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Molecular quantitative trait loci in
reproductive tissues impact male fertility
in cattle

Xena Marie Mapel1,4, Naveen Kumar Kadri 1,4, Alexander S. Leonard1,
Qiongyu He1, Audald Lloret-Villas 1, Meenu Bhati1,2, Maya Hiltpold1,3 &
Hubert Pausch 1

Breeding bulls are well suited to investigate inherited variation inmale fertility
because they are genotyped and their reproductive success is monitored
through semen analyses and thousands of artificial inseminations. However,
functional data from relevant tissues are lacking in cattle, which prevents fine-
mapping fertility-associated genomic regions. Here, we characterize gene
expression and splicing variation in testis, epididymis, and vas deferens tran-
scriptomes of 118mature bulls and conduct association tests between 414,667
molecular phenotypes and 21,501,032 genome-wide variants to identify 41,156
regulatory loci. We show broad consensus in tissue-specific and tissue-
enriched gene expression between the three bovine tissues and their human
and murine counterparts. Expression- and splicing-mediating variants are
more than three times as frequent in testis than epididymis and vas deferens,
highlighting the transcriptional complexity of testis. Finally, we identify genes
(WDR19, SPATA16, KCTD19, ZDHHC1) and molecular phenotypes that are
associated with quantitative variation in male fertility through transcriptome-
wide association and colocalization analyses.

Male fertility varies considerably between individuals, but it remains
difficult to identify underlying genetic mechanisms1,2. Exploring the
genetic basis of reproductive success requires separating genetic from
environmental effects and differentiating between male and female
factors that contribute to fertilization; this is possible when repeated
phenotypic measurements are available for large cohorts. While such
cohorts are unavailable for nearly all species, including humans, the
beef and dairy industries’ reliance on artificial insemination has gen-
erated comprehensive catalogs of semen quality and male fertility
records for thousands of genotyped bulls (hereafter called artificial
insemination bulls) from which semen is collected at specialized arti-
ficial insemination centers3. Indeed, studies investigating bull fertility
have high translational value as they can elucidate evolutionarily
conserved functional mechanisms that contribute to mammalian

fertilization4–6, making cattle an unconventional—but ideally suited—
species to study the genetic architecture of male reproductive ability.

Bovinemale reproductive traits have low tomoderate heritability,
suggesting they are amenable to association testing with dense
molecular markers7–10. Datasets from artificial insemination bulls pro-
vide enough statistical power to identify moderate to large effect
variants for male fertility through genome-wide association studies
(GWAS). Several thousand quantitative trait loci (QTL) for male
reproductive traits are listed in the AnimalQTLDatabase (https://www.
animalgenome.org/cgi-bin/QTLdb/index); many of these loci are in
non-coding regions of the genomeand segregatewithinpopulations at
relatively high frequencies11–14. Though numerous male fertility QTL
have been identified in cattle, a lack of functional data has caused the
molecular underpinnings for most of these loci to remain elusive14–16.
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Variants that regulate gene expression and splicing (hereafter
called molecular QTL, or molQTL) influence complex traits and
diseases17–20 and contribute to a significant proportion of trait
heritability21. Several Genotype-Tissue Expression (GTEx) projects
compiled comprehensive transcriptomic resources to identify thou-
sands of molQTL throughout mammalian genomes that impact gene
expression and splicing in dozens of tissues22–24. Integration ofmolQTL
and phenotypic records, or summary statistics from GWAS, through
transcriptome-wide association studies can identify regulatory var-
iants that are associated with complex trait variation25–27. However,
since this requires large uniform cohorts with detailed trait records
and transcriptomics data for functionally relevant tissues,
transcriptome-wide association studies formale fertility have not been
feasible thus far.

Here, we establish a large and homogeneous cohort of bulls that
contains both DNA sequencing and transcriptome data from testis,
epididymis, and vas deferens.We demonstrate that establishing such a
homogeneous cohort benefits transcriptomic profiling and identify
thousands of loci that influence gene expression and splicing in three
male reproductive tissues. We compare the transcriptional complexity
of the three tissues and discover an excess of regulatory small-effect
variants in testis that are often tissue specific. Lastly, we conduct
transcriptome-wide association studies and colocalization analyses to
pinpoint molecular phenotypes that impact bovine male fertility.

Results
We sampled testis, epididymis (caput), and vas deferens tissue from
118 Bos taurus taurus bulls of Braunvieh ancestry (i.e., Brown Swiss,
Original Braunvieh, or a cross between one of these and a different
breed; Fig. 1; Supplementary Fig. 1; Supplementary Data 1). All bulls
were considered post-pubertal, although the age at sampling
varied from 10 to 37 months. Whole-genome sequencing of DNA
extracted from testis tissue yielded between 65,207,590 and
461,834,248 cleaned paired-end reads per sample (mean =
208,761,950± 63,260,972). The subsequent alignment of these reads
against the current Bos taurus reference genome (ARS-UCD1.2)
achieved an average coverage of 12.34 ± 3.71 -fold. Variant calling
identified 29,660,795 polymorphic sites (single nucleotide poly-
morphisms (SNPs), insertions and deletions smaller than 50 bp), of
which 21,501,032 met our quality criteria for downstream analyses
(Supplementary Table 1).

Total RNA from testis, epididymis, and vas deferens tissue was
extracted from the same bulls and deeply sequenced with stranded
paired-end libraries. We used a splice-aware alignment tool to map an
average of 257,050,199, 283,746,666, and 262,089,072 reads per
sample for testis, epididymis, and vas deferens, respectively, to the
bovine reference genome and the Ensembl gene annotation (Supple-
mentary Table 2). An additional set of alignments that included WASP
filtering28 to mitigate reference allele bias contained an average of
240,544,139 mapped reads in testis, 267,645,035 mapped reads in
epididymis, and 251,031,216 mapped reads in vas deferens (Supple-
mentary Table 2). Our final dataset contained 117, 103, and 84 samples
for testis, epididymis, and vas deferens, respectively, 74 of which had
data of sufficient quality for all three tissues (Fig. 1; Supplemen-
tary Data 1).

Gene expression and splicing variation is pervasive in male
reproductive tissues
We estimated gene expression in transcripts per million (TPM) and,
after filtering, detected 21,844 expressed genes (≥0.1 TPM and ≥6
reads in ≥20% of samples) across the three tissues. When considering
the three tissues individually, we identified slightly more expressed
genes in epididymis (20,376 genes; 19,561 autosomal genes) than in
testis (20,222 genes; 19,440 autosomal genes) and vas deferens (19,051
genes; 18,328 autosomal genes; Table 1). Amajority of expressed genes

were found in all three tissues (17,737 genes; Fig. 1E) and were protein
coding (87.4%–89.7%; Supplementary Table 3). Testis had the most
tissue-specific expressed genes (1106 genes), followed by epididymis
(443 genes), and vas deferens (227 genes; Fig. 1E).

We examined the tissue specificity of expressed genes following
an approach proposed by Djureionovic et al.29 which considers genes
that are at least 50-fold higher expressed in one tissue compared to
other tissues as ‘highly tissue-enriched’ (SupplementaryData 2). Genes
with critical roles in sperm maturation and the epididymal innate
immune response against bacteria (e.g., DEFB110, DEFB124, DEFB121,
DEFB114, WFDC8, RNASE10, ADAM7, ADAM28, LCN8, LCN10) were
among the 50 most abundant tissue-specific (i.e., not expressed in
testis and vas deferens) or highly tissue-enriched transcripts in epidi-
dymis. A gene ontology term enrichment analysis with the Protein
ANalysis THrough Evolutionary Relationships (PANTHER30) classifica-
tion system (version 17.0, http://geneontology.org/) revealed that this
gene set was 20.57-fold enriched (p = 4.97e-12) for genes related to the
gene ontology term “defense response to bacterium”. The same gene
set enrichment analysis on the 50 most abundant genes that were
either specific or enriched in testis (e.g., INSL3, FATE1, DEFB123, DAZL,
ARHGAP36) and vas deferens (e.g.,CD52, TNC, IGFBP5,MMP7,HOXD10,
HOXD11) did not reveal significant gene ontology terms for either
tissue.

The cattle GTEx consortium24 analyzed 60 testis transcriptomes.
However, most of them lacked metadata, were collected from pre-
pubertal animals, or were from individuals of non-taurine ancestry,
precluding an immediate comparison with those from our homo-
geneous cohort. The abundance of 20,221 testis-expressed genes
shared between ten cattle GTEx testis transcriptomes from post-
pubertal (1.5–9 years) Bos taurus taurus bulls and our dataset was
highly correlated (Pearson’s r = 0.84). The correlation was higher
(Pearson’s r = 0.90) for 20,002 genes that were expressed with less
than 500 TPM in our cohort. The expression of some genes differed
between our cohort and the samples included in cattle GTEx (Sup-
plementary Fig. 2), possibly due to differences in RNA sequencing
strategy, sample origin, collection and storage, or variable RNA quality
between each dataset. The cattle GTEx dataset contained only one vas
deferens and two epididymis transcriptomes from adult bulls of
taurine ancestry, preventing a meaningful comparison with our data.

We compared gene expression in bovine testis, epididymis, and
vas deferens withmale reproductive tract-specific gene expression in
humans and mice31. Using Ensembl BioMART (http://www.ensembl.
org/biomart/martview), we retrieved bovine orthologs for 380 and
329 human and mice reproductive-tract specific genes, respectively,
of which the overwhelming majority (92.1% for human; 97.9% for
mouse) were also expressed in the three bovine reproductive tissues.
A large fraction of the commonly expressed genes were expressed in
all three bovine tissues, but testis contributed the most and vas
deferens the least number of genes to reproductive tract-specific
expression (Supplementary Fig. 3). We observed several differences
in gene expression between the species; for instance,NANOS2, which
is moderately expressed in human testis (13.84 TPM), was barely
expressed in bovine reproductive tissue and thus filtered from our
dataset.We examined the expression pattern of the bovine orthologs
for 220 genes that are testis-specific expressed in humans29. The
overwhelming majority (218/220) of human testis-specific genes
were expressed in bovine reproductive tissue and largely showed
testis-biased expression (213/218), although, most were also expres-
sed in bovine epididymis (n = 22), vas deferens (n = 2), or both other
tissues (n = 192).We again identified noteworthy differences between
the species. Bovine orthologs of two highly expressed testis-specific
genes in humans, DEFB119 encoding defensin beta 119 and EPPIN
encoding epididymal peptidase inhibitor, were also highly expressed
in bovine testis (median TPM DEFB119 (ENSBTAG00000003364):
64.5; median TPM EPPIN (ENSBTAG00000001495): 498.2); however,
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both genes were three-fold higher expressed in bovine epididymis
(median TPM: 217.4 and 1524.3). We detected low and moderate
expression of RNASE11 encoding ribonuclease A family member 11 in
epididymis (median TPM: 2.18) and vas deferens (median TPM: 19.06)
but did not detect any expression in bovine testis tissue despite
reports that it is highly tissue-enriched in human testis29.

We used LeafCutter32 to detect RNA splicing variation and calcu-
lated percent spliced-in (PSI) values for excised-intron clusters. Across
the three tissues we observed splicing variation in 16,031 genes, with
95% of these being protein-coding genes (15,219 genes; Supplementary
Table 3). We detected 11,474 genes that had splicing variation in all
three tissues. Genes that had splicing variation in all three tissues were
higher expressed than those for which we did not detect alternative
splice site usage (Supplementary Table 4). We identified 142,581 splice

junctions and 47,715 intron clusters in testis, 117,745 splice junctions
and 46,166 intron clusters in epididymis, and 107,229 splice junctions
and 41,706 intron clusters in vas deferens. The number of variably
spliced genes was similar across the three tissues, with 14,724, 14,026,
and 12,780 genes with alternative splice site usage for testis, epididy-
mis, and vas deferens, respectively. Testis has 14,243 spliced auto-
somal genes, while epididymis had 13,558 and vas deferens had 12,332
(Table 1).

The similarity of the transcriptional profile of the three male
reproductive tissues was assessed through cluster analyses. Principal
component analysis (PCA) of normalized gene expression and splicing
phenotypes separated samples by tissue type (Fig. 1C; D), which was
further supported by hierarchical clustering (Supplementary Fig. 4). In
both expression and splicing PCAs, the first principal component

Fig. 1 | Overview of the molQTL cohort for three male reproductive tissues.
AThe threemale reproductive tissuesused in our study and the number of samples
considered for each tissue. B Sample overlap across tissue types. Bar height
represents the number of individuals. Tissues are colored as in (A)). C PCA of
sequence variant genotypes of 366,090 uncorrelated variants, with colors corre-
sponding to the breed assigned by the Swiss Braunvieh herd book or Cross. BV =

Braunvieh; BS = Brown Swiss; OB = Original BV; BS_OB = Cross between BS and OB;
Cross = Cross between OB or BS and another breed. D Scatter plot of the top two
principal components of PCAs of normalized expression values (TPM; top panel)
and normalized splicing phenotypes (PSI; bottom panel) for all tissues. Tissues are
colored as in A). E Overlap of expressed and spliced genes across the three tissues
(based off the TPM and PSI matrices).
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separated testis from epididymis and vas deferens, suggesting that the
transcriptional profile of testis is distinct fromothermale reproductive
tissues. To further explore the similarity between tissues, we inferred
pairwise similarity of gene expression and splice-junction counts with
Spearman correlation. For both expression and splicing, vas deferens
and epididymis were more similar to each other than to testis (epidi-
dymis x vas deferens – expression: ρ =0.92, splicing: ρ =0.83; epidi-
dymis x testis – expression: ρ = 0.82, splicing: ρ = 0.67; vas deferens x
testis – expression: ρ = 0.74, splicing: ρ =0.57).

Thousands of variants impact gene expression and splicing
To identify autosomal loci that influence gene expression (expression
QTL, hereafter referred to as eQTL), normalized and standardizedTPM
values were regressed on variants that had minor allele frequency
greater than 1.0% and were within 1Mb of the annotated transcription
start site (TSS).We accounted for covariates suchas age, RNA integrity,
and hidden confounders that were estimated directly from the data
(PEER factors; Supplementary Fig. 5). Our analyses focused on auto-
somal eQTL, as the high repeat content and immature assembly of the
sex chromosomes impairs the accuracy of short read mapping and
variant calling33. We identified eQTL in at least one of the three tissues
for 12,950 genes (hereafter referred to as eGenes) at a false discovery
rate (FDR) of 5%. A majority of eGenes were protein-coding (11,951
eGenes; Supplementary Table 3). Testis hadconsiderablymore eGenes
than epididymis and vas deferens (Table 1)—over 55% of autosomal
genes expressed in testis were also eGenes. Epididymis had 4347
eGenes (22% of autosomal genes expressed in epididymis) and vas
deferens had 3,889 eGenes (21% of autosomal genes expressed in vas
deferens). The larger sample size for testis provided higher statistical
power to identify eGenes34,35. However, in a subset of 74 individuals
with expression data in all three tissues, testis still had 1.91 and 3.26
times more eGenes than epididymis and vas deferens, respectively;
corroborating that transcriptional regulation in bovine testis is more
complex than in the other male reproductive tissues. One-third of
testis eGenes had more than one independent-acting eQTL (Fig. 2A),
corresponding to 15,642 eQTL total and 3,687,265 unique significant
variants (eVariants). We identified 4768 independent eQTL (9.2%
eGenes having >1 eQTL; Fig. 2A) and 925,916 eVariants in epididymis.
Vas deferens had the fewest eQTL, with 4211 independent eQTL and
673,696 eVariants. For all tissues, approximately half of all eQTL were
within 100 kb of the TSS (8000 testis eQTL; 2802 epididymis eQTL;
2423 vas deferens eQTL; Supplementary Fig. 6).

The effect of each eQTL was quantified as the allelic fold change
(slope_aFC) in expression of the associated eGene. The slope_aFC
value was highly correlated (Spearman’s ρ ≥0.84) with the beta

coefficient from the linear model used for eQTL mapping (Fig. 2B).
Across the three tissues, only 2321 eQTL (9.4%) had large effects
(defined as |slope_aFC ≥ 1 | ), with 65% of these loci residing within
100 kb of the eGene’s TSS. Notably, testis had the smallest propor-
tion of large effect eQTL (7.58%; 1186 eQTL; Supplementary Fig. 6).
The proportion of large effect eQTL in both epididymis and vas
deferens was approximately 12% (599 and 536 eQTL in epididymis
and vas deferens, respectively). Large effect eQTL were enriched for
low-frequency alleles (Supplementary Fig. 7). We observed that eQTL
annotated as non-coding transcript variants (specifically, transcript
exon variants and non-coding transcript variants), which impact non-
coding RNA, had a stronger effect on expression (median slope_aFC =
0.93; Fig. 2D).

eQTL are expected to cause an imbalanced expression of the
associated gene if they are cis-acting36,37. In this scenario, the expres-
sion of the associated eGene is influenced only by the linked eQTL
allele leading to unbalanced expression of the eGene. Thus, to assess
and independently quantify putative cis-regulatory effects of the
eQTL, we investigated allelic imbalance in the expression of associated
eGenes. In the three tissues between 78 and 80% of the variant-gene
pairs were available to this evaluation, of which approximately a
quarter (23–28%) showed significant evidence of allelic imbalance
(FDR < 5%; Wilcoxon rank sum test). The proportion of eGenes that
showed allelic imbalance was nearly twice as high (49.8, 46.8, and
47.2% in testis, epididymis, and vas deferens, respectively) for large
effect eQTL ( | slope_aFC | ≥ 1; n = 1156, 669, 545 in testis, epididymis,
and vas deferens, respectively (Supplementary Fig. 8)). Approximately
three quarters (76.53, 76.53, and 74.49% for testis, epididymis, and vas
deferens, respectively) of the eGenes with significant allelic imbalance
werewithin 100 kbof the eQTL (Fig. 2C). This is between 1.26- and 1.44-
fold enrichment (p < 2.16e–16; Fisher’s exact test) compared to ran-
dom expectation (Supplementary Fig. 8A). The eQTL effect estimated
as the magnitude of allelic imbalance was strongly correlated with
slope_aFC (Spearman’s ρ = 0.69, 0.73, 0.75 in testis, epididymis, and
vas deferens, respectively). The correlation was even stronger
(Spearman’s ρ =0.87, 0.88 and 0.88 for testis, epididymis and vas
deferens, respectively) for a subset of the eQTL where the associated
eGenes showed significant allelic imbalance (Supplementary Fig. 8C).

To identify variants that influence splicing, we conducted splicing
QTL (sQTL)mapping between variantswithin 1Mbof the intron cluster
start site and intron-excision ratios of inferred intron clusters, which
were normalized and standardized within and across samples,
respectively. We identified 7777 spliced genes across the three tissues
with at least one sQTL (sGenes; Table 1) at an FDR of 5%—a majority of
which were protein-coding genes (7471 protein-coding genes; 96% of
sGenes). Testis had the most sQTL of the three tissues, further corro-
borating its transcriptional complexity. We detected 7000 sGenes in
testis, which accounted for nearly half of its variably spliced autosomal
genes. For epididymis and vas deferens, we identified 2662 and
1718 sGenes, respectively, corresponding to 20% and 14% of their
autosomal spliced genes. In testis, 40.7% of sGenes hadmore than one
independent-acting sQTL, resulting in 11,450 independent sQTL and
2,901,402 unique significant variants (sVariants; Fig. 2A). Fewer sGenes
had multiple independent-acting sQTL in epididymis and vas deferens
(approximately 16% in epididymis and 11% in vas deferens; Fig. 2A); in
total, epididymis contained 3165 sQTL and 683,747 sVariants while vas
deferens contained 1920 sQTL and 313,771 sVariants. In all tissues,
between 60 and 70% of sQTL were located within 100 kb of the intron
cluster start site, corresponding to 6822, 2190, and 1339 sQTL for
testis, epididymis, and vas deferens, respectively (Fig. 2E).

sQTL effects were quantified as the regression coefficient from
the linear model used for sQTL mapping. There were few large effect
sQTL (3793 sQTLwith |β-coefficient | ≥ 1) across the three tissues. Most
large effect sQTL were within 100 kb of the intron cluster start site
(65%, or 2476 sQTL across all tissues; Fig. 2E). The proportion of large

Table 1 | Results for e/sQTL mapping across tissues with a
MAF filter of ≥ 1% and FDR of 5%

Testis Epididymis Vas deferens

Samples 117 103 84

Expressed genes 20,222 20,376 19,063

Autosomal expressed genes 19,440 19,561 18,328

eQTL 15,642 4768 4211

eGenes 11,164 4347 3889

eGenes with > 1 eQTL 3647 402 310

eVariants 3,687,265 925,916 673,696

Spliced genes 14,724 14,026 12,780

Autosomal spliced genes 14,243 13,558 12,332

sQTL 11,450 3165 1920

sGenes 7000 2662 1718

sGenes with > 1 sQTL 2849 425 182

sVariants 2,901,402 683,747 313,771
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effect sQTL was similar across the three tissues, corresponding to
22.7%, 22.5%, and 24.9% of sQTL in testis, epididymis, and vas deferens,
respectively (2603 sQTL in testis, 712 sQTL in epididymis, and
478 sQTL in vas deferens; Fig. 2E). We observed that top sVariants
within splicing regions—such as splice donor and splice acceptor sites
—had the largest effect sizes (median effect size = 1.14; Fig. 2F), cor-
roborating that variants overlapping these nucleotides have pro-
nounced impacts on pre-mRNA splicing.

Identifying distant—or trans—eQTL and sQTL that lie >5Mb froma
gene’s TSS requires larger sample sizes, as they typically have small
effects and an increased multiple-testing burden. Thus, we only con-
ducted trans eQTL and sQTL analyses for testis, for which we had the
largest number of samples. We observed 76 trans eGenes and 6038
trans eVariants (FDR 5%) in testis. Most trans eQTL were located on a
different chromosome than the target trans eGene (73 trans eGenes
and 6024 trans eVariants; Supplementary Fig. 9A). Nearly half (46%; 35
total trans eQTL) of trans eQTL were colocalized (PP4 >0.8) with at
least one cis eQTL, suggesting a complex network of cismediation.We
identified 33 intron clusterswith trans sQTL, corresponding to 25 trans
sGenes and 1023 trans sVariants (Supplementary Fig. 9B).

Testis molQTL effects are unique and small, while molQTL
effects in other male reproductive tissues are shared
Tissues with similar biological functions often sharemolQTL23,38. Thus,
we sought to determine if eQTL and sQTL inmale reproductive tissues
were shared or tissue-specific. We used Mashr to compare molQTL
effects for genes that were expressed in all three tissues and

considered 11,311 and 5012 top eVariants and sVariants, respectively.
For eQTL, we identified 10,738 variant-gene pairs that were significant
in at least one tissue (local false sign rate <0.05). A large proportion of
eQTL were tissue-specific (4760 eQTL; 44% of the eQTL considered),
while there was a similar number of eQTL identified in either two or
three tissues (two tissues: 2949 eQTL, 27% of eQTL; three tissues: 3029
eQTL, 28% of eQTL; Fig. 3A). Testis had the most tissue-specific eQTL,
followed by vas deferens, and epididymis (Fig. 3B). eQTL effects were
most similar between vas deferens and epididymis (Spearman’s
ρ = 0.58), and clearly less similar between testis and epididymis
(Spearman’sρ = 0.32) andbetween testis and vas deferens (Spearman’s
ρ = 0.28). Conversely, most sQTL were ubiquitous—73% of the 4737
variant-gene pairs were significant (local false sign rate <0.05) in all
tissues (3451 sQTL; Fig. 3A). Only 648 sQTL were tissue-specific (14% of
sQTL considered; Fig. 3A), most of which were in testis (505 sQTL;
Fig. 3B). We observed high pairwise similarity of sQTL effects across
the three tissues, particularly between epididymis and vas deferens
(testis x epididymis: Spearman’s ρ = 0.75; testis x vas deferens: Spear-
man’s ρ =0.69; epididymis x vas deferens: Spearman’s ρ =0.88).

Tissue-specific molQTL typically have larger effects than those
identified in many, or all, tissues22,38. We confirmed this phenomenon
for epididymis- and vas deferens-specific eQTL, which had larger
effects (slope_aFC) than eQTL found in all three tissues (vas deferens:
Wilcoxon rank-sum p = 2.48e–16; epididymis: Wilcoxon rank-sum
p =0.003; Fig. 3C). Vas deferens-specific sQTL also had larger effects
than ubiquitous sQTL (Wilcoxon rank-sum p = 7.92e–11), though there
was no statistical difference in sQTL effect size across tissue specificity

Fig. 2 | Properties of eQTL and sQTL in three male reproductive tissues.
A Proportion of independent-acting eQTL (top) and sQTL (bottom) across tissues.
B Correlation (Spearman’s ρ) between the β-coefficient of the linear model (used
for eQTL identification) and slope_aFC of each eQTL’s top eVariant. The linear
relationship between the two variables is shown with dotted lines. Colors corre-
spond to the tissue type. C Cumulative proportion (%) of eQTL showing significant
allelic imbalance in the expression of the associated eGene grouped (in bins
of 5 Kb) by their proximity to the transcription start site (TSS). Data for large
( | slope_aFC | ≥ 1) and small ( | slope_aFC | <1) effect eQTL are presented separately.
Similar data for eQTL not showing significant allelic imbalance are shown for

comparison. D Annotation class of eQTL and rank-normalized absolute effect size
for eQTL identified in all three tissues. The number of eQTL within an annotation
class is listed inparentheses.EDistanceof sQTL (top independent-acting sVariants)
from the intron cluster start site (ICSS) for all three tissues. Darker colors represent
large effect sQTL ( | β-coefficient ≥ 1 | ). F Annotation class of sQTL and rank-
normalized absolute effect size for sQTL identified in all three tissues. The number
of sQTLwithin anannotation class is listed inparentheses. The boxplots in (D)) and
(F)) cover the interquartile range with the median line denoted at the center, and
the whiskers extend to the most extreme data point that is no more than 1.5× IQR
from the edge of the box.
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classes for epididymis (Wilcoxon rank-sum p=0.39). Alternatively,
testis specific eQTL and sQTL had smaller effects than those shared
across all three tissues (eQTL: Wilcoxon rank-sum p = 3.93e–30; sQTL:
Wilcoxon rank-sum p = 1.40e–16; Fig. 3D), suggesting that testis is
composed of many tissue-specific small effect molQTL.

Integration of molecular phenotypes, molQTL, and GWAS
summary statistics reveals genes associated with male fertility
We sought to investigate the impact of molQTL on male reproductive
ability. First, we conducted GWAS for male fertility with a cohort of
3736bulls that had imputed genotypes for 14,587,859 autosomal SNPs,
and separately tested additive and non-additive inheritance. The fer-
tility of the bulls was quantified through the proportion of successful
artificial inseminations and accounted for genetic and environmental
factors (see Hiltpold et al.16). While the GWAS cohort had no overlap
with the molQTL cohort, both predominantly consisted of Brown
Swiss bulls. Non-additive association testing revealed four male ferti-
lity QTL on chromosomes 1, 6, 18, and 26 (significance threshold of
5e–08) that contained 4,890 variants (Fig. 4A). Additive GWAS did not
detect any additional significant associations and failed to identify the
QTL on chromosomes 1 and 18. The QTL on chromosomes 6 and 26
were detected by the additive GWAS, but with lower significance
(Supplementary Fig. 10).

We implemented the MetaXcan framework, as described by Bar-
beira et al.25, to establish if variation in molecular phenotypes is asso-
ciated with variation in male fertility. Briefly, S-PrediXcan was used to

integrate summary statistics from the non-additive GWAS with
expression and splicing phenotypes from the three reproductive tis-
sues. Signals were subsequently filtered based on the colocalization
probability between male fertility QTL and molQTL. We identified two
and seven unique genes for expression and splicing, respectively, that
overlapped three of the male fertility QTL (Fig. 4, Table 2). The most
striking association was on chromosome 6; WDR19 encoding WD
Repeat Domain 19 was the most significantly associated gene in epi-
didymis and vas deferens (p = 3.17e–43 and 1.04e–48). An intron
cluster encompassing a canonical (58373894:58374821) and a cryptic
(58373885:58374821) splice junction was the top fertility-associated
molecular phenotype in both tissues (Supplementary Fig. 11). A highly
significant S-PrediXcan signal (p = 6.10e–38) was also obtained for this
WDR19 intron cluster in testis, however the evidence for colocalization
with the GWAS peak was low (PP.H4.abf = 0.39).

The splicing MetaXcan in testis revealed an association
(p = 1.71e–15) between SPATA16 encoding spermatogenesis associated
protein 16 and male fertility (Fig. 4C). SPATA16 mRNA was highly
expressed in testis (270.57 ± 32.26 TPM), lowly expressed in epididy-
mis (15.28 ± 9.90 TPM), and barely expressed in vas deferens
(1.05 ± 1.18 TPM).Only one SPATA16 transcript is annotated inEnsembl,
but the Refseq annotation suggests three isoforms, of which the
canonical isoform (XM_002684936.6) was 12 and 17 times more
abundant in testis than two alternative isoforms XM_024995427.1 and
XM_005201702.4 (Supplementary Fig. 12A). The fertility-associated
SPATA16 intron cluster comprised four splice junctions that span the

Fig. 3 | Tissue-specific and shared effects of eQTL and sQTL. A Proportion of
eQTL and sQTL that are significant (local false sign rate (LFSR) < 0.05) in one, two,
or three tissues. B Overlap of significant (LFSR <0.05) eQTL and sQTL across the
three tissues. Bar height represents the number of QTL. C Boxplots of the eQTL
effect size across tissue specificity classes (significant in one, two, or all three
tissues at a threshold of LFSR<0.05) for testis (blue), epididymis (green), and vas
deferens (purple) tissues. Absolute effect size corresponds to |aFC_slope | . Median

effect size of each category is included.D Boxplots demonstrating the effect size of
sQTL (β-coefficient of the linear model) for testis (blue), epididymis (green), and
vas deferens (purple) tissues. Median effect size of each category is included. The
number of QTL within each category is listed within brackets. The box plots in (C))
and (D)) cover the interquartile range with the median line denoted at the center,
and the whiskers extend to the most extreme data point that is no more than 1.5 ×
IQR from the edge of the box.
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first four exons, including a non-coding exon that is only part of the
Refseq annotation (Fig. 5C, D, F). The fertility and splicing QTL were
colocalized with a probability of 0.86 and a variant (Chr1:93,954,637
bp) 365 kb upstream the annotated SPATA16 transcription start site
was the most probable causal variant (Fig. 5A). An association analysis
conditional on Chr1:93,954,637 did not identify any additional variants
as being associated with male fertility on chromosome 1 (Fig. 5B).

The Chr1:93,954,637 T allele compromises male fertility
(p = 4.15e–16; Fig. 5E) but is associatedwith increased SPATA16mRNA
expression (β = 0.71 ± 0.17 TPMnorm; p = 6.41e–05)—albeit not at the
stringent significance threshold applied to our eQTL analysis (Sup-
plementary Fig. 12B; Supplementary Fig. 12C). Eleven of the twelve
SPATA16 exons were expressed at higher levels in animals carrying
the T allele, though this difference was only significant (p = 3.7e–06)
for the fourth exon (94,396,748 bp–94,396,893 bp). Interestingly,
the second exon (94,323,018 bp–94,323,140 bp) is the only exon for
which abundance is reduced (β = 0.25 ± 0.09 TPMnorm; p = 0.0057) by
the Chr1:93,954,637 T allele (Supplementary Fig. 12E). This exon is
part of SPATA16 isoform XM_024995427.1 but is absent in both the
canonical (XM_002684936.6) and another alternative isoform
(XM_005201702.4). While the Chr1:93,954,637 T allele has no effect
on the abundance of the predominant canonical isoform
(XM_002684936.6, p = 0.15), it increases (β = 3.6 ± 0.68 TPM;
p = 6.7e–07) abundance of XM_005201702.4 and reduces abundance
of XM_024995427.1 (β = −1.1 ± 0.42 TPM; p = 0.015), suggesting that it
promotesdifferential isoformusage (Supplementary Fig. 12D). This is
further supported by an inverse association between inclusion
ratios of the second and third exon with the abundance of

two alternative SPATA16 isoforms (XM_005201702.4 and
XM_024995427.1; Supplementary Fig. 13).

The non-additive GWAS for male fertility revealed a QTL on
chromosome 18 (p = 6.41e–09, lead SNP at 36,480,384) that coincides
with a previously localized 3Mb region (between 34 and 37Mb),
for which no compelling candidate causal variants were found16.
This 3Mb window contains 97, 27, and 12 eQTL and sQTL in testis,
epididymis and vas deferens, respectively. The MetaXcan and coloca-
lization analyses revealed five significantly associated genes
(ENSBTAG00000001287, EXOC3L1, FBXL8, KCTD19, ZDHHC1) at this
QTL, of which KCTD19 encoding the potassium channel tetrameriza-
tion domain containing protein 19 shows a highly testis-biased
expression (Table 2). Two genes (KCTD19 and ZDHHC1 encoding the
zinc finger DHHC-type containing protein 1) were each associatedwith
two molecular phenotypes in two tissues. Three variants
(Chr18:34,914,479, Chr18:34,815,920, Chr18:35,059,627), which are in
moderate linkage disequilibrium (between 0.54 and 0.6), are coloca-
lized for the male fertility QTL and seven distinct molecular pheno-
types (Table 2). Association analyses conditional on any of these
variants did not identify additional variants associated with male fer-
tility on chromosome 18. The Chr18:34,914,479 T allele is associated
with higher fertility, an increased KCTD19 mRNA abundance in testis,
and the expression of a KCTD19 isoform in the epididymis that has an
additional 30 bp coding sequence added to the 14th exon which
results in a protein that is 10 amino acids longer than that encoded by
the canonical form (Supplementary Fig. 14). KCTD19 splicing variation
was also highly significant (p = 3.13e–15) in testis, butMetaXcan did not
reveal association of thismolecular phenotype with male fertility. This

Fig. 4 | Genes associated with male fertility. Manhattan plots showing genome-
wide association between (A) male fertility and imputed autosomal sequence var-
iants in 3736 bulls frommixed linear non-additive associationmodels. Variants that
are associated with male fertility at a significance threshold of p < 5e–8 are high-
lighted in orange. Transcriptome-wide association with S-PrediXcan between (B)

expression values or (C) splicing phenotypes and male fertility. Significantly asso-
ciated genes after the stringent filtering based on the MetaXcan framework are
marked with their names and colored according to the tissue in which associated
was detected.
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variant (Chr18:34,914,479) was also associated with differential
ZDHHC1 splicing in epididymis and differential EXOC3L1 splicing in
testis.

A QTL (p = 7.59e–23, lead SNP at Chr26:50,145,932) for male fer-
tility was detected on chromosome 26. Neither the splicing nor the
expression MetaXcan revealed any significant gene-trait associations
for this QTL.

Discussion
We characterized the transcriptomic profile of testis, epididymis, and
vas deferens in a cohort of 118 bulls. To the best of our knowledge, a
cohort of this size has not been established for male reproductive
tissues thus far, though smaller cohorts are available for several
species29,39–41. Our molQTL cohort contained bulls within a narrow
post-pubertal age range that predominantly belonged to one breed of
European taurine cattle. We demonstrated the benefit of establishing
such a homogeneous cohort for transcriptome analyses, as we detec-
ted 14-times (11,164 vs. 809) more eGenes and 4-times more sGenes
(7000 vs. 1573) in testis than cattle GTEx24 despite our molQTL cohort
being only twice as large (117 individuals vs. 60 individuals in cattle
GTEx). This suggests that the heterogeneity of cattle GTEx, which
contains individuals from taurine and indicine populations that were
sampled at different ages, and for which various RNA sequencing
strategies were applied, leads to substantial underestimation of the
transcriptional complexity of bovine testis and likely other tissues. The
number of eGenes and sGenes identified in testis in our study is similar
to what was reported in a three-times larger human GTEx cohort that
also contained individuals with diverse ancestries sampled at different
ages23. Comparing our findings with similar-sized cohorts sampled at
other developmental stages and the analysis of single-cell tran-
scriptomes will reveal spatiotemporal transcriptomic changes in male
reproductive tissue, such as those occurring during testicular devel-
opment and puberty42,43.

Our comprehensive set of expressed and spliced genes enabledus
to thoroughly characterize and compare the transcriptional com-
plexity of three reproductive tissues in a large mammal, which was so
far not possible due to a lack of epididymis and vas deferens data in all
existing GTEx cohorts22–24. We revealed 21,844 expressed and
16,304 spliced genes across the three tissues. Expressed and spliced
genes were generally shared across the three reproductive tissues;
however, the transcriptional profiles of vas deferens and epididymis
were similar, while that of testis was distinct. We found good con-
sensus between pairs of bovine-mouse and bovine-human ortholo-
gous genes with male reproductive tract-specific expression, thus
demonstrating that our molQTL cohort is a valuable resource for
translational research in mammalian male reproductive biology. We
observed a similar pattern for eQTL and sQTL—the effects of reg-
ulatory variants in vas deferens and epididymis were similar and often
shared, whereas testis had a distinct and exceptionally large array of
eQTL and sQTL. When compared to the other tissues, we found
between 3- and 6-times the number of eGenes and sGenes in testis,
many of which were regulated by multiple eQTL and sQTL, respec-
tively, which emphasizes its transcriptional complexity that has been
reported previously44,45. Testis contained thousands of tissue-specific,
small effect molQTL. An abundance of molQTL in testis was observed
in numerous mammalian species22,23, though the reason for this
remains unclear. The accumulation of small effect molQTL in testis
may be a result ofmale sexual selection and sperm competition, which
is driven by a more permissive transcription46, relaxed pleiotropic
constraints, and other selective mechanisms46,47. In humans, when
compared to other tissues, testis eQTL were more likely to contain
signatures of positive selection48; furthermore, tissue specific eQTL
that showed evidence of positive selection had small effect sizes48.
Thus, functional variants in testis may experience unique selection
pressures that are essential for male reproduction. Further research isTa
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warranted to fullyunderstand the genomicbasis of complex functional
patterns of the testis.

By leveraging our comprehensive array of molecular phenotypes
from reproductive tissues and fertility records from genotyped artifi-
cial insemination bulls through gene-based association testing and
colocalization analyses, we identified candidate causal regulatory
mechanisms underpinning three of the four male fertility QTL. Among
them is a previously suspected candidate causal molecular phenotype
of WDR1949, which adds additional confidence that this approach
provides biologicallymeaningful associations. Our results corroborate

that gene splicing and expression variation have substantial effects on
complex traits21 and highlight that regulatory variants need to be
considered thoroughly as candidate causal variants. The male fertility
QTL were associated with two large effect and one small effect
molQTL, therebydemonstrating thatmolQTL effect sizemaybe apoor
predictor of impact on complex trait variation. Spermatogenesis,
sperm maturation, and sperm transport are pivotal functions of the
three reproductive tissues considered. Gene-based association testing
with traits such as sperm morphology or sperm motility may reveal
additional gene-trait associations, as they are closer related to the
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biological function of these tissues than male fertility. However,
establishing cohorts with repeated semen quality measurements that
are large enough to identify loci that explain only a small proportion of
trait variation is challenging in cattle—and almost impossible in most
other species.

We identified a SPATA16 splicing event in testis that was sig-
nificantly associated with male fertility. The colocalized variant fell
within an intergenic region between SPATA16 andNLGN1. Previously, a
GWAS-only approach prioritized a missense variant of SPATA16 as a
putative causal variant16. However, by combining molecular pheno-
types, molQTL analyses, and GWAS—which were appropriately mod-
eled to QTL inheritance—we identified a splicing and regulatory
mechanism that is significantly more likely to underpin the QTL. While
loss-of-function alleles of SPATA16 lead to severe sperm defects that
prevent fertilization50,51, our results demonstrate that variants med-
iating SPATA16 expression and splicing can contribute to quantitative
variation in male fertility as they are less deleterious to protein func-
tion. We also identified several gene-trait associations that showed
colocalization between molQTL and a non-additive male fertility QTL
on chromosome 18. Our inability to resolve this QTL may be due to
high linkage disequilibriumorpossibly indicates that the causal variant
affects multiple genes, as may be the case for large structural
variants33,52. However,MetaXcanprioritized genes thatwerepreviously
implicated in male fertility disorders, including KCTD19 and
ZDHHC153–55. Future fine-mapping efforts that consider additional
phenotypic observations and complex genotype variations, such as
structural variants called from long read cohorts, will be required to
fully describe the molecular underpinnings of this QTL33.

Methods
Ethics statement
Tissue ofmale Bos taurus taurus animals was sampled at a commercial
abattoir. The decision to slaughter the bulls was independent fromour
study. None of the authors of the present study were involved in the
decision to slaughter the bulls. No ethics approval was required for
this study.

Tissue sampling and DNA/RNA extraction
Testes from128bullswere collected at a commercial abattoir inZürich,
Switzerland after regular slaughter, then transported to a laboratory
for preparation. Testis, epididymis (caput), and vas deferens tissue
samples were flash-frozen in liquid nitrogen and stored at –80 °C until
DNA and RNA extraction. The time from slaughter to freezing ranged
from 40min to 270min (average: 126min ± 47min). Sample collection
took place during the fall, winter, and spring of 2019, 2020, and 2021.
Breed was assigned according to entries from the Swiss Braunvieh
herdbook and the animal traffic database.

We extracted DNA and total RNA from testis tissue with Qiagen
AllPrep Mini kits (Qiagen, Hilden, Germany). Frozen testis tissue was
homogenized with a MagNA Lyser (Roche, Basel, Switzerland) at
6000 rpm for 50 s (x2) in RTL Plus Buffer with β-mercaptoethanol.
DNA extraction followed standard manufacturer protocols.

Concentration was estimated with a Qubit 2.0 fluorometer (Thermo
Fisher Scientific) prior to submission for sequencing. Extraction of
testis total RNA followed manufacturer protocols. Epididymis and vas
deferens total RNA was extracted from frozen tissue with Qiagen
RNeasy Mini Kits (Qiagen, Hilden, Germany) and included an on-
column DNase digestion with Qiagen RNase-Free DNase (Qiagen, Hil-
den, Germany). Frozen epididymis tissue was homogenized with the
same conditions as described for testis tissue. We optimized the
homogenization and lysis of vas deferens tissue by adding an addi-
tional homogenization period at 6000 rpm for 50 s and a 60-min
waiting period on a cold block. We assessed the quality of testis, epi-
didymis, and vas deferens total RNA with an RNA integrity number
(RIN) inferred from a Bioanalyzer RNA 600 Nano assay (Agilent
Technologies). For subsequent analyses, we only considered samples
with RIN > 4.0.

DNA and RNA sequencing
Genomic libraries (paired-end, 150 bp) for sequencing were prepared
with the Illumina TruSeq DNA PCR-Free protocol and sequenced on
two IlluminaNovaSeq 6000S4flowcells. Paired-end total RNA libraries
(150bp) were prepared with the TruSeq Stranded Total RNA protocol
and included rRNA depletion with Ribo-Zero Plus. Libraries were
sequenced on four S4 flowcells and one S2 flowcell of the Illumina
Novaseq 6000.

DNA alignment and variant calling
We used fastp (v0.19.4)56 with default parameters to remove adapter
sequences and low-quality bases, and trim poly-G tails from raw DNA
sequence data. After quality control, we aligned reads to the ARS-
UCD1.2 reference genome (https://www.ncbi.nlm.nih.gov/datasets/
genome/GCF_002263795.1/)57 with the mem-algorithm from BWA
(v0.717)58 and the -M flag. We sorted the aligned reads by coordinates
with Sambamba (v0.6.6)59 then combined the read-group specific BAM
files to create sample-specific sorted BAM files. We marked duplicate
reads in the sample specific sorted BAM files with the MarkDuplicates
module from Picard tools (v2.25.7, https://broadinstitute.github.io/
picard/). We used mosdepth (v0.3.6)60 to infer the sequencing cover-
age at a given genomic position, which was then used to estimate the
average coverage per sample. Only high-quality reads (mapping qual-
ity >10 or without SAM flag 1796) were considered when calculating
the average coverage. We called variants with DeepVariant (v1.3)61

using the WGS mode. Called samples were merged using GLnexus
(v1.4.1)62 with the DeepVariantWGS configuration. Variants that had a
missingness rate greater than 50% and variants for which the geno-
types deviated from Hardy-Weinberg proportions (P < 1e–08) were
removed. We applied Beagle (v4.1)63 to impute sporadically missing
genotypes and infer haplotypes, then removed sites withmodel-based
imputation accuracy <0.5. To assess relationships among individuals,
we constructed a genomic relationship matrix with the genotypes
from 366,090 uncorrelated variants (obtained from Plink v1.964 with
--indep-pairwise 1000 5 0.2) that hadMAF >0.5% and performed a PCA
with the pca function in QTLtools (v1.3.1)65.

Fig. 5 | A molecular SPATA16 phenotype overlaps with a male fertility QTL.
A Mirrored plots of –log10(p)-values from association testing between imputed
sequence variants and bull fertility in 3736 bulls (top, mixed linear model) and
splicing phenotypes in 117 bulls for intron cluster 3038 of the gene SPATA16 (bot-
tom, linear regression model). The inset shows the correlation between GWAS and
sQTL –log10(p)-values. Color indicates the linkage disequilibrium (R2) between the
most likely colocalized variant (1:93954637_C_T, red colored) and all other variants.
BAssociation testing between imputed sequence variants andmale fertility in 3736
bulls before (gray) and after (maroon) conditioning on the genotype of the most
likely colocalized variant (1:93954637_C_T). P values are from a linear mixed model
that included a genomic relationship matrix to control for relatedness among
samples. C Gene structure of bovine SPATA16, showing positions of exons (black

lines) and splicing events (arcs). D Splicing within SPATA16 intron cluster 3038 for
different genotypes of the top colocalized variant. Red lines show the different
splice junctions with the values representing percent spliced in (PSI) estimates
within the intron cluster. E Standardized bull fertility across the genotypes of the
colocalized variant. F PSI values for different splicing events within Cluster 3038
across different genotypes of the most likely colocalized variant. P values were
from a linear model which regressed PSI values on additively coded genotypes of
117 bulls andwhich considered three genotype principal components, age, RIN, and
ten PEER factors as covariates. The box plots in E) and F) cover the interquartile
range with the median line denoted at the center, and the whiskers extend to the
most extreme data point that is no more than 1.5× IQR from the edge of the box.
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RNA alignment
We removed adapter sequences, low-quality bases, poly-A tails, and
poly-G tails from the RNA sequence data with fastp56. We split cleaned
reads into read groups with gdc-fastq-splitter (https://github.com/
kmhernan/gdc-fastq-splitter) then aligned them to the cattle reference
genome (ARS-UCD1.2) and the Ensembl gene annotation (release 104,
https://ftp.ensembl.org/pub/release-104/gtf/bos_taurus/) with STAR
(version 2.7.9a)66. To account for allelic mapping bias in the sQTL and
allele specific expression (ASE) analyses, we produced additional
alignments with the flag --waspOutputMode and heterozygous SNPs28.
We performed coordinate sorting and added read groups with Picard
tools (https://broadinstitute.github.io/picard/). We merged each sam-
ple’s BAM files with Sambamba (v0.6.6)59 and marked duplicate reads
with the MarkDuplicates module from Picard tools. Statistics on the
alignment quality were inferred with the flagstat function from Sam-
bamba for each sample.

Expression and splicing quantification
We quantified gene-level expression with the quan function in
QTLtools65. We produced gene-level TPM values with high quality
reads that passed all alignment quality filters and only included reads
that were uniquely mapped and properly paired. Gene-level read
counts were inferred with featureCounts (v2.0.3)67. We filtered
expression values for each tissue to include genes with expression ≥0.1
TPM and ≥6 reads in ≥20% of samples. The filtered expressed genes
were inverse normal transformed and quantile normalized for sub-
sequent analyses68. To observe clustering within and across tissue
types, we used the filtered, normalized TPM values to perform a PCA
and hierarchical clustering with the dendextend (v1.16.0) package in R.
Clustering analyses did not reveal any obvious outliers or batch effects
(Supplementary Fig. 4C).

To infer splicing events, we quantified intron-excision values for
identified intron clusters. We extracted exon-exon junctions from
reads that passed WASP filtering with Regtools (v0.5.2)69 and con-
sidered a minimum anchor length of 8 bp, minimum intron size of
50 bp, and maximum intron size of 500,000bp. Intron clustering,
calculation of intron excision ratios, filtering, and preparation for sQTL
mapping was performed with LeafCutter (v0.2.9)32 and executed with
the cluster_prepare_fastqtl.py wrapper provided by the human GTEx
consortium (https://github.com/broadinstitute/gtex-pipeline/tree/
master/qtl/leafcutter). We assigned clusters to annotated genes with
an altered map_clusters_to_genes.R script that accounted for strand-
edness and gene coordinates from a collapsed gene annotation for
cattle (Ensembl release 104; generated with scripts from https://
github.com/broadinstitute/gtex-pipeline/tree/master/gene_model).
We limited our dataset to high-quality introns by imposing stringent
filters that removed introns without read counts in >50% of samples,
intronswith low variability across samples, and intronswith fewer than
max (10, 0.1n) unique values (where n is sample size). To normalize the
filtered counts and produce files for sQTL mapping, we used the pre-
pare_phenotype_table.py script from Leafcutter (https://github.com/
davidaknowles/leafcutter). We performed hierarchical clustering and
conducted a PCA on the resulting normalized intron excision pheno-
types and hierarchical clustering with the dendextend package in R.
Clustering analyses of splicing phenotypes did not reveal obvious
batch effects or outliers (Supplementary Fig. 4D).

eQTL mapping, allelic imbalance, and sQTL mapping
eQTL mapping was performed on the 29 bovine autosomes for all
three tissues with QTLtools65. To account for population structure and
other covariates that influence gene expression, normalized expres-
sion phenotypeswere correctedwith the first three genotype principal
components, ten PEER70 factors (estimated for each tissue of interest;
Supplementary Fig. 5), the age of the individual, and RIN value of the
sample. We considered sequence variants with minor allele frequency

(MAF) > 1% and included variants 1Mb up- and downstreamof the TSS.
To account for multiple testing, we used the permute function in
QTLtools to conduct 1000permutations andproducebeta correctedp
values. We used the adjusted p values and the qtltools_runFDR_cis.R
script that is distributed with the QTLtools package to apply an FDR
threshold of 5% and identify expressed genes with at least one sig-
nificant eQTL. To identify all significant variant-genepairs, we followed
the procedure detailed in Delaneau et al.65. Specifically, each gene’s
beta p values andmost-likely beta parameters were used with the FDR
level to feed thebeta quantile function. This generatednominalp value
thresholds for each expressed gene, and all variants below this
threshold were deemed significant. To identify genes with multiple
independent acting eQTL, we implemented the conditional analysis
from QTLtools. Briefly, this process uses the aforementioned nominal
p-value thresholds to identify all significant eVariants, then imple-
ments forward and backward stepwise linear regression to identify
independent acting eQTL. The significant eVariants are then assigned
to the independent signals.

To estimate the effect size of significant eQTL, we computed the
log allelic fold change (slope_aFC)71 with aFC.py (https://github.com/
secastel/aFC) for the top variant of each independent eQTL. We used
gene counts from featureCounts, which were normalized with DESeq2
(v1.34.0)72 and log transformed. We compared the normalized eQTL
effect sizes to the annotation category of the top variant (obtained
with the Variant Effect Predictor (VEP, v109.3) from Ensembl73) to
investigate functional consequences.

We studied allelic imbalance using RNA sequencing reads filtered
with WASP28 to mitigate reference allele bias. Whole genome DNA
sequence data phased with Beagle (v5.4)74 were complemented with
the read backed phasing of the RNA seq data using phASER (v1.2.0)75

with the flag --baseq 10. Sequencing reads overlapping heterozygous
sites within protein coding genes (Ensembl version 104) were used to
produce gene level haplotypic expression counts using phASER_gen-
e_AE.py with the –min_haplo_maf 0.005 flag. A median number of
3834, 3345, and 1353 RNA sequencing reads per gene, and 6,352,369,
8,453,661 and 6,739,602 reads per sample covering the heterozygous
sites of the protein coding genes were available in testis, epididymis,
and vas deferens, respectively. Haplotype expression counts across all
samples were compiled using phaser_expr_matrix.py to validate cis-
regulatory effects of eQTL identified in the three tissues and to inde-
pendently estimate their effects. eGenes harboring heterozygous sites
coveredwith at least 8 sequencing reads and top eVariantswith at least
10 homozygous and 10 heterozygous individuals were considered for
this assessment, resulting in a subset of 12,261, 3832, and 3245 variant-
gene pairs in testis, epididymis, and vas deferens, respectively. Gene
level haplotypes were then phased with their associated top eVariant
using phaser_cis_var.py. Individual levelmagnitude of allelic imbalance
was estimated as log allelic fold change using phaser_cis_var.py. The
log allelic fold change is the ratio of gene haplotype counts linked to
alternative allele to the gene haplotype counts linked to the reference
allele of the top eVariant on log2 scale. The median of log allelic fold
change in individuals heterozygous for the top eVariant is presented as
an independent estimate of the cis regulatory effect of that eQTL.
Comparison of log allelic fold change in individuals heterozygous for
the top eVariant allelic imbalance expected) and homozygous for the
top eVariant (allelic imbalance not expected) was used to test the
significance of allelic imbalance using a Wilcoxon ranksum test
implemented in phaser_cis_var.py.

Autosomal sQTL mapping was performed with QTLtools65 and
generally followed the approach used for eQTL discovery. However,
we used the grp-best option to adjust the permutation scheme to
correct for multiple splice junctions and intron clusters within a gene.
Mapping was conducted with variants 1Mb up and downstream of the
TSS and we included three genotype principal components, age, RIN,
and ten PEER factors as covariates. We conducted the QTLtools
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conditional analysis to identify all significant variants (sVariants) and
independent acting sQTL. We considered the β–coefficient from the
QTLtools linear model for the top sVariant as the sQTL effect size.
Normalized sQTL effect sizes were compared across functional anno-
tation categories using the previously described variant annotation
classes.

Trans eQTL and sQTLwereonlymapped for testis.We considered
5,685,508 variants that had MAF > 5%, were outside of repetitive
regions (identified by RepeatMasker (v4.1.4); http://www.
repeatmasker.org), had imputation accuracy of 1.0, and had mapp-
ability > 1. Variant mappability was determined with GenMap (v1.3.0)76

using kmerswith lengths of 36 forUTRs and 75 for exons (based on the
ARS-UCD1.2 reference) and allowed for two mismatches. We mapped
trans QTL for protein coding genes that had a mappability >0.80
(18,876 genes). Gene mappability was estimated with crossmap (v1.2,
https://github.com/battle-lab/crossmap)77. Phenotypes (either TPM
values or PSI values)were corrected for the same covariates used in the
cis analysis and rank normal transformed. We used the trans function
from QTLtools to identify QTL > 5Mb from a gene’s TSS and per-
formed 100 permutations, which were then ranked and used to esti-
mate FDR. We considered a trans eVariant or sVariant significant if it
had an FDR <0.05. We removed trans QTL that were cross-mapped
(https://github.com/battle-lab/crossmap)77. Due to excessive linkage
disequilibrium observed in cattle, we removed trans QTL with variants
that were in linkage disequilibrium >0.01 with eQTL or sQTL for those
eGenes or sGenes, respectively.

Shared eQTL and sQTL
We identified shared and tissue specificQTLwithMashr (v0.2.69)38.We
included top eVariants and sVariants from genes that were expressed
in all three tissues. To prevent the double-counting ofmolQTL that are
in linkage disequilibrium and impact the same gene or intron cluster,
we selected a single top molQTL that had the largest effect across
tissues (as described in Urbut et al.38). This resulted in 11,311 eVariants
and 5012 sVariants. We considered a subset of 200,000 randomly
selected variants and invoked a threshold of local false sign rate <0.05
to establish if an effectwas significant in a tissue. For significant effects,
we assessed pairwise tissue similarity with Spearman’s correlation. We
compared the magnitude of molQTL effect sizes across specificity
classes (tissue specific, in two tissues, or in all tissues) for each tissue
with a Wilcoxon signed rank test.

GWAS of male fertility
Genome-wide association tests assuming additive and non-additive
modes of inheritance were carried out between imputed genotypes
and estimates of sire insemination success (which we used as a proxy
for male fertility)16 in 3736 bulls using GCTA (v1.92.1)78. The additive
association testing was carried out using additively coded SNP geno-
types. For the non-additive association testing, SNP genotypes were
coded assuming recessive inheritance to the reference (R) allele and
alternate (A) allele. Genotypes were coded as RR = 1, RA = 0, AA = 0
(M1) in the former case and as AA = 1, RA=0, RR = 0 (M2) in the latter
case. Only SNPs with MAF >0.5% and where the frequency of 1’s was
between 0.5% and 0.95% (N = 14,587,856) were retained for association
testing. The smallest P value from M1 and M2 was considered as the
strength of non-additive association between genotypes and pheno-
types for each of the tested variant, and variants with P < 5e–08 were
considered significant. A genomic relationship matrix constructed
from 18,187,234 autosomal SNPs withMAF >0.005 was included in the
association model to control for relatedness among samples.

Integrating QTL and molQTL in MetaXcan framework
We used S-PrediXcan (v0.7.5)25 to test for an association between
molecular phenotypes (expression and splicing phenotypes) andmale
fertility. The summary statistic-based approach was applied to include

results from non-additive association testing. Briefly, we trained
elastic-net based prediction models for expression values (TPM) and
splicing phenotypes (PSI), respectively, for all genes and intronic
clusters separately in testis, epididymis, and vasdeferens. SNPs located
within 1Mb of the TSS of the genes were considered for training with
the script gtex_tiss_chrom_training.R. In total, 18,053,560 sequence
variants (MAF > 1%) called in the molQTL cohort were available for
training the prediction models. Covariates used in the eQTL and sQTL
scans were included in training of respective prediction models to
account for confounding factors. High-performance prediction mod-
els (zscore_pval <0.05 and rho_avg >0.1) were available to predict
expression levels of 15,810 genes and to predict splicing phenotypes
for 46,426 intron clusters across three tissues (77, 80, and 58% of
eGenes and for 92, 94, and 80% of intron clusters in testis, epididymis,
and vas deferens respectively). Using weights for each SNPs in these
high-performance prediction models, we then carried out gene level
and cluster level association test for expression and splicing pheno-
type respectively using the script SPrediXcan.py. Following the
recommendations in Barbeira et al.25, Bonferroni-corrected P values of
3.16e–06 (0.05/15,810) and 1.08e–06 (0.05/46,426), respectively con-
sidering the number of genes and intron clusters tested for expression
and splicing phenotypes, were set as a significant threshold. Further, a
filter was applied on the prediction performance of themodel with the
threshold set at 0.05/number of significant results after the previous
filtering.

Next, to avoid capturing linkage disequilibrium-contaminated
associations, as recommended in the MetaXcan framework25, we car-
ried out Bayes Factor colocalization analyses with the R package coloc
(v5.1.0.1)79. For every significant GWAS signal (p < 5e–08), we searched
for evidence of its colocalization with molQTL using the coloc.abf
function. The search space was limited to 5Mb up- and downstreamof
the significant GWAS peaks. Colocalizations with PP.H4.abf (prob-
ability of a shared causal variant) > 0.8 and PP.H3.abf (probability of
different causal variants) <0.5 were retained and used to filter results
from the transcriptome-wide association studies.

Characterization of a SPATA16 sQTL
The Ensembl annotation of SPATA16 contains only one transcript,
whereas the Refseq annotation suggests three isoforms
(XM_002684936.6, XM_024995427.1, XM_005201702.4) that differ in
both the number of coding and the number of non-coding exons. The
abundance of the three isoforms in bovine testis was quantified in this
study with kallisto (v0.46.1)80. Testis RNA sequencing data was pro-
cessed and aligned to the cattle reference genome (ARS-UCD1.2) and
the Refseq gene annotation (version 106, ftp://ftp.ncbi.nlm.nih.gov/
refseq/B_taurus/annotation_releases/106/GCF_002263795.1_ARS-
UCD1.2/GCF_002263795.1_ARS-UCD1.2_genomic.gff.gz) with STAR
(see above). Exon-specific SPATA16 expression was quantified with
QTLtools quan on the STAR-aligned bam files (see above). Association
tests between exon expression and Chr1:93,954,637 were conducted
with a linear model in R that considered three principal components,
age, and RIN as covariates. Bonferroni correction was applied to
determine a significance threshold with 0.05/n, where n is the number
of exons tested.

Statistics and reproducibility
No statistical methodwas used to predetermine sample size for any of
the analyses. Tissuewas collected from randomly sampled animals at a
commercial slaughterhouse. All sequencing data that fulfilled mini-
mum quality parameters were considered. No data were excluded
from the subsequent analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
DNA and RNA sequencing data of 118 bulls are available in the ENA
database at the study accessions PRJEB28191 (Short read sequencingof
cattle) and PRJEB46995 (Testis transcriptome of mature bulls). Com-
prehensive metadata for all samples are available as Supplementary
Data 1. Gene expression and splicing matrices, a VCF file of genome-
wide genotypes used for e/sQTL mapping, a cross-table to link geno-
type and transcriptome data, results from trans-e/sQTL mapping as
well as summary statistics from additive and non-additive GWAS used
for transcriptome-wide association testing have been archived at
zenodo (https://zenodo.org/records/10409025). Gene expression
data (cGTEx_TPM_8646sample_27607gene.txt.gz) and corresponding
metadata (cGTEx_meta_data_8646sample.xlsx) processedby the cattle
GTEx consortium are available at zenodo (https://zenodo.org/records/
7560235). Human and mice reproductive tract specific genes are
available in Tables S5 and S6 from Robertson et al.31. Human testis
specific genes are available in Supporting Table 4 from Djureinovic
et al.29. The bovine reference sequence ARS-UCD1.2 is available at
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_002263795.1/.
The Ensembl gene annotation (release 104, Bos_taurus.ARS-
UCD1.2.104.chr.gtf.gz) is available at https://ftp.ensembl.org/pub/
release-104/gtf/bos_taurus/. The Refseq gene annotation (version
106, GCF_002263795.1_ARS-UCD1.2_genomic.gff.gz) is available at
https://ftp.ncbi.nlm.nih.gov/refseq/B_taurus/annotation_releases/106/
GCF_002263795.1_ARS-UCD1.2/. Raw data to reproduce the figures are
either available at zenodo (https://zenodo.org/records/10409025) or
provided in the Source Data file. Source data are provided with
this paper.

Code availability
All software used to process the data have been referenced in the
Methods section.
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