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Congenital heart disease detection by
pediatric electrocardiogram based deep
learning integrated with human concepts

Jintai Chen 1,17, Shuai Huang2,3,4,17, Ying Zhang3,5,17, Qing Chang6,7,17,
Yixiao Zhang6,8, Dantong Li2,3,4, Jia Qiu3,5, Lianting Hu2,3,4, Xiaoting Peng2,3,4,
Yunmei Du9,10, Yunfei Gao11,12, Danny Z. Chen 13, Abdelouahab Bellou14,15 ,
Jian Wu1,16 & Huiying Liang 2,3,4

Early detection is critical to achieving improved treatment outcomes for child
patients with congenital heart diseases (CHDs). Therefore, developing effec-
tive CHD detection techniques using low-cost and non-invasive pediatric
electrocardiogram are highly desirable. We propose a deep learning approach
for CHD detection, CHDdECG, which automatically extracts features from
pediatric electrocardiogram and wavelet transformation characteristics, and
integrates themwith key human-concept features. Developedon65,869 cases,
CHDdECG achieved ROC-AUC of 0.915 and specificity of 0.881 on a real-world
test set covering 12,000 cases. Additionally, on two external test sets with 7137
and 8121 cases, the overall ROC-AUC were 0.917 and 0.907 while specificities
were 0.937 and 0.907. Notably, CHDdECG surpassed cardiologists in CHD
detection performance comparison, and feature importance scores suggested
greater influence of automatically extracted electrocardiogram features on
CHD detection compared with human-concept features, implying that
CHDdECG may grasp some knowledge beyond human cognition. Our study
directly impacts CHD detection with pediatric electrocardiogram and
demonstrates the potential of pediatric electrocardiogram for broader
benefits.

Congenital heart disease (CHD) is one of the most common type of
birth defects and amajor causeof children’smorbidity andmortality1,2.
Early and accurate identificationof affectedpediatric patients is crucial
for timely intervention and effective surgical outcomes3–6. However,
commonly used examination methods, such as transthoracic echo-
cardiography (TTE), X-ray, cardiacmagnetic resonance imaging (MRI),
and dual-source CT examinations, are operationally complex, time-
consuming and costly, and heavily dependent on the evaluation of
experienced cardiologists7. Unfortunately, the delayed diagnosis is
prevalent8 (even for the critical cases9), which results in sub-optimal
clinical intervention10–14, especially in low- and middle-income

regions15–20. A study in a low-income country has demonstrated that
the delay diagnosis rate can be up to 85.1%21.

In general, CHDs are caused by structural abnormalities such as
holes and leaky valves, which change the electrocardiovectors and can
present abnormal manifestations in electrocardiogram (ECG) signals
theoretically22–24. In this context, the surfaceECG canoffer insights into
cardioelectric activity that could be helpful for the detection of CHD
patients due to its affordable price and high effectiveness. It has been
partly observed that CHD is associated with some particular manifes-
tations on adult ECG signals25–32, suggesting that evaluating the
abnormal ECG waveforms could provide clues for the detection of
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underlying heart defects. However, previous research mostly focused
on the correlations betweenCHDandadult ECG,whichdid not offer an
immediate benefit for pediatric CHD interventions33. So far, there have
been only a few studies on CHD diagnosis using pediatric ECG signals,
which brings challenges as well as opportunities for innovative dis-
covery in the field of ECG analysis.

Recent advances in deep learning (DL) have demonstrated
cardiologist-level and reliable performances on ECG analysis34–36,
including identifying features not typically recognized by human
experts. Earlier investigations have demonstrated that DL models can
derive benefits not only from automatically extracted features of ECG
waveform data35–37 but also from conceptual features utilized by
human experts38–42 and features obtained through wavelet
transformation43,44. However, few approaches integrated all these dif-
ferent feature types in an end-to-end DL architecture to conduct
automatic, efficient, and optimal fusion. Moreover, scant attention has
been given to the development ofDLmodels for the detection ofCHD,
particularly on a large-scale pediatric ECG dataset45–49.

In this work, we present an end-to-end deep neural network-
based approach for pediatric ECG cases, called Congenital Heart
Disease diagnosis via Electrocardiogram (CHDdECG). CHDdECG
optimally integrates multiple input feature types including raw ECG-
waveform data, human-concept features, and wavelet features, in
order tomake direct probabilistic predictions for CHD. Theworkflow
of our study is illustrated in Fig. 1. First, potential pediatric patients
underwent several examinations, primarily consisting of transthor-
acic echocardiography and electrocardiogram, in accordance with
the European Society of Cardiology Guidelines for CHD50. In certain
cases, additional tests may have been used at the discretion of the
attending doctors. The doctors carefully analyzed all the examina-
tion results and subsequently determined the final diagnostic out-
comes. Next, our CHDdECG used only pediatric ECG data to identify
CHD cases, by integrating features automatically extracted from
ECG-waveform data and wavelet features with human concept fea-
tures. It was developed using 65,869 pediatric ECG cases of young
children in the age of 2.12 ± 1.50 (year), and evaluated on an internal

Fig. 1 | The workflow of AI-enabled CHD detection with ECG data. Hand-crafted
human-concept features (a) were computed with some rules (corresponding for-
mulas were in the Supplementary Materials) on pediatric ECG-waveform data (b),
while the wavelet coefficient energy characteristics (as wavelet features (c))
obtained by performing wavelet transformation on the pediatric ECG-waveform
data. Features of these three types were fed into the proposed AI model (d) for
automatic fusion and CHD detection. e and f Illustrated the receiver operator

characteristic curves and precision-recall curves of the AI model’s CHD detection
performances on a test set and two external test sets. g Illustrated the CHD
detection effects (by the net reclassification index (NRI)) of the AI model and car-
diologists assisted by the AI model, compared with cardiologists without any
assistance as a baseline, across 10 randomly sampled test data groups (from the
Center-A test set). The analysis of NRI(+) and NRI(−) was included in the Supple-
mentary Materials. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-44930-y

Nature Communications |          (2024) 15:976 2



test set of 12,000 cases and two external test sets of 7137 and 8121
cases, respectively. We found the ECG-based CHD identification by
CHDdECGwas promising, andmore accurate than ECG cardiologists.
Finally, we analyzed the prediction mechanisms of the trained
CHDdECG and evaluated its robustness and reliability. Through
exploring the potentials of pediatric ECG for CHD diagnosis, our
CHDdECG made advances in three folds: (1) predicting structural
heart defects of pediatric patients using ECG data; (2) drawing
potential knowledge from pediatric ECG data beyond the current
knowledge of experts through a deep learning approach; and (3)
providing clues for further studies of pediatric ECG and CHDs.

Results
The overall CHD detection effects of CHDdECG
We trained the CHDdECG model to process pediatric ECG data for
predicting the presence or absence of CHDs, without distinguishing
between CHD subtypes. After training CHDdECG from scratch in a
supervised learning manner, we evaluated the performances of the
trained model on the internal test set and two external test sets. See
the CHD prediction performances (sub-types are not distinguished)
in Table 1, both the specificity and sensitivity of CHD detection
exceeded 0.8 on the internal test set. On the two external test sets,
characterized by different subtype proportion distributions, the
specificity values were 0.937 and 0.907, respectively, and the sen-
sitivity scores approached0.8. Additionally, themedian values of the
probabilistic predictions (refer to the last column of Table 1)
exhibited proximity to 1.0 on the internal test set and ~0.8 on both
external test sets. This highlights the high confidence and robust
generalizability of CHDdECG’s predictions (see Fig. 1e), the areas
under the AUC curves (ROC-AUC), a comprehensive metric, were
quite high, at 0.915 on the internal test set and at 0.917 and 0.907 on
the two external test sets. The Brier scores were close to 0.0 on all
the test sets. Figure 1f shows the precision-recall (PR) curves. Since
they were influenced by class imbalance, the Center-C external test
set showed a better PR-AUC score compared to the internal test set.
All these comprehensive metrics signified that CHDdECG has
achieved good performances and robust generalizability in CHD
detection.

Pediatric ECG-based CHD prediction outcomes compared to
ECG cardiologists
We compared the CHD diagnosis outcomes of the trained CHDdECG
model to those of 10 senior ECG cardiologists, divided into 10 groups
denoted as G1–G10 in Fig. 1g. In each group, we randomly selected
200 ECGdatawith CHD and 100 non-CHD ECGdata from the internal
test set, with non-overlapping data between groups. For each group,
the CHDdECG model made probabilistic predictions of CHD and
required the ECG cardiologists to identify the CHD cases. We com-
pared the performance of each method by computing the net
reclassification index (NRI). As shown by the light blue bars in Fig. 1g,
the diagnosis outcomes of cardiologists are regarded as the baseline,
and the NRI scores for CHDdECG were much >0, indicating its
superiority in pediatric ECG-based CHD detection compared to car-
diologists. Furthermore, we specifically picked out those cases that
are misidentified by cardiologists but are correctly identified by
CHDdECG, prompting a reevaluation by the cardiologists. To aid
their reevaluation, we also included the corresponding highlighted
key ECG segments, as demonstrated in Fig. 2. Based on the prompt
from CHDdECG, cardiologists identified some wavelets associated
with CHD and changed parts of their original diagnosis. The results
are illustrated as the dark blue bars in Fig. 1g, which indicate that the
reevaluation outcomes are consistently better than the initial diag-
nosis results. However, the NRI on cardiologists’ reevaluation
remained inferior to CHDdECG, suggesting that some cases are still
indistinguishable for cardiologists.

CHD-related manifestation detection performances for major
subtypes
We tested whether CHDdECG could effectively detect abnormal
manifestations of major CHD subtypes. The definitions of subtypes
follow the 2020 ESC guideline50. We fine-tuned the trained CHDdECG
model for specific CHD subtypes. The ROC-AUC (area under the
receiver operator characteristic curve) scores obtained on these test
cases are reported in Table 1, spanning a range of0.835 to0.992 on the
internal test set, as well as 0.889–0.926 and 0.859–0.939 on the two
external test sets, respectively. Among the three most common sub-
types (i.e., the ventricular septal defect, atrial septal defect, and patent
ductus arteriosus), the ROC-AUC scores were 0.920, 0.835, and 0.856
on the internal test set, while achieved 0.918, 0.926, and 0.889 on the
external test set from Center-B, and 0.913, 0.916, and 0.904 on the
external test set from Center-C. On the internal test set, performances
on 9 of 12 subtypes achieved high ROC-AUC scores over 0.9; on the
external test set fromCenter-C, ROC-AUC scores on 7of 9 subtypes are
over 0.9. It is obvious that CHDdECG performs effectively on most
subtypes, except for the relatively lower sensitivity scores on some
subtypes (e.g., atrial septal defect (ASD) and patent ductus arteriosus
(PDA) on the internal test set). The sensitivity on PDA is also relatively
lower on the two external test sets. Notably, all the Brier scores are
close to 0.0 on any test cohorts.

Feature importance observation
To evaluate the prediction mechanisms of CHDdECG, we assessed the
interpretability of the trained models (for CHDs and their various
subtypes). We computed the importance scores of the feature types
used for CHD detection, including raw ECG-waveform data, wavelet
features, and hand-crafted human-concept features. The feature
importance scores of 300 randomly selected test CHD cases (from the
internal test set) were illustrated in a heat map in Fig. 3b, and feature
importance scores were represented in the instance-specific view in
Fig. 3a and feature-wise view in Fig. 3c (see Fig. 3a), features auto-
matically extracted from ECG-waveform data supplied more informa-
tion for predicting CHD statuses inmost cases. The global feature-wise
importance scores also affirmed this, while the features representing
somehuman concepts andwavelet featuresweremuch less important,
yet still beneficial. Here we gave a concrete case in Fig. 3d for ease of
understanding. In this case, the global importance score of clinical
features was 0.102, and that of wavelet features was 0.014, while the
automatically extracted features from waveform data attained a score
of 0.884. In Fig. 3e over subtypes, it can also be seen that the auto-
matically extracted features yieldedhigher importance scores than the
other feature types. The comparative experiments on the impact of
different feature types on performance were provided in the Supple-
mentary Materials.

Key pediatric ECG segments of particular interest
Since we have observed that CHDdECG automatically extracted some
critical features, we kept on exploring what ECG manifestations were
adopted by CHDdECG using the Grad-CAM approach51, and visualized
the salient segments contributing to the CHD predictions in Fig. 2. We
obtained the salient segments with Guided-Backpropagation52 follow-
ing the procedure of Grad-CAM algorithm51, on the Temporal Atten-
tion layer’s output features (refer to Fig. 5). Interestingly, we found that
CHDdECG-activated segments were partially consistent with the pre-
vious observations on adult ECG data. In Fig. 2, wemarked CHDdECG-
activated segments with blue, and the darker blue indicated the more
important segments. Figure 2a represented a notch on the R wave of
signals of lead II, which was a typical abnormal manifestation with the
atrial septal defect27; Fig. 2b illustrates the Katz–Wachtel phenomenon
representing diphasic RS complexes on signals of lead V3, which was
found to be related to cases with the ventricular septal defect25; Fig. 2c
illustrated a QRS complex with a small R wave and a deep S wave on
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signals of lead II, which was a typical manifestation in the left pre-
cordial leads of the cases with the dextro-transposition of the great
arteries53; Fig. 2d showed an ST-segment elevation on the lead II ECG
signals, which often occurred in the cases with the tetralogy of fallot53.
We circled the representative malformations with regard to CHDs in
Fig. 2 (in orange color) following previous observations on adult
ECG25,27,53. It is obvious that the blue portions are highly overlapped
with the orange circles, implying that the CHD predictions of
CHDdECG were made based on relevant ECG segments. Besides, we
also presented heatmaps for two CHDdECG-misidentified cases in

Fig. 2e and f. Figure 2e displayed a segment of the ECG signal that
CHDdECG failed to correctly identify as the waveform of a ventricular
septal defect. Although it exhibits similarities to the Katz–Wachtel
phenomenon shown in Fig. 2b, we observed that its amplitude is sig-
nificantly smaller (maximum values around 1000μV), signifying an
atypical form25 not prioritized by the model (indicated by the lighter
blue color compared to the waveform in Fig. 2b). Regarding Fig. 2f,
CHDdECGmightmisidentify the double-humpedwaveformas a notch,
however, it’s ground truth diagnostic label is non-CHD. It is evident
from Fig. 2e and f that the waveforms associated with CHD (or a

Table 1 | Model performances on the internal test set fromCenter-A, an external test set fromCenter-B, and another external
test set from Center-C

The reported performances for detecting CHDs or non-CHD were obtained with the CHDdECG model trained from scratch, while the performances for various CHD subtypes were obtained
separately after the CHDdECG model was specifically fine-tuned. Notably, some subtypes were not included since their amounts were <0.5% of all the CHD cases or <10. The probabilistic
predictions are represented by box-plots for better viewing of the distributions. Box-plot elements are defined as center line, median; box limits, upper and lower quantiles; whiskers,
1.5 × interquartile range; n = 2038 CHD cases, 300 CHD cases, and 2521 CHD cases from Center-A, Center-B, and Certer-C, respectively. Source data are provided as a Source Data file.
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specific subtype) are diverse and therefore challenging to detect. In
summary, CHDdECG demonstrates the ability to identify certain con-
genital heart disease-related waveforms, and the visualization results
are partially interpretable to humans, despite occasional misjudg-
ments of confusing waveforms (which can also serve as a learning
opportunity for humans).

Discussion
Previous research indicated that the delayed detection of congenital
heart disease (CHD) is a widespread issue across areas of varying
income levels8,9,21,54, which leads to missed opportunities for timely
interventions. Besides, it is also recognized that the distribution of
CHD subtypes can vary by location and over time54. In this study, we
developed apediatric-ECG-baseddifferential CHDdiagnosis approach,
CHDdECG. CHDdECG was trained on large-scale real-world pediatric
ECG data, and its effectiveness was validated on internal and external
test sets, as presented in Table 1. The performance across compre-
hensive metrics, including specificity, sensitivity, ROC-AUC, and Brier
scores, demonstrated the model’s ability to accurately distinguish
CHD-related ECG manifestations. Furthermore, the effectiveness of
CHDdECG presented on two external test sets, characterized by dif-
ferent CHD subtype proportions and variations in ECG recording
devices, suggested that the practical impact of subtype proportions

and device differences is limited in the application of CHDdECG (see
Table 1 and Fig. 2), additional results indicated that CHDdECG also
performed well in detecting specific manifestations of most CHD
subtypes, suggesting CHDdECG’s good generalization across varying
subtypes and can be reliably used in practice.

Though the performances were generally good for most of the
major CHD subtypes (see Table 1; especially for the tetralogy of fallot,
atrioventricular septal defect, and double-outlet right ventricle), we
also noticed that the detection sensitivity scores for some CHD sub-
types (e.g., ASD and PDA on the internal test sets) were comparatively
lower. Especially, the sensitivity scores for PDA were lower than other
subtypes across all three test sets. We thought that these inferior
sensitivity scores might be attributed to the inconspicuous CHD-
related manifestations since it had been observed on adult ECG data25

that some CHD cases were clinically silent. To further confirm this, we
checked the sensitivity scores of cardiologists’ analyses for ASD and
PDA, which were only 0.306 and 0.434 respectively (with an overall
sensitivity of around 0.6). It indicated that senior ECG cardiologists
could not find abnormal manifestations in most of those cases from
pediatric ECG as well. A positive aspect was that CHDdECG still out-
performed cardiologists on ASD and PDA detection, and the relatively
lower sensitivity for ASD and PDA did not hurt the benefits of
CHDdECG in overall CHD detection. On the external test set from

Fig. 2 | Visualization of CHDdECG-activated segments for CHD subtypes using
the Grad-GAM approach. a–d Illustrated the classical ECG manifestations of
subtype ASD, VSD, d-TGA, and TOF, respectively. e illustrated the ECG manifesta-
tions of subtype VSD but misidentified as non-CHD by CHDdECG. f illustrated a
segment of non-CHD ECG manifestations but misidentified to be CHD by
CHDdECG. The leads of ECG views are marked on the top right. The salient ECG

segments were marked by blue (the darker blue indicated the more important
segments). We further circled the typical manifestations in orange that were con-
sidered to be associated with subtypes of adult ECG by the cardiologists following
previous research results25. The horizontal axis represents time (4 × 10−2 s), and the
y-axis shows the amplitudeof the electrocardiogram (μV). Sourcedata are provided
as a Source Data file.
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Fig. 3 | An illustration of feature importance of automatically extracted fea-
tures from raw ECG signals (called sig), clinically useful human concept fea-
tures (called clin), and wavelet features (called wave). We randomly selected
300 CHD cases from the test set and illustrated the feature importance scores with
a heatmap (b) on these cases. The instance-wise feature importance scores (a) and

the global importance scores (c) of features were also computed. d The feature
importance scores of one case were especially shown. e An illustration of the fea-
ture importance of each feature type for various CHD subtypes (after the model
fine-tuning). Note that the features with an importance score of zero were not
included. Source data are provided as a Source Data file.
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Center-C, we noticed the performances on the anomalous origin of a
coronary artery (AOCA) and coarctation of the aorta (COA) were
relatively lower. We further checked the sensitivity of cardiologists’
analyses for these two subtypes, which were at 0.400 and 0.292,
respectively, and were lower than those of CHDdECG. While
CHDdECG’s performances on Center-B appear notable in terms of
ROC-AUC, specificity, and sensitivity, Fig. 1f uncovers a relatively low
PR-AUC value of around 0.5. Conversely, the PR-AUC on Center-C
showcases robust performance, surpassing 0.8. This phenomenon can
be attributed to the significant label imbalance present inCenter-B test
set. In a nutshell, the CHD detection performances of CHDdECG
implied the feasibility of using 9-lead pediatric ECG data to obtain
differential diagnosis of CHD; but, the detection performances on
some subtypeswere sub-optimaldue to the limited information inECG
signals.

Based on the robust performances of CHDdECG, we sought to
shed light on the prediction mechanisms of CHDdECG. Adopting a
deep learning approach to detect structural heart defects is theoreti-
cally based on an assumption that structural heart abnormalities can
change the electrocardiovectors and thus lead to abnormal manifes-
tations in ECG signals. However, some congenital cardiac malforma-
tions are subtle and do not show observable changes in the
morphology of ECG signals. Hence, we have to examine whether
CHDdECG’s predictions were made based on reasonable features. See
NRI compared to senior ECGcardiologists in Fig. 1g, weobtained three-
fold findings: (1) CHDdECG is more effective in CHD detection than
ECG cardiologists; (2) ECG cardiologists can achieve better CHD
detection performances with the prompt of CHDdECG, which implied
the predictions made by CHDdECG were reasonable and could be
highly acceptable to experts; (3) ECG cardiologists cannot achieve
CHDdECG-level performances even with the prompt of CHDdECG,
suggesting that CHDdECG could extract some information out of
human cognition. These results encouraged using the CHDdECG
model for automatic CHD diagnosis since the prediction results were
shown to be superior and highly trusty. It also encourages further
studies to identify more hard-to-observe knowledge guided by
CHDdECG.

Our further explorations attempted to enhance the clinical
acceptance of the CHDdECG approach and facilitate interactions
between cardiologists and CHDdECG by comparing the feature
importance among the three feature types used by CHDdECG
(i.e., automatically extracted ECG features, wavelet features, and
concept features used by human experts). Analyses conducted
from various perspectives (comparing the overall dataset level,
subtype level, and instance level; see Fig. 3), all suggested that the
automatically extracted features from ECG signals were the most
important feature type and contributed more than the other two
types, no matter for detecting the presence of CHD or for any
specific subtypes. Furthermore, we observed that the key seg-
ments detected by CHDdECG (with Grad-CAM) presented many
CHD-related malformations that could be observed in both
pediatric ECG and adult ECG, despite that pediatric ECG is more
complicated55,56. These findings implied that (1) the performance
gains of CHDdECG (compared to ECG cardiologists; see Fig. 1g)
might mainly come from the automatically extracted features,
which represent some hard-to-observe information beyond the
current human knowledge; (2) combining CHDdECG and a
visualization approach (e.g., GradCAM) made such hard-to-
observe knowledge much more accessible. The detailed ana-
lyses of pediatric ECG waveforms encouraged further investiga-
tions of the association between pediatric ECG and CHDs from
theoretical and clinical perspectives.

One key strength of our study is that CHDdECG was devised to
identify youngCHDpatients by using only routinely acquired pediatric
ECG, thus enabling efficientCHDdetection and timely interventions. In

this context, it is more clinically meaningful than the previous studies
on adult CHD cases. Note that we did not intend to replace the stan-
dard CHD diagnosis guideline for pediatric ECG. However, since there
are economically underprivileged populations that have much less
access tomodern technologies and suffer from delayed interventions,
we argue that, in these situations, it is highly desired to detect CHD in
young childrenusingourCHDdECGwithpediatric ECGdata, because it
is reliable, low-cost, highly efficient, and has been verified on large-
scale real-world datasets. Another key strength of our study is that the
superior performances (e.g., outperforming ECG cardiologists) of
CHDdECG can provide some potential knowledge on pediatric ECG
beyond the current humanknowledge. Thus,CHDdECGcanoffer clues
for further exploring the potential of pediatric ECG data, which is
generally beneficial.

There are still a few limitations in this study. First, although the
test data we used aimed to follow real-world scenarios and we also
collected external test data to examine the generalization capability of
CHDdECG, the data distribution of CHDs can vary in different areas
and times54, whichmay cause somewhat different effects of CHDdECG,
especially in situations when the subtype proportions are different
from our test set and external test sets. The geographic specificity and
fixed period of training and validation limit the assessment of gen-
eralizability. Second, 9-lead ECGdata provide less information than the
standard 12-lead ECG. Since puttingmore leads on the chests of young
children was generally quite intractable, we made a trade-off decision
to train CHDdECG on 9-lead pediatric ECG for wider application sce-
narios. Nevertheless, CHDdECG allows the processing of ECG data of
any lead count, andwe believe that the performances of CHDdECGwill
be better if it is trained and evaluatedon standard 12-leadECGdata and
CHDdECG can serve adults and elder children well. Third, our
CHDdECG architecture is of high compatibility which allows the
automated processing and fusion of multiple feature types. However,
we used only three feature types for CHD detection, and some other
feature types (e.g., signal features extracted by Bayesian approaches)
might be further beneficial if they are included in consideration.
Fourth, while our retrospective study has demonstrated the efficiency
of CHDdECG on a real-world clinical dataset, the performance of
CHDdECG for CHD screening in the general population remains
uncertain, as it is challenging to prospectively obtain ECG data from
children who do not necessarily require such examinations. Fifth,
although the CHD labels were acquired following standardized diag-
nostic guidelines, we cannot rule out the possibility of label mis-
classification as a limitation, particularly when CHD cases present
abnormalities below the level of human detection. This limitation also
highlights the need for prospective protocol research dictating a
comprehensive and standard diagnostic workup for all individuals.

Methods
Data access and ethical statement
This study was approved by the Medical Ethics Committee of Guang-
dong Provincial People’s Hospital (KY-Q-2022-144-01). In accordance
with ethical guidelines, this study secured a waiver for informed con-
sent based on its retrospective analysis of anonymized data, ensuring
privacy and security without explicit consent from subjects.

Data sources
In this study, three distinct datasets were collected and used. The first
dataset, utilized comprehensively for model training, validation, and
internal testing, originates from the ECGDivision in the Cardiovascular
Outpatient Department at Guangdong Provincial People’s Hospital
(referred to as Center-A). The second dataset consists of an external
test set sourced from the ECG Division in the Cardiovascular Inpatient
Department at the same hospital (referred to as Center-B). Another
external test set was obtained from the ECG Division at Shengjing
Hospital of China Medical University (referred to as Center-C). These
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datasets collectively facilitated the development and comprehensive
evaluation of the model. The ECG data in Center-A and Center-B were
collected using identical ECG devices (GE MAC800) from August 2014
to October 2020, while the data in Center-C were collected utilizing a
distinctbrandof ECGdevice (NIHONKOHDENECG-2550) from January
2020 to June 2023. The data selection and train-validation-test split are
illustrated in Fig. 4. For the sake of reaching reliable conclusions, some
cases were omitted due to: (i) diagnosis results (labels) were missing;
(ii) ECG signals were not correctly recorded, with excessive noises
(over 20% signal amplitude values exceeding 5mV), or with corrupted
signals (20% recorded values are 0’s); (iii) ECG cases were obtained
after the intervention; (iv) ECG cases were obtained from the indivi-
duals whose other ECG-waveform data have been included in this
study. The demographic and clinical characteristics of cohorts were
reported in the SupplementaryMaterials. To ensure that patients from
the test data sets were not included in the training data set, we
excluded patients from the Center-B external test set if they were
already present in the Center-A training set by using the enterprise
master patient index (EMPI)which includes factors such as age, date of
birth, sex, and name. For the Center-C external test set, a distance of
almost 2300 km combined with comparison rules based on patients’
name, sex, age, and CHD sub-type was used to ensure the absence of
patient overlap with other centers. After that, 77,869 pediatric ECG
cases from Center-A, 7137 cases from Center-B, and 8121 cases from
Center-C finally remained for our study. Specifically, 65,869 cases
(stratified around 85% of the ECG cases with various CHD subtypes or
non-CHD ones; comprising 23,873 females and 41,996 males) in
Center-A were randomly selected for model training, and the rest
12,000 cases (consisting of 4242 females and 7758 males) for model
test. Notably, in this work, the sex of each participant was determined

based on their biological sex, as recorded on their Chinese identity
card. In addition, the 7137 cases (consisting of 3458 females and 3679
males) in Center-B and the 8121 cases (3723 females and 4398males) in
Center-C comprised two independent external test sets, for evaluating
the generalization of our CHDdECG. The CHDdECGmodel was trained
to conduct CHD detection as a classification task in a supervised
manner, and the classification labels used in the training phase indi-
cating the CHD subtypes or the non-CHD status were real-world
diagnostic results following standard diagnostic guidelines (e.g., using
echocardiography) organized according to the International Statistical
Classification of Diseases 10 codes (ICD-10).

All of the ECG cases for model training that we used were col-
lected from individuals at the ageof 2.12 ± 1.50 (year), amongwhich the
cases with CHDs were at the age of 1.58 ± 1.28 (year). This age dis-
tribution of our datasets satisfied the need to explore CHD detection
methods for early intervention. Notably, over 90% of the cases had
9-lead ECG data with three missing chest leads, V2, V4, and V6, because
it was usually intractable to put all 6 chest leads on such a young child’s
chest. Thus, we built our framework based on 9-lead pediatric ECG
data consisting of I, II, III, aVR, aVL, aVF, V1, V3, and V5, and this setting
would be easier to generalize in the young population. All pediatric
ECG data were acquired at a frequency of 500Hz over 10 s, and 5000
values on sampling points were obtained. As shown in Fig. 4, the CHD
cases made up approximately 16.6% of Center-A dataset (8741 of
52,695 training cases, 2186 of 13,174 validation cases, and 2038 of
12,000 test cases), and approximately 4.2% and 26.12% of the Center-B
and Center-C external test sets. The majority of the CHD cases
belonged to the CHD subtypes of the ventricular septal defect (VSD),
atrial septal defect (ASD), patent ductus arteriosus (PDA), and tetral-
ogy of fallot (TOF), which is aligned with the real-world scenarios.

Fig. 4 | An overview of the case selection procedures for Center-A, Center-B,
and Center-C. Center-A: the ECG Division in the Cardiovascular Outpatient
Department at Guangdong Provincial People’s Hospital; Center-B: the ECGDivision
in the Cardiovascular Inpatient Department at Guangdong Provincial People’s

Hospital; Center-C: the ECG Division at Shengjing Hospital of China Medical Uni-
versity. The descriptions within the blue boxes provided the reasons for omitting
some cases (with ECG data and diagnostic results).
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The quantitative proportions of the CHD subtypes are shown in the
second column (Prop (%)) in Table 1. Given that the pediatric ECG data
were sourced from diverse departments and hospitals without exces-
sive selection, our collected datasets closely mirrored real-world
medical scenarios and ensured our study was credible.

Data pre-processing
Previous research suggested that someproper pre-processing on ECG-
waveform data could lead to considerable performance gains57.
Inspired by the successes of multi-modal data fusion approaches, we
developed a CHDdECG model with three input branches, which took
three types of features as input, including the ECG-waveform data Xe,
the hand-crafted human-concept features Xc, and the features Xw
obtained by wavelet transformation. The last two types of features,
Xw and Xc, were organized in tabular data format. The inputs of the
three branches were individually prepared as follows.

• First of all, we eliminated the noisymyoelectric signals (typically
at 30–300Hz) from the raw ECG-waveform data using the low-
pass Butterworth filters58,59. Then, the interference of the electric
power facilities (typically at 50Hz) was eliminated by a finite
impulse response notch filter59 with the Kaiser window
function60. Finally, the baseline wandering elimination was
performed using the infinite impulse response zero-phase shift
digital filter59. After these de-noising procedures, the key
information of the ECG-waveform data was well preserved and
the noise was partially eliminated. Then, we organized the ECG-
waveformdata into the format asXe 2 R9× 5000 (with 9 leads and
5000 sampling points in each lead).

• The wavelet features organized in a tabular data format,
Xw 2 R54, were obtained by performing the wavelet decom-
position on the de-noised ECG signal Xe. We performed 9 levels
of thewavelet decompositionwith the db5wavelet function, and
the resulting coefficient energy characteristics of the 4th–8th
levels were selected and concatenated into a feature vector (i.e.,
Xw). Note that in Xw, the elements were considered independent
scalar features.

• The input human-concept features were also organized in a
feature vector (i.e., X c 2 R114), whose elements were independent
scalar features obtained from Xe. The scalar features in Xc
represent human concepts widely used in clinical ECG analysis.
To imitate the clinical procedure to analyze ECG data, we first
detected five keypoints (the P, Q, R, S, and T waves) on the axis
using the findpeaks method of the Matlab Software. Specifically,
to detect the inverted P and T waves, we took the absolute values
of the sampling points on ECGs before using the findpeaks
method. Then, the onset and end points of a peak (e.g., the R
wave) were obtained by computing the slopes following the
approach as in the literature61. After obtaining the keypoints on
the axis, 114 tabular features were computed following the
method62 to provide clinically useful concepts, including the
heartbeat rate, mean duration of QRS/P/PR segments, the mean
amplitudes of Pwaves, et al. All of the formulas for computing the
114 scalar features were provided in the SupplementaryMaterials.

Data normalization
After the pre-processing, Xe, Xw, and Xc were respectively normalized
with z-score (as in Eq. (1)) beforebeing fed separately to the three input
branches of the CHDdECG model (see Fig. 5), by

X 0
i =

Xi � μi

σi
, ð1Þ

where Xi∈ {Xe, Xc, Xw}, X
0
i is the normalized outcomewith the identical

feature size, and μi and σi are the mean and standard deviation of the
ith component computed over the training set. For Xe 2 R9× 5000, the

normalization is performed along the lead dimension (i.e., the first
dimension).

CHDdECG architecture and data processing procedure
We proposed a deep learning-based model, CHDdECG, to use 9-lead
pediatric ECGdata forCHDdetection. Themodelwas implementedusing
the Keras framework63 with Tensorflow 2.0 as the backend. CHDdECG
mainly consisted of three input branches for three feature types and one
output branch to make the probabilistic presence prediction for CHD.
The input Xe was sequentially processed by 1D convolution blocks, a
three-path module consisting of 1D residual blocks64 with various kernel
sizes, a Transformer Encoder65, and a temporal attention layer, to extract
features in the local and global scopes. The features presented in tabular
formats denoted as Xw and Xc, were processed individually by
TabBlocks66. We considered all the extracted features as independent
scalar features and used one TabBlock66 to select and fuse these features.
Finally, the fused features were leveraged to predict the presence prob-
ability of CHD. The overall architecture of CHDdECG is shown in Fig. 5,
and the detailed operations are depicted as follows.
1. For the ECG-waveformdata Xe, we employed one-dimensional (1D)

convolutional layers as the adaptive signal filters to extract the
local signal features, regarding the 1D ECG signal as a special case
of a 2D image. We first utilized two 1D convolutional layers
(followed by batch normalization and a ReLU activation) to extract
features along the temporal dimension. Then, three model paths
were used, each ofwhich contained three 1D residual blockswhose
filter kernel sizes were, respectively, 3, 5, and 7. In this design, each
1D residual block down-sampled the features by 4 times along the
temporal dimension. Notably, we used average pooling in the
shortcut path of the residual blocks following ResNet-D67. The
output features of the threemodel paths were concatenated along
the channel dimension (since the features were organized into an
identical size) and then fed to the Transformer Encoder module.

2. In addition to the convolutions used to extract local features, we
also employed a Transformer Encoder block65 to extract global
features throughout the duration of ECG recording. The key
component of the Transformer Encoder was a multi-head self-
attention operation, which was defined by

hi = softmax
ðWQ,ixÞðWK,ixÞTffiffiffiffiffiffi

dh

p
 !

ðWV,ixÞ, xo = ½h1,h2, . . . ,hi, . . . ,hn�W o,

ð2Þ

where WQ,i,WK,i,WV,i 2 Rdh ×dx and Wo 2 Rndh ×do are learnable
parametric matrices, [ ⋅ , ⋅ ] denotes the concatenation operation,
dx is the length of the input feature vector, dh is the hidden state
dimension of the Transformer Encoder, i is an index of the
attention heads, n is the number of the attention heads (in this
study, we set n = 8), x denotes the input feature, and xo denotes
the output feature. After being processed by the self-attention
module, the features were further processed by a feed-forward
module composed of two linear layers with a ReLU activation in
between (see Fig. 5).

3. Applying the convolutional operations and Transformer Encoder,
the local features and global features were hierarchically extrac-
ted from the raw ECG-waveform data. After that, we employed a
temporal attention layer to highlight the key segments, using a 1D
convolution layer (with a batch normalization and a sigmoid
activation) to compute spatial attention (see the right part of
Fig. 5), as:

ze = SigmoidðBatchNormðConv ðxoÞÞÞ � xo, ð3Þ

where⊙ denotes point-wise multiplication, and ze is the output
features of the temporal attention module.
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4. Finally, we treated the elements of the features ze, Xw, and Xc as
independent scalar tabular features, and employed several Tab-
Blocks to process them. For ze, we flattened it into a feature vector
before using the first TabBlock. A TabBlock contained an Atten-
tive Transformer module for feature selection and a Feature
Transformer for feature processing. Please refer to the original
TabNet paper66 for the detailed structure of the Attentive Trans-
former module and Feature Transformer module. The Attentive
Transformer module computes a mask m for feature selection,
which filters out parts of input features by a point-wise multi-
plication. The selected scalar features were then processed by the
Feature Transformer module within the TabBlock.

5. After the top-most TabBlock processing, we hypothesized that
the higher-level semantic features from Xe, Xw, or Xc associated
with CHDs were effectively extracted and fused. These features
were processed by two full connection layers with a BatchNorm
layer and a ReLU activation in between, which were used to
predict the presence and absence probabilities of CHD.

CHDdECG was trained in an end-to-end manner to jointly process
the three types of input Xe, Xw, and Xc. Since therewere relatively fewer
cases with CHDs (compared to the non-CHD cases), we employed the
label smoothing approach for the target y in the trainingphase to avoid
over-fitting, which is defined by:

~y=αy+ ð1� αÞð1� yÞ, ð4Þ

where α∈ [0, 0.5) is a hyperparameter coefficient, and α = 0.15 was
used in our study. In Eq. (4), the raw label y (y∈ {0, 1}) was obtained
following the CHD diagnostic result (y = 1 if and only if the case
was with CHD), and ~y is the smoothed label used as the training
target (obtained by Eq. (4)). The CHDdECG model was trained
under the specification of the weighted cross-entropy loss function

L, defined by

Lðp,qÞ= � ~y logðpÞ �w � ð1� ~yÞ logðqÞ, ð5Þ

where p denotes the predicted probability of a case with CHDs, q
denotes the probability of a case without CHDs, and p and q are con-
vexly combined with the sum equal to 1 due to the final softmax layer.
To deal with the class imbalance issue, the class weight parameterw in
Eq. (5)was set to0.2, tomake themodel paymore attention to theCHD
cases. In the training phase, CHDdECG for CHD detection was first
initialized by He’s parameter initialization68 and was trained by 20
epochs from scratch using the Adam optimizer69 with the default
parameters. During training, the size of the mini-batches was 256. The
learning rate was initialized to 1.0 × 10−2 and was decayed by 10× every
8 epochs. In the validation and testing phases, CHDdECG inferred the
CHD probabilities for the input ECG cases, using the parameters
obtained in the training phase.

Model fine-tuning for CHD subtype detection
Toevaluate thecapabilityofCHDdECGtodetect themajorCHDsubtypes
(each with a proportion over 0.5%), we fine-tuned the trained CHDdECG
model to predict whether a case has characteristics of some CHD sub-
types. Before the fine-tuning phase, we initialized the CHDdECG model
with the parameters trained for overall CHD detection. During fine-tun-
ing, we froze the parameters of the 1D ConvBlocks and the first 1D Res-
Block in each sequential path and trained the other parameters for the
target subtypes further with two epochs. In these fine-turning phases, we
only used the target subtype cases and non-CHD cases. CHDdECG was
fine-tuned under the guidance of Eq. (5) (with w= 1). Different from
adopting the class-weighting strategy in training CHDdECG for CHD
detection, we only employed the oversampling strategy to balance the
probabilities of the usage of target subtypes and the non-CHD cases,
since the sample amounts varied in different CHD subtypes.

Fig. 5 | An illustration of our proposed deep learning-based model, CHDdECG.
The left part showcases the overall architecture of the CHDdECG model, char-
acterized by a fusion procedure involving multiple feature types. The right part

presents the module details within CHDdECG. Please refer to the original TabNet
paper66 for the structure of the Attentive Transformer module and Feature Trans-
former module.
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Importance score computing
Using TabBlocks also facilitated the computation of feature impor-
tance scores, followingTabNet66. TheAttentiveTransformermodule in
the top-most TabBlock generates a data-specific sparse attentionmask
m, whose elements were in [0, 1), as so to find useful features and to
exclude useless features. The elements of m could be interpreted as
the importance of features.Wedenotemn,i,j as the importance score of
the jth value in the heatmap for the ith feature type obtained using the
nth ECG data. For better viewing, we computed the average impor-
tance scores of scalar features ( �mi,j), the overall importance score of
the ith feature type, ηi, i∈ {w, c, e} (shown in Fig. 3e), and the feature
type importance scores on each individual case, by

�mi,j =

PN
n= 1 mn,i,j

N
,ηi =

Xni

j = 1

�mi,j, �mn,i =
Xni

j = 1

mn,i,j , ð6Þ

where N is the amount of ECG data, ni denotes the count of scalar
features belonging to the ith feature type.

Evaluation metrics
We comprehensively evaluated the prediction performance of CHD
detection by employing several evaluation metrics. We employed the
specificity, sensitivity, area under the receiver operating characteristic
curve (ROC-AUC), Brier score, which were optimistic for imbalanced
classification tasks. We also reported the probabilistic predictions by
box plot. The definitions of these metrics were specified as follows:

• The sensitivity is a measure to evaluate how the model can
predict the true positive cases, which is defined as

sensitivity =
Tp

Tp + Fn
, ð7Þ

where Tp and Fn denote the case amounts of true positives and
false negatives, respectively.

• The specificity is a measure to evaluate how the model can
predict the true negative cases, which is defined as

specificity =
Tn

Tn + Fp
, ð8Þ

where Tn and Fp denote the case amounts of true negatives and
false positives, respectively.

• The Brier score is a strict measure to evaluate how good the
probabilistic predictions are, which is defined by

Brier score =
1
N

XN

t = 1

ðf t � otÞ2, ð9Þ

whereT is the size of test set, ft is a probabilistic prediction and ot
is the corresponding ground truth label.

• Since a higher sensitivity typically was with a lower specificity
and vice versa, we also evaluated the performances of the ROC-
AUCmetric in Table 1. ROC-AUC is a graphical representation of
the trade-off between a true positive rate and a false positive rate
at various thresholds. It provides a comprehensive evaluation of
the model performances.

• The probabilistic predictions were a statistic of the outcome
probabilities yielded by the CHDdECG models for all the cases
belonging to the target classes (CHDor someCHDsubtypes).We
displayed the probabilistic prediction outcomes by box plots in
Table 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are avail-
able in the article and in the Supplementary Information or/and from
the corresponding author upon request. The ECG data used in this
study cannot be shared publicly due to privacy restrictions. However, in
the case of non-commercial use, researchers can sign the Data Access
Form and Data License provided at the Github repository (https://
github.com/shuaih720/CHDdECG) and contact H. Liang (lianghuiyin-
g@hotmail.com) to access the de-identified representative ECG data.
Generally, we will respond within one week. Access will be granted by
the data access committee. We have also deposited some representa-
tive data at the Github repository (https://github.com/shuaih720/
CHDdECG), which is publicly available for scientific research and non-
commercial use. Source data used to generate the tables and figures are
provided with this paper. Source data are provided with this paper.

Code availability
Our codes are available at GitHub: https://github.com/shuaih720/
CHDdECG and Zenodo: https://doi.org/10.5281/zenodo.10477578.
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