustrates the transfer curve, suggesting that the gate bias
VGS can effectively regulate the output current of the transistor. Next,
Fig. 2c shows the variation of the hysteresis window after the device is
appliedwithdifferent double sweep voltagesVGS, which shows that the
hysteresis window increases with the VGS sweep range, indicating that
the device has a memory effect and has the potential to be used as a
reservoir34,36.

Nonlinear response and short-term memory characteristics of
the device
Therefore, to investigate the ability of the device to act as a reservoir
physical node, the device is subjected to single Vpulse GS with different
amplitude. The device demonstrates the short-term memory currents
(see Fig. 2d and Supplementary Information Fig. S9), which satisfy the
requirement of a reservoir physical node to map a sequence signal. In
addition to the input Vpulse GS, the devices are individually applied with
a single light pulse signal of different wavelengths (no gate voltage)
and similarly exhibit short-term memory current, as shown in Fig. 2e
and Supplementary Information Fig. S10. To further analyze the
impact of input signals with different modes on performance, the
nonlinear temporal characteristic τ of the device is extracted in both
operatingmodes. This parameter is crucial for evaluating the ability to
map the sequence signal, as illustrated in Fig. 2f. The method of
extraction of nonlinear temporal characteristics τ is elucidated in the
Supplementary InformationNote 2. It can be found that for theVpulse GS

mode, the device has a relatively narrow range of nonlinear temporal
characteristics (from0.14 s to 0.39 s), which ismuch lower than that for
the mode of light pulses (from 0.005 s to 1.72 s). In RC, the computing
capacity of the system depends primarily on the physical nodes in the
reservoir capturing different temporal characteristics and mapping
these characteristics to the reservoir space11,19. Therefore, having a wide

range ratio of temporal characteristics is essential to enhance the
reservoir state richness of the system. Given that the light pulse mode
has wider range of nonlinear temporal characteristics, using the light
pulse as the input signal for this device is more conducive to the design
of grouped-RC.

On the other hand, due to the point-wise separation property for
the reservoir33, the feedback strength of the physical device has a cri-
tical impact on the spatial characteristics of reservoir state. For the
Vpulse GS mode, FE is defined to evaluate the feedback strength. The
equation is as follows:

FE =
ΔPspike out

Pwrite
ð1Þ

where ΔPspike out is the variable of output spike power, Pin is the input
power of the write pulse. For the light pulse mode, we define Fph to
evaluate the feedback strength. The equation is as follows:

Fph =
ΔIspike out
Plight in

ð2Þ

where ΔIspike out is the variable of output spike current, and Plight in is
the light power density of the input light pulse. Figure 2g shows the
feedback strength of the Vpulse GS mode (top) and the light pulse mode
(bottom), respectively. Standard deviation (SD) was used to assess the
range of variation in feedback strength. The method of computing SD
is elucidated in the Supplementary Information Note 3. It can be found
that the SD of the Vpulse GS mode is 15.5, implying a relatively constant
variation in feedback strength, in contrast to the SD of 280.6 for the
light pulse mode, indicating a rich variation in feedback strength. This
suggests that the light pulse mode allows the reservoir to extract
spatial characteristics in the sequence signal more efficiently and to
generate diverse short-term memory dynamics. Considering that
objects in naturepossess different electromagnetic spectral properties
and reflect electromagnetic wave signals of varying wavelengths, such
as the 808 nm band highlighting the information of “soil” and “trees,”
and the 450-650nm visible band highlighting “highway” and “water,”
and that the device is capable of generating rich short-term memory
dynamics for light pulses of different wavelengths, light pulses is
chosen as the carrier of sequence signals for the device to extract the
feature information of the target more efficiently and to improve the
computing capacity of RC.

Nonlinear mapping of multi-bit signals
In addition to rich short-term memory characteristic dynamics, effi-
cientmapping of spatiotemporal characteristics of the sequence signal
into the reservoir space is essential for RC11. To evaluate the mapping
capabilities, a 6-bit light sequence signal test isperformedby randomly
input four types of sequence light pulse signals, as shown in Fig. 2h.
Each periodical input waveform (650nm, 0.01mWcm−2, 0.1 s pulse
width, 0.2 s pulse interval) is considered as one bit, in which the light
pulses “on” and “off” represent the “1” and “0” in the binary code
respectively. It is obvious that as the state x(tn) of the device is influ-
enced by the input state u(tn) in conjunctionwith the input state u(tn-1)
at the previous moment, different sequence signals such as ‘001010’,
‘100011’, ‘101011’, ‘110101’ are able to be mapped by the device with
different magnitudes of current. For example, ‘001010’, ‘100011’,
‘101011’, ‘110101’ correspond to 2.9 nA, 3.6 nA, 6.13 nA, 4.32 nA
respectively. Further, 64 types of binary timing signals from ‘000000’
to ‘111111’ are fed into the device, as shown in Fig. 2i and Supplementary
Information Fig. S11. It demonstrates 64 different conductivity states,
and the sample deviations of these conductance states are shown in
Supplementary Information Fig. S12. This shows that the device can
effectively map the nonlinear temporal characteristics of different
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sequence signals into the reservoir space, which is important for
reservoir computing.

Distributed reservoir states of VOFET-DR
In the primate brain, neuron, and neural circuit extract facial feature
information of targets from different dimensions to accurately
identify target identities. Thus, to construct this bionic processing
mechanism, physical nodes in reservoirs map the spatiotemporal
characteristics of sequential signals into reservoir spaces of different
dimensions through different dynamics to achieve distributed
reservoir states, which is essential for grouped RC. Hence, while the
light pulse signal is input to the device, different gate bias VGS are
applied to the device, expecting to further enrich the carrier
dynamics, as shown in Supplementary Information Fig. S13. It can be
observed that after adding the gate bias VGS, the device outputs
current at different amplitudes due to different feedback strength,
which indicates that the input light pulse signals can be mapped to
different reservoir state spaces.

In Fig. 2j, the nonlinear temporal characteristics of a single light
pulse are extracted under different VGS biases. It can be observed that
the device exhibits a wide range of temporal characteristics (ranging
from 0.005 s to 13.2 s) when a VGS bias is added, which meets the
requirement of RC for multi-scale temporal characteristics. However,
an important consideration is the additional power caused by gate
control, which is largely dependent on the gate leak current (Igs). As
shown in Supplemental Information Fig. S14, the Pgs (VGS × Igs) density
is approximately 10−4–10−3 (mJ s −1cm−2), which accounts for only
0.0004% of the Ids density 25 (mJ s−1 cm−2). At the same time, when an
additional gatee voltage bias of -15 V is applied, the feedback intensity
increases to 9.53(μAmW−1 cm−2), which is a 190-fold increase com-
pared to no gate (50 nAmW−1 cm−2). Therefore, the power derived
from external electric filed could be negligible. Furthermore, in Fig. 2k,
the feedback strength is calculated according to Eq. (2). It can be
observed that the feedback strength of the physical node increases
withVGSbias, For example, Fph increases from6.3μA/(mWcm−2) to 13.8
μA/(mW cm−2) to 54.6 μA/(mW cm−2) for 310 nm pulses at VGS bias of
-1V, -8V, -15V. This confirms that physical nodes with different biases
VGS can obtain different degrees of memory effects from the same
input signal, which is crucial for mapping the nonlinear temporal
characteristics of sequence signals to reservoir state spaces of differ-
ent dimensions. A wide range of temporal and spatial characteristics is
key to further implementing complex-RC. Therefore, a range ratio of
two parameters is introduced to evaluate the performance of the
device as a reservoir node. As shown in Fig. 2l and Supplementary
Information Table S1, the range ratios of temporal and spatial char-
acteristics of VOFET-DR are shown as 2640 and 650, respectively,
which are superior to currently reported neuromorphic devices for
RC10,11,33,35–38.

Furthermore, to examine the impact of VGS bias on the mapping
of sequence signals, the device is subjected to a light pulse sequence
of ‘1011110111’ under varying VGS biases. As shown in Fig. 2m, it can be
observed that different VGS biases enable the physical nodes to map
the sequence signals into distinct reservoir state spaces. For exam-
ple, VGS (-15V), VGS (-12V), VGS (-8V), VGS (-3V), and VGS (-1V) corre-
spond to reservoir spaces X(-15)(t), X(-12)(t), X(-8)(t), X(-3)(t), X(-1)(t),
respectively. The reservoir states of the device after 64 optical pulse
sequences ranging from ‘000000’ to ‘111111’ are shown in Supple-
mentary Information Fig. S15 under different bias VGS conditions,
which shows 384 reservoir states. This proves that coupling photo-
conductivity and field effects can bring rich reservoir states to the
reservoir. Similarly, the effect of wavelength on physical node map-
ping sequence signals is investigated in Supplementary Information
Fig. S16. It is observed that, under the same gate bias (VGS = −10V),
sequential signals with different wavelengths can be mapped to dif-
ferent reservoir state spaces. For example, Pin (310 nm), Pin (450 nm),

Pin (525 nm), Pin (650 nm), and Pin (808 nm) correspond to X (310)(t),
X (450)(t), X (525)(t), X (650)(t), and X (808)(t) respectively. This confirms
that VOFET-DR, as a physical node, canmap the same sequence signal
into the reservoir state space X(t) with different dimensions through
different carrier dynamics to form different memory states, which is
the distributed reservoir. Further, the optical pulse input signals in
the three bands of ultraviolet (310 nm), visible (650 nm), and near-
infrared (808 nm) light, ranging from ‘000000’ to ‘111111’, combined
with different VGS, can result in 1152 reservoir states, as shown in
Supplementary Information Fig. S17.

In reservoir computing, the input signal, which that was challen-
ging todivide in the low-dimensional space, canbe linearly divideddue
to the enhanced distinction of sequence signal characteristics in the
high-dimensional state space. Hence, the effect of biasVGS on the input
signal of reservoir space segmentation is further evaluated. The device
is fed a sequence of 64 optical pulse signals ranging from ‘000000’ to
‘111111’. After 1 second from the end of input signal, the output current
is defined as reservoir state X(t6). As shown in Fig. 2n and Supple-
mentary Information Table 2, by differentiating X(t6) under different
biases, it can be found that the value difference increases as bias VGS
increases. This indicates that the bias VGS can effectively adjust the
degree of state overlap between the reservoir state spaces X(Vgs)(t) of
different dimensions, and enhances the linear segmentation of the
input signal from the low-dimensional state space. Additionally,
because sequential pulse signalswithdifferentwavelengths canalso be
mapped in different reservoir state spaces X(λ)(t), it brings richer
dynamics of carrier to the reservoir. Therefore, different VGS and dif-
ferent wavelengths are combined to further separate the input signal.
We input 64 sequences of light pulse signals from ‘000000’ to ‘111111’
at wavelengths of 310 nm, 450 nm, 525 nm, 650 nm, and 808 nm to
VOFET-DR with different VGS biases, and the reservoir state X(λ)(Vgs)

(t6) was sampled in the same way. The degree of linear segmentation
of the input signal is then evaluated by calculating the SD of the
different reservoir states. Figure 2o and Supplementary Information
Table 3a and 3b shows theX(λ)(Vgs)(t6) standard deviation range based
on the 64-type sequence light signals of different wavelengths. For
example, for the ‘111111’ sequence signal, the SD of the reservoir
states of 310 nm, 450 nm, 525 nm, 650 nm, and 808 nm are 211, 179,
130.6, 89.1, and 44.2, respectively. The sequence signal with 310 nm
exhibits a relatively large range. This demonstrates that the coupling
of photon energy with different field effects allows for effective
modulationof the degreeof linear separability of input signals in low-
dimensional state space. This demonstrates that by combining
the wavelength λ and the bias VGS, the degree of linear segmentation
of the low-dimensional state space of the input signal can be effec-
tively adjusted, which is crucial for processing complex sequence
signals.

The working mechanism of VOFET-DR
To elucidate the mechanism underlying the distributed reservoir of
thedevices, the performance of devices that arenotmixedwithN2200
is investigated, as presented in Supporting Information Fig. S18.
Compared with devices that used heterojunction as channels, devices
without N2200 failed to exhibit memory characteristics under the
stimulation of light pulses. This indicates that memory characteristics
are related to bulk heterojunction structure. Hence, themechanism of
the device is analyzed and discussed in Fig. 3. The energy band
structure of the material is shown in the Support Information Fig. S19.
Initially, we investigated the case where the device is individually sti-
mulated by light pulses. The bulk heterojunction structure is com-
monly used in organic photovoltaic cells to efficiently generate
excitons that dissociate at the donor-acceptor interface, leading to the
formation of photogenerated electron-hole pairs. Thus, when the light
pulse is applied to the device, the same process of photogenerated
electron-holepair generationoccurs in the channel, as shown in Fig. 3a.
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Next, since the LUMO of P0FDIID is higher than the LUMO of N2200,
the dispersed N2200 mixed into P0FDIID forms a potential barrier
structure similar to a quantum well for charge trapping27. Moreover,
the evolution of thin filmmorphologywith andwithout the addition of
N2200 is further investigated by atomic force microscopy (AFM), as
presented in Supplementary Information Fig. S20. The dispersed
N2200 results in higher roughness of the film, which means that more
trapping sites are created.

Further, to investigate the impact of light pulses with different
wavelengths on memory current, the activation energy Ea for charge
trapping under various wavelength inputs is calculated and shown in
Fig. 3b (The calculation method is explained in Supplementary Infor-
mation Note 4). It can be found that the Ea corresponding to 310 nm,
450nm, 525 nm, 650nm, and 808 nm are 46meV, 61meV, 79meV,
91meV, and 99meV, respectively. As the electron trapping is impeded
by a higher energy barrier39–41, the resulting memory current response
is lower. Therefore, by extracting thememory current at 310 nm,which
corresponds to a relatively minimum energy barrier 46meV, a larger

memory current is obtained. This finding is consistent with the results
presented in Fig. 2g. The error bar range is derived from themaximum
and minimum values after 5 samples of experimental data. To further
confirm that the wavelength can affect the electron trapping in
different degrees, the surface potential distribution of the
P0FDIID:N2200 mixed film was probed using kelvin probe force
microscopy (KPFM) at different wavelengths of light source irradia-
tion, as shown in Fig. 3c. It can be found that the surface potential of
the mixed film decreases with wavelength, which is attributed to the
increased electron concentration42. Therefore, the KPFM results fur-
ther confirm the different effects of wavelengths on the electron
trapping effect, which is consistent with the above results.

Another key to the distributed reservoir states is the effect of gate
bias VGS. The modulation effect of VGS on the device is discussed. For
vertical field-effect transistors, the gate electric field affect the injec-
tion and transport state of carriers, which can be quantitatively ana-
lyzed by the test of temperature-dependent output characteristics,
which are shown in Supplementary Information Fig. S21. The Schottky
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current IS can be described utilizing thermionic emission model fol-
lowing the function43 as:

IS =AA
*T2 exp �qϕ=kBT

� � ð3Þ

in which kB, T, and q are the Boltzmann constant, absolute tempera-
ture, and elementary charge, respectively. ϕ is the Schottky barrier
height of the interface between MXene and the active layer, A is the
area of Schottky contact, and A* is the effective Richardson constant.ϕ
is obtained by the slope, as shown in Fig. 3d. It can be seen that the ϕ
decreases as VGS increases, indicating that VGS can effectively adjust
the interface potential barrier to control charge injection. To further
investigate the influence of VGS on charge injection, we analyze the
potential and charge distribution within the device using COMSOL
semiconductor device emulation calculation (Supplementary Infor-
mation Table 4). Supplementary Information Figs. S22–S24 shows the
potential distribution of the device at different VGS. For VGS < 0, a
potential gradient is formed between the source and the aperture,
facilitating charge injection. An analysis of the influence of the VGS on
the potential distribution at the dotted line reveals that the potential
within the aperture undergoes significant changes with varyingVGS, far
exceeding the area outside the aperture. This demonstrates that the
VGS can effectively adjust the electric field distribution inside the
device, which is crucial for regulating the carrier transport state. Fur-
ther, the influence of VGS on the charge distribution in the device is
analyzed in Fig. 3e and Supplementary Information Fig. S25. When
VGS < 0, the charge in the aperture accumulates to form a ‘virtual
contact’44,45, as shown in the Supplementary Information Fig. S25a–c,
indicating that VGS greatly affects the charge injection effect. More-
over, Fig. 3f shows that the influence of the VGS on the charge dis-
tribution at the dotted line, and shows that a large amount of charge
aggregation occurs in the aperture area as the VGS increases. This
further confirms that VGS can effectively regulate the charge injection
into the active layer and affect the distribution of the charge in the
channel, resulting in different levels of output currents from the
device.

Therefore, based on the above results, the workingmechanismof
the device is explained as follows: When the device is not applied with
VGS, as shown in Fig. 3g. It absorbs photons and generates photo-
generated excitons when exposed to light pulse. Because P0FDIID is
mixed with a small amount of N2200, the dispersed N2200 and
P0FDIID form quantum well-like trapping sites (P0FDIID / N2200 /
P0FDIID). When the photogenerated excitons separate into electrons
and holes, the electrons are trapped by dispersed N2200, leading to a
higher hole concentration in the channel P0FDIID and increased out-
put current. After the light pulse ends, the trapped electrons in N2200
are compensated by the holes in the channel, resulting in a gradual
decrease in the output current. The result is the phenomenon of short-
term memory current. Furthermore, since the electrons photo-
generated by light pulses with different wavelengths are hindered by
energy barriers of different level during the process of charge trap-
ping, which enables the device to effectively capture different physical
characteristics of external information. When the device is applied
with VGS, as shown in Fig. 3h, holes accumulate at the interface
between the semiconductor and the insulating layer. This causes the
energy level of the semiconductor to bend, reducing the Schottky
barrier ϕ between the source and the semiconductor. As a result, the
electric filed induced by gate voltage prompts that excitons can be
efficiently dissociated with a small driving force. Meanwhile, the elec-
tric filed contributes to the dissociation of charge-transfer state exci-
tons, decreasing the non-radiative recombination and improve the
feedback strength. Therefore, depending on the gate bias, different
concentrations of charges are injected into the active layer, enriching
the carrier dynamics. The optical sequence signal can be mapped to
different reservoir state spaces by different carrier dynamics, so that

its spatiotemporal characteristics can be effectively separated and
distributed reservoir states can be realized.

Grouped-RC for satellite remote sensing image recognition
High-precision satellite remote sensing image recognition is a chal-
lenge due to the complex spectral information contained. In view of
the distributed reservoir states, we construct reservoirs based on
VOFET-DR to separate the physical properties of sequence signals in
multi-dimensions, and propose grouped-RC to identify complex fea-
tures of ground objects in satellite remote sensing images.

As shown in Fig. 4a, different areas of the landform can reflect or
radiate electromagnetic waves of different wavelengths. For exam-
ple, desert and rocky areas can reflectmore infrared electromagnetic
waves, mountainous areas are prone to reflect a large number of
ultraviolet electromagnetic waves, and urban building areas can
reflect more visible light waves. Therefore, using this spectral char-
acteristic in remote sensing satellites can effectively capture the
characteristics of the earth surface. Based on the color informationof
the object, we input the optical sequence signal with a specific
wavelength to VOFET-DR, which corresponds to the electromagnetic
wave signal reflected by the satellite receiving the object. Due to the
distributed reservoir states of the device, the sequence signal can
be mapped to the reservoir state space of different dimensions
according to the temporal characteristics of the specific wavelength,
thereby separating the physical image information of the landform
into different feature channels, which is more conducive to identifi-
cation, as shown in Fig. 4b.

Next, the three electromagnetic spectral features of Ultraviolet
(UV), Visible (Vis), Near Infrared (NIR) of the image are respectively
input into the grouped-RC system as independent characteristic
channels, as shown in Fig. 4c. The NIR characteristic channel of the
image is taken as an example. First, the NIR electromagnetic band
image is preprocessed including cropping, binarization and resizing,
and rejoining to a 16 × 100 pixels image. Correspondingly, the
reservoir consists of 4 parallel sub-reservoirs, each of which has a
different VGS to give the sub-reservoir different spatiotemporal
characteristics. Each sub-reservoir includes 100 VOFET-DR physical
nodes, and generates 100 feature outputs for feature fusion and
training of the output layer, as shown in Supplementary Information
Fig. S26. The relationship between the mathematical model and the
physical hardware for this grouped-RC is shown in Supporting
Information Fig. S27. Finally, by inputting images of different feature
channels of UV, Vis, and NIR into the grouped-RC network, per-
forming feature fusion and training, the feature recognition of
satellite remote sensing images is successfully confirmed in Fig. 4d,
and their recognition accuracy exceeds 95%. In addition, Fig. 4e
shows the effect of adding different numbers of sub-reservoirs with
different spatiotemporal characteristics on the recognition accuracy.
It can be found that the recognition accuracy reaches 94.9% after
adding 4 sub-reservoirs with different spatiotemporal character-
istics, which shows that the rich reservoir state space is more con-
ducive to separating the spatiotemporal characteristics of the signal
and improving the recognition accuracy. Furthermore, the task is
also performed using single-layer, double-layer Artificial Neural
Network (ANN) networks and Convolutional Neural Networks (CNN).
The accuracy achieved is 88.1%, 96.1% and 92.1% respectively, which,
verified that the grouped-RC is comparable to the traditional main-
stream technology in term of recognition efficiency. Notably, the
grouped-RC only requires weight training for part of the RC con-
nected to the output layer, resulting in a significantly lower number
of weights (~2400) compared to single-layer ANN (~1,440,288),
double-layer ANN (~2,884,896) and CNN (~25,600) as depicted in
Fig. 4f. This demonstrates that the grouped-RC achieves comparable
accuracy while reducing the weight-related computational cost by
over 90% compared to ANNs and CNNs.
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Traffic trajectory prediction
As a time-series signal task, traffic trajectory prediction is an important
application of machine vision, and the different spatiotemporal char-
acteristic signals it contains have become a challenge for accurate
prediction. For example, as shown in the traffic scene described in
Fig. 5a, in a traffic road, due to the different motion rates of different
traffic elements (pedestrians, bicycles, cars), objects generate different
time frame and space frame information flows. Therefore, by using
VOFET-DRwith extensive spatiotemporal properties as a physical node
to effectively extract the spatiotemporal features of moving object
signals, we expect to achieve accurate traffic trajectory prediction.

First, for object motion trajectory detection, we combine the
light-induced short-termmemory effect of the device with the optical
flow method and the inter-frame difference method to obtain the
motion rate (time frame information) and orientation (spatial frame
information) of the moving object respectively. As shown in Fig. 5b, a
reservoir matrix consisting of N × M pixel modules P (n, m) is used to
receive the dynamic information flow, where each pixel consists of a
VOFET-DR and acts as a single reservoir to receive the sequence signal i
(tn) of the dynamic information flow. N and M depend on the resolu-
tion of the image to fit the image, i.e. N andM are the image length and
width, respectively.Due to the light-induced short-termmemoryeffect
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of VOFET-DR, the current memory generated by the moving object
(red ball) at the previous time position gradually decreases with time,
and forms a strength difference with the current memory at the cur-
rent time position. Thus, the dynamic information flow from t0 to t4,
the trajectory of the object through the current memory layer will be
formed having a direction, and the trajectory of the object can be
identified according to the layer component. It is worth noting that the
current gradient generated by the difference in electric current
memory at different times depends on the object velocity. Therefore,
by utilizing the gradient component of the currentmemory, the object
velocity can be further calculated. Furthermore, due to the different
velocities of various traffic elements, it is possible to adapt to different
traffic elements by adjusting the gate voltage of VOFET-DR and setting
its time characteristics. Finally, by comparing the current memory of
VOFET-DR atdifferent time intervals, i.e., framedifferencemethod, the
spatial frame information of the moving object can be obtained based
on the difference result, as shown in Supplementary Information

Fig. S28 and Fig. 5c show the spatial frame information of different
traffic elements. Furthermore, utilizing the obtained velocity and
orientation information mentioned above, the encoding system built
by the VOFET-DR reservoir layer predicts the future frames of the
moving objects, as shown in Supplementary Information Fig. S29.
When the system detects a moving object, as shown in Fig. 5d, the
system uses the velocity and coordinate information of the object in
the previous three frames (X(t0), X(t1), X(t2)) as input and output to
train the encoding system. A well-trained system will then make pre-
dictions for the velocity and coordinates of the next frame, marked
with a red circle. Figure 5e presents the prediction of motion trajec-
tories for pedestrians, bicycles, and cars, and it reveals a good overlap
between the predicted and actual trajectories. In Fig. 5f, the correlation
coefficients (0.951, 0.959, 0.969) between the predicted trajectories
and the actual trajectories of pedestrians, bicycles, and cars
are respectively displayed, indicating accurate trajectory prediction
results.
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Fig. 5 | Traffic trajectory prediction. a Schematic diagram of traffic trajectory
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cific columns of a time frame (t0 to t4) form a time visual sequence u (t). c The
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X(t2)) as input and output to train the encoding system. e The prediction ofmotion
trajectories for pedestrians, bicycles, and cars. f The correlation coefficients
between the predicted trajectories and the actual trajectories of pedestrian,
bicycle, and car.
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Overall, in this study, wefirst analyze the relationship between the
computing capacity of physical reservoir computing and the richness
of reservoir states in reservoir devices based on the mathematical
model of the reservoir. It is reveals that the computing capacity of
physical reservoir computing is heavily dependent on two physical
coefficients of reservoir devices: the feedback intensity (F) and the
time characteristic (τ) (Details are discussed in Supplementary Infor-
mationNote 1). To achieve high-performance reservoir computing, it is
crucial to enhance the dynamic range of the F and τ at the physical
device level. The dynamic range of the F is influenced by the photo-
generated charge transport modulation mechanism and transport
efficiency. Meanwhile, the vertical transistor architecture with nanos-
cale transport distance can not only improve the transport efficiency
of photogenerated charges but also provide richer modulation by the
additional terminal. Additionally, the non-uniform gate field can pre-
cisely regulate charge transport. This overcomes the limitations of
traditional optoelectronic memristors and lateral transistors in terms
of single modulation mechanism and low charge transport efficiency,
which narrows the scale of feedback intensity. Meanwhile, the scale of
the τ is greatly affected by the energy state of trapped charges.
Therefore, inducing photogenerated charges with different energy
states by using light pulses with different wavelengths can effectively
expand the time scale of the device.

Finally, the key advantages of VOFET-DR are summarized: (i) Dis-
tributed reservoir state space and grouped-reservoir. VOFET-DR over-
comes the limitationof amonotonic reservoir state space in shallow-RC,
amajor challenge in RC. By leveraging the distributed reservoir states of
VOFET-DR and combining multiple physical mechanisms, the carrier
dynamics can be adaptively adjusted, resulting in a reservoir state space
with 1152 states. This enables the mapping of sequential signals using
different carrier dynamics, achieving grouped-RC. (ii) Ultra-wide range
ratio of spatial and temporal characteristics. The narrow spatial and
temporal characteristics scale of shallow-RC caused by monotonic
physics mechanisms (a major problem with traditional neuromorphic
devices) are solved by VOFET-DR. The device exhibits awide range ratio
on spatial (650) and temporal characteristics (2640), both of which
outperform the reported neuromorphic device for RC. Hence, the
grouped-RC network exhibit high precision in both image recognition
(94%) and dynamic prediction (95%). (iii) Negligible additional power
density. VOFET-DR can achieve a significant increase in feedback
intensity (650 times), but only generates an additional negligible power
density (approximately 10−4 mJ s−1 cm−2).

Discussion
In summary, we for the first time introduce an innovative organic
vertical neuromorphic transistor with distributed reservoir states,
specifically designed for grouped-RC. By coupling multivariate physics
mechanisms to enrich carrier dynamics, our proposed VOFET-DR as a
reservoir exhibits a distributed reservoir state spacewith 1152 reservoir
states, overcoming the limitations of traditional shallow-RC with
monotonic reservoir state space in achieving high-precision recogni-
tion and prediction in complex spatiotemporal tasks. The device
exhibits ultra-wide range rates (2640 and 650) in both temporal and
spatial characteristics, outperforming the reported neuromorphic
reservoir devices. Further, the grouped-RC network implemented
based on the device can simultaneously demonstrate over 94%
recognition accuracy and 95% prediction correlation in tasks of dif-
ferent spatiotemporal types, respectively. Moreover, at the level of
approximate recognition accuracy, the number of weights used by this
grouped-RC network is reduced by over 90% compared tomainstream
ANN and CNN network architectures. Therefore, this work provides
an innovative strategy for developing high-performance reservoir
computing networks and devices suitable for different types of spa-
tiotemporal tasks, and has great potential in the development of
advanced artificial intelligence computing.

Methods
Materials
The P0FDIID organic semiconductor is synthesized according to pre-
vious work46. N2200 are purchased from Derthon Optoelectric Mate-
rials Science Technology Co. Ltd. and use without further purification.
P0FDIID and N2200 were dissolved in chlorobenzene at a concentra-
tion of 5mgml−1, and the N2200 solution (25wt%) is then mixed into
the P0FDIID solution as the active layer. The electrolyte material
polyvinyl alcohol (PVA) (Mw=67 kDa) andDL-malic acid (Mw= 134.09)
are both purchased from Aladdin Biochemical Technology Co., Ltd.
MXene (5mg/ml in deionized water) is purchased from XFnano
Materials Tech Co., Ltd. and further diluted to 3mg/ml as the source
electrode of device.

Fabrication of VOFET-DR
The Si/SiO2 (300nm) substrates are first cleaned with acetone and
then sonicated in isopropanol, trichloromethane and deionized water
in turn for 5min and eventually dry with N2 gas. Afterwards, the
cleaned substrate is treated with plasma for 6mins. Immediately, PVA
(dissolved in amixed solution of deionizedwater and absolute ethanol
60wt%: 40wt%) is spin-coated on SiO2 (3000 rpm, 40 s) and annealed
at 100 °C (10min) in a nitrogen atmosphere. After that, a 1 nm thick
Al2O3 film is deposited on the PVA surface by atomic deposition
technique. The 50nm gold source is thermally evaporated onto the
MXene film through a shadowmask as the pin of the source electrode
(2–3 nm), which is convenient for connecting the probeduring testing.
Then, in a nitrogen glovebox, the mixed solution (P0FDIID:N2200) is
spin-coated on the sample at 1250 rpm for 60 s and then placed at
150 °C for 10min for evaporation of residual solution to form the
active layer (~65 nm). Finally, 50nm gold is thermally evaporated onto
the PDVT−10 film through a shadow mask as the drain electrode. The
effective channel area (200 µm × 200 µm) is determined by the over-
lapping area between the MXene and top gold drain electrode.

Optoelectronic measurement. The electrical and synaptic perfor-
mance is characterized by the semiconductor parameter analyzer
(Keysight B2902A and Keysight 4200-SCS). The AFM (Nanoscope III,
Veeco Instruments, Inc.) is used to measure the mixing films morphol-
ogy under ambient conditions. UV−vis absorption spectra is recorded
to characterize ultraviolet-visible-near infrared spectrophotometer
(Shimadzu UV-3600 Plus). The SEM images ofMXene are obtained on a
focusion beam/SEM (Nova NanoSEM 230). KPFM measurements are
performed in ambient air using a Bruker Fastscan AFM instrument.

Network training
The hyperspectral image training dataset in satellite remote sensing
images is derived from Hyperspectral Remote Sensing Scenes, where
10 different scenarios are selected for each landform type. Hyper-
spectral images are converted into binary gray images by image pro-
cessing and input into the device in the form of light pulses according
to the corresponding gray release coding. Devices with different gate
biases (VGS = 0V, -3V, -8V, −10V) have different carrier dynamics states
to act as different sub-reservoirs. The outputs of all sub-reservoirs are
input in parallel to the input layers of the fully connected network, the
network size is 400 × 6. The fully connected network is trained by the
MATLAB Deeplearning Toolbox, utilizing the Softmax output function
and the logistic regression to supervise the learning.

Data availability
The data that support the plots within these paper and other findings of
this study are available from the corresponding authors upon request.

Code availability
The code that supports the theoretical plots within this paper is
available from the corresponding author upon request.
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