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Greenhouse gas emissions fromUS irrigation
pumping and implications for climate-smart
irrigation policy

Avery W. Driscoll 1 , Richard T. Conant2, Landon T. Marston 3,
Eunkyoung Choi2 & Nathaniel D. Mueller 1,2

Irrigation reduces crop vulnerability to drought and heat stress and thus is a
promising climate change adaptation strategy. However, irrigation also pro-
duces greenhouse gas emissions through pump energy use. To assess poten-
tial conflicts between adaptive irrigation expansion and agricultural emissions
mitigation efforts, we calculated county-level emissions from irrigation energy
use in the US using fuel expenditures, prices, and emissions factors. Irrigation
pump energy use produced 12.6 million metric tonnes CO2e in the US in 2018
(90% CI: 10.4, 15.0), predominantly attributable to groundwater pumping.
Groundwater reliance, irrigated area extent, water demand, fuel choice, and
electrical grid emissions intensity drove spatial heterogeneity in emissions.
Due to heavy reliance on electrical pumps, projected reductions in electrical
grid emissions intensity are estimated to reduce pumping emissions by 46%by
2050, with further reductions possible through pump electrification. Quanti-
fication of irrigation-related emissions will enable targeted emissions reduc-
tion efforts and climate-smart irrigation expansion.

Food systems produce roughly one-third of global greenhouse gas
(GHG)emissions, with confidence intervals of recent estimates ranging
from 11 to 22Gt CO2e yr

−1 (see refs. 1–3). Rapid reductions in food
system GHG emissions will be critical to limiting warming to 1.5° or
2 °C4. In tandemwith reducing GHGemissions, wemust reduce system
vulnerability to climate change and increase food production to meet
rising demand5,6. Irrigation is highly effective at increasing cropland
productivity and reducing crop losses associated with drought
and heat stress by allowing producers to meet crop water demand
regardless of weather and providing both canopy-level and local
cooling effects7–9. Expansion of irrigation is an increasingly valuable
climate adaptation strategy as croplands experience increasing heat
stress, precipitation variability, and, inmany places, a decrease in total
precipitation10–12. Irrigated area in the United States continues to
expand nationally13,14 despite regional variability associated with
increasing water competition in many regions and ongoing

aridification in the American Southwest15. In addition to its adaptive
benefits, irrigation also produces GHG emissions through energy use
and other sources, potentially conflicting with agricultural sector GHG
mitigation goals. However, the magnitude and distribution of
irrigation-related emissions are not yet well understood despite the
potential for climate-adaptive irrigation expansion to form a reinfor-
cing feedback loop. Climate-smart irrigation policy will require con-
sideration of the greenhouse gas emissions associated with irrigation
alongside its adaptive benefits.

Energy is required for extracting groundwater, transporting sur-
face water, and operating pressurized application systems on farms16.
Off-farm, both infrastructure and energy are required to divert,
transport, and store irrigation water17. In addition, irrigation increases
soil-based emissions of N2O

18, reservoirs required for storage of irri-
gation water can emit substantial quantities of CH4

19,20, and degassing
of supersaturated groundwater emits additional CO2

21. Notably,

Received: 17 July 2023

Accepted: 9 January 2024

Check for updates

1Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA. 2Department of Ecosystem Science and Sustainability, Colorado
State University, Fort Collins, CO, USA. 3Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg,
VA, USA. e-mail: averywdriscoll@gmail.com

Nature Communications |          (2024) 15:675 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-4053-5256
http://orcid.org/0000-0003-4053-5256
http://orcid.org/0000-0003-4053-5256
http://orcid.org/0000-0003-4053-5256
http://orcid.org/0000-0003-4053-5256
http://orcid.org/0000-0001-9116-1691
http://orcid.org/0000-0001-9116-1691
http://orcid.org/0000-0001-9116-1691
http://orcid.org/0000-0001-9116-1691
http://orcid.org/0000-0001-9116-1691
http://orcid.org/0000-0003-1857-5104
http://orcid.org/0000-0003-1857-5104
http://orcid.org/0000-0003-1857-5104
http://orcid.org/0000-0003-1857-5104
http://orcid.org/0000-0003-1857-5104
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44920-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44920-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44920-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44920-0&domain=pdf
mailto:averywdriscoll@gmail.com


estimates of agricultural sector GHG emissions typically omit emis-
sions associated with energy use, which are instead attributed to the
energy sector in accordance with the 2006 IPCC Common Reporting
Framework22. Within the energy sector, energy use emissions from
agriculture, forestry, and fisheries are reported jointly23, precluding
the disentanglement of agricultural GHG emissions specifically.
Moreover, these top-down estimates of energy use emissions from
agriculture, forestry, and fisheries do not provide insight into specific
end uses of energy within the sector. While this classification scheme
was developed to avoid double-counting emissions for national
reporting, it presents challenges for understanding emissions asso-
ciated with individual management practices, such as irrigation.
Resolving aggregate agricultural GHG emissions to the level of specific
management practices, such as those associated with irrigation, will
clarify opportunities for agricultural emissions reductions.

While there have been previous efforts to quantify energy use in
the US water sector, they have often focused on the public water
supply rather than irrigation17,24–26 despite the fact that water with-
drawals for irrigation are approximately three times larger than those
for the public supply27. Several studies have explicitly evaluated energy
use for irrigation pumping, but these studies have generally focused
on regional assessments28, exclusively considered electrical use29, are
not spatially resolved30, and/or have not estimated associated GHG
emissions.

Here, we provide a national-scale, spatially explicit estimate of
GHG emissions from energy use for irrigation and assess implications
of recent climate policy for reducing these emissions. Todo this, we (1)
quantified GHG emissions from energy use for irrigation pumping in
the US in 2018, (2) assessed drivers of spatial variability in the emis-
sions intensity of irrigation, (3) identified crop-specific contributions
to irrigation emissions, and (4) evaluated the projected impacts of the
2022 Inflation Reduction Act on reducing emissions from irrigation
pumping. We leveraged state-level data on fuel expenditures for the
operation of on-farm irrigation pumps from the US Department of
Agriculture Irrigation and Water Management Survey31 alongside fuel
prices (US Energy Information Administration) and emissions factors
(US Environmental Protection Agency) to calculate energy- and water
source-specific emissions from irrigation pumps. We downscaled
these estimates to the county level based on the volume of water
withdrawn for crop irrigation in each county27, adjusted for ground-
water depth32.We thenestimated irrigation energy useemissions for 12
individualmajor irrigated crops at the county level, using data on crop-
specific irrigated area33 and cropwater demand31 adjusted for aridity34.
Finally, we projected the impacts of grid decarbonization35 and irri-
gation pump electrification on future irrigation emissions.

Results and discussion
Groundwater use and electrical pumps dominate total
emissions
In 2018, energy use for on-farm irrigation pumps in the US produced
~12.64 million metric tonnes (MMT) CO2e (Fig. 1; 90% CI: 10.44,
15.05MMT CO2e), a share equivalent to 16% of the total energy use
emissions attributed to the agriculture, forestry, and fisheries sector in
theUS23. This corresponds to anestimated 156 PJ of total energyuse for
on-farm irrigation pumping. Previous studies have estimated on-farm
irrigation pump energy use at 158 PJ nationally30 and 136 PJ for elec-
tricity use in theWesternUSA29, in close agreementwith our estimates.
Supplementary Table S1 provides energy and emissions intensity
estimates from selected regional and international studies, demon-
strating substantial variability in estimated intensities. On a per-
hectare basis, for instance, energy intensity estimates have ranged
from 6687MJ ha−1 (our study) up to 43,412MJ ha−1 (from a study of
groundwater irrigation in Pakistan), while emissions intensity esti-
mates have varied from 0.54 tonnes CO2e ha

−1 (our study) up to 1.27
tonnes CO2e ha

−1 (from a study of groundwater irrigation in India).

Previous studies have often focused on groundwater pumping, which
is associated with higher energy use and subsequently higher emis-
sions. In addition,most of these studies rely on a bottom-up approach,
using information about pumping depths, volumes, and efficiencies to
calculate the theoretical pump energy requirements. Further com-
parisons between bottom-up and top-down approaches (such as that
used in this manuscript) would be useful to increase confidence in
irrigation energy use estimates.

Although groundwater accounted for only 48.5% of irrigation
water withdrawals27, groundwater pumping contributed 85.0% of the
total emissions, or 10.73MMT CO2e (90% CI: 8.86, 12.73MMT CO2e).
Groundwater depth is a primary determinant of the energy intensity of
groundwater extraction for irrigation, so emissions from groundwater
utilization will increase as aquifer levels decline in areas where rates of
extraction exceed rates of recharge, as is the case over large portions
of the High Plains Aquifer28,36,37. Notably, the average rate of emissions
per m3 of groundwater used for irrigation was over five times larger
than the rate of emissions per m3 of surface water used for irrigation
(138 g CO2em

−3 for groundwater vs. 28 g CO2em
−3 for surface water).

Operations utilizing groundwater typically rely on pressurized irriga-
tion systems with higher water use efficiencies (such as sprinkler, drip,
or micro) due to the relatively high cost of water extraction. In con-
trast, some operations utilizing surface water in conjunction with
gravity-fed irrigation systems (such as furrows or flooding) do not
require any pumping. Although utilization of gravity systems has been
declining in the interest of water conservation14, gravity systems were
still used on 36% of irrigated area as of 201527.

Electricity use dominated pumping emissions relative to other
energy sources, accounting for 68.9% of total emissions (Fig. 1;
8.72MMTCO2e; 90%CI: 7.16, 10.41MMTCO2e) and approximately the
same proportion of pumped irrigated area (67.8%). Natural gas
accounted for 19.2% of emissions (2.42MMT CO2e; 90% CI: 2.03,
2.86MMT CO2e) but only 7.5% of pumped irrigated area. In contrast,
diesel fuel was utilized on 22.4% of the area but accounted for only
10.6% of total emissions. Propane (1.2% of emissions and 1.9% of area)
and gasoline (0.08% of emissions and 0.2% of area) are no longer
widely utilized for irrigation pumping in the US. Natural gas and
electrical pumps were associated with much higher energy demand
per irrigated hectare thanpumps using other fuels after accounting for
fuel-specific differences pump efficiency (Supplementary Fig. S1A).
This finding indicates that operations with higher pumping energy
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Fig. 1 | National greenhouse gas emissions from irrigation pumping by fuel and
water source. Total greenhouse gas emissions (million metric tonnes CO2e) from
energy use for on-farm irrigation pumping in 2018 in the United States by pump
energy source for surface water (blue bars) and groundwater (gray bars). Error bars
indicate 90% confidence intervals.
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demands, perhaps due to high groundwater reliance, high water
demand, or deeper groundwater levels, were more likely to utilize
natural gas or electrical pumps. After adjusting for efficiency, we found
that the average emissions factor for electric pumpswas 11 gCO2eMJ−1,
much lower than natural gas (24 g CO2eMJ−1) or other fuels (Supple-
mentary Fig. S1B; range 23–30 g CO2eMJ−1). Solar-powered pumps
were utilized on only 0.3% of pumped irrigated area in 2018
(60,854 ha), however, interest in solar pumping has accelerated in
recent years as economic feasibility has improved38–40. Although
deployment remains limited, the area utilizing solar pumps increased
more than fivefold from 2013 (11,373 ha), indicating that there is sub-
stantial momentum towards expansion41. Improvements in irrigation
water use efficiency have previously been shown to actually increase
total water use28,42,43. Because increased pump energy use efficiency
may similarly increase water use due to reduced pumping costs,
safeguards against overextraction of water resources should be con-
sidered alongside incentives for the adoption of solar and elec-
trical pumps.

High spatial variability in county-level emissions
Irrigation pumping emissions varied considerably across the country
(Fig. 2a). The three states with the highest emissions (Texas, Nebraska,
and California) accounted for 46.0% of national GHG emissions and
39.4% of irrigated croplands. In contrast, the 24 states with the lowest
emissions, which were concentrated in the Northeast and the Upper
Midwest, accounted for only 3.3% of total emissions and 6.7% of total
irrigated crop area. State-level emissions estimates and emissions
intensities per irrigated hectare and perm3 of irrigation water used are
shown in Supplementary Fig. S2. Area-based average emissions
intensities ranged from 143 kg CO2e ha

−1 (Idaho) to 1929 kg CO2e ha
−1

(New Mexico), and were generally highest in arid states, including
Texas (1710 kg CO2e ha

−1), Arizona (1576 kg CO2e ha
−1), and Oklahoma

(1462 kg CO2e ha
−1). In the four states with the highest emissions

intensities, mean water demand (2460m3 ha−1), the share of emissions
from non-electric pumps (35.8%), and groundwater depths within
irrigated areas (37.8m) all exceeded the national median values
(568m3 ha−1, 26.2%, and 10.6m, respectively).

At the county level, irrigation pumping emissions were sig-
nificantly positively associated with irrigated area, the volume of
irrigation water use (Fig. 2b), relative reliance on groundwater
(Fig. 2c), and groundwater depth (P < 0.001 for all; coefficient esti-
mates are provided in Supplementary Fig. S3). Average pump fuel
efficiency, which is much higher for electrical pumps (88%) than
propane, gasoline, natural gas, or diesel pumps (25%, 23%, 21%, and
31%, respectively)44, was also strongly negatively associated with
emissions (Fig. 2d and Supplementary Figs. S3B and S4). Areas of
high GHG emissions coincided with several distinctive agricultural
regions, including the High Plains Aquifer, the Mississippi Delta, the
Central Valley in California, and the Gila and Imperial Valleys in
southern Arizona and California. The 237 counties located over the
High Plains Aquifer had a particularly outsized contribution to
national emissions, accounting for 44.7% of irrigation energy use
emissions (5.63MMT CO2e; 90% CI: 4.82, 6.49MMT CO2e) despite
containing only 27.6% of all irrigated area. Our estimate of emissions
intensity in this region (248 g CO2e perm

3 of water) agrees quite well
with a bottom-up estimate produced by a previous local study of the
Kansas High Plains Aquifer (231 g CO2e per m3)28 (Supplementary
Table S1). For the Kansas High Plains Aquifer specifically, we calcu-
lated an emissions rate of 275 g CO2e per m3. The region is heavily
reliant on groundwater, which accounted for 83.1% of its irrigation
water use and 97.2% of pumping emissions. Moreover, its ground-
water stores are substantially deeper than the national median over
irrigated areas (24.7m versus 10.6m), and Kansas and Oklahoma in
particular had a very large share of emissions coming from natural
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Fig. 2 | County-level map of greenhouse gas emissions from irrigation pump-
ing. The distribution of (a) total greenhouse gas emissions (tonnes CO2e) from
energy use for on-farm irrigation pumping in 2018 in the United States, and several
key drivers of emissions, including: b total water demand for crop irrigation (km3

per year), c the percentage of total emissions attributable to groundwater use

rather than surface water use, and d the percentage of emissions attributable to
natural gas, diesel, gasoline, or propane pumps rather than electrical pumps.
a,bThe color scale is square root transformed for improved visibility. a–cCounties
that have no emissions are in white.

Article https://doi.org/10.1038/s41467-024-44920-0

Nature Communications |          (2024) 15:675 3



gas pumps (72.3%), contributing to the region’s low average pump
fuel efficiency (Supplementary Fig. S4).

The Colorado River Basin serves as a useful counterpoint. Despite
its more arid climate, it has a much lower emissions intensity than the
High Plains Aquifer region (670 kg CO2e ha

−1 versus 1089 kg CO2e ha
−1)

because of differences in water and fuel sources. The Colorado River
Basin relies heavily on surface water (72.4% of total withdrawals)
instead of groundwater, and it is heavily electrified, with 87.9% of
emissions on average coming from electric pumps across the seven
Colorado River Basin states. Thus, the share of national pumping
emissions that occur in the Colorado River Basin (8.9%) is roughly
proportionate to its share of irrigated area (7.4%). Similarly, high rates
of electric pump adoption, low relative reliance on groundwater, and
low electrical grid emissions intensity interact to produce relatively
low emissions intensity in the Northwestern US despite high irrigation
water use.

Crop-specific pumping emissions driven by geography
and extent
We allocated emissions to 12 major irrigated crops based on county-
level emissions rates per m3 water withdrawn, crop-specific rates of
irrigation water application, and crop-specific irrigated area,
accounting for 74.3% of the total irrigated area (Fig. 3). This analysis
required integration of water use data from both the USDA and the
USGS, which have discrepancies inmethodology and subsequent total
estimates of irrigation water use, likely resulting in absolute estimates
of crop-specific water use that are too low. However, the relative
contribution of each crop, the spatial distribution of crop-specific
estimates, and all non-crop-specific results are unaffected by the dis-
crepancies between the USDA andUSGS data. Further implications are
detailed in the Supplementary Discussion. We found that irrigation
pumping for corn for grain produced the most total emissions by a
large margin (2.82MMT CO2e, 90% CI: 2.40, 3.30MMT CO2e), in part
due to its large irrigated extent (4.8Mha; crop areas shown in Sup-
plementary Fig. S5A). The high-emissions-intensity High Plains Aquifer
region accounted for 76.9% of the crop’s total emissions (Fig. 3b and
Supplementary Fig. S6), although irrigated corn for grain was also
present throughout much of the Midwest, the Southeast, and the
Mississippi Delta. Despite its high total emissions, corn for grain had a
lower emissions intensity per irrigated hectare (585 kg CO2e ha

−1) than
several other crops, in part because of its relatively low average water
use (2653m3 ha−1; crop water application rates shown in Supplemen-
tary Fig. S5B).

In contrast to corn for grain, sorghum and cotton had particularly
high-emissions intensities (Fig. 3a; 970 and 675 kg CO2e ha

−1,

respectively) due to their geographic distribution (Fig. 3b and Sup-
plementary Fig. S7). Sorghum was grown almost exclusively in the
Texas and Oklahoma panhandles, western Kansas, and eastern Color-
ado, where groundwater reliance is high and electrical pump adoption
is relatively low. Despite its high emissions intensity, the total emis-
sions attributable to sorghum were low because irrigated sorghum is
not widespread (0.1Mha). Cotton emissions were also concentrated in
highly arid areas with high groundwater reliance, including northern
Texas, California’s Central and Imperial Valleys, southern Arizona, and
southeastern NewMexico, contributing to its high-emissions intensity.
Due to the combination of its emissions intensity and large extent
(1.6Mha), the irrigation of cotton produced the second-highest emis-
sions after corn.

Soybeans had the lowest emissions intensity of all assessed crops
(239 kg CO2e ha

−1), due to low average water requirements
(1935m3 ha−1) and greater spatial concentration in the Mississippi
Delta, where shallow groundwater and moderate pump fuel efficiency
result in somewhat lower energy requirements. Alfalfa and other hay
crops, which tend to have very high water requirements (6965 and
5103m3 ha−1, respectively), were responsible for the largest share of
irrigation emissions in many counties in the Western US. Taken toge-
ther, they were associatedwith 1.46MMTCO2e (90%CI: 1.17, 1.77MMT
CO2e), though emissions were highly concentrated in just a few
counties. For example, Imperial County, CA and Maricopa County, AZ
alone were responsible for 15% of total alfalfa irrigation emissions.
Despite their high water demands, the average emissions intensities
for alfalfa and other hay irrigation were relatively low (451 kg CO2e ha

−1

and 380 kgCO2e ha
−1, respectively), influenced by the large area across

theNorthwesternUSwhere groundwater reliance is low, electric pump
adoption is high, and the emissions intensity of the electrical
grid is low.

Strong potential for pumping decarbonization under the Infla-
tion Reduction Act
Given that 69% of emissions were attributable to electricity use for
pumping, reductions in the emissions intensity of the electrical grid
will substantially reduce emissions from irrigation pumping without
additional changes in producer behavior (Fig. 4). To project future
irrigation pumping emissions assuming constant energy demand for
irrigation pumping, we leveraged state-level projections of changes in
electrical grid emissions factors through 2050 under three policy
scenarios: (1) current policy, including the projected impacts of the
InflationReductionAct (IRA), (2) a counterfactual scenario inwhich the
IRA had not been passed, and (3) a scenario in which two key IRA
renewable energy tax credits, the Production Tax Credit (PTC) and the

Fig. 3 | Crop-specific greenhouse gas emissions from irrigation pumping. a Bar
plot showing total greenhouse gas emissions (red bars) and emissions per hectare
(gray bars) associated with on-farm irrigation pumping for 12 of the most wide-
spread irrigated crops in the US. b Map showing the crop associated with the

largest proportion of irrigation pumping emissions in each county. Counties with
no pumped irrigated area are shown in white, and counties without crop-specific
emissions estimates due to data withholding for confidentiality are shown in gray.
Error bars indicate 90% confidence intervals.
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Investment Tax Credit (ITC), remain in place35. Under current policy,
annual pumping emissions are projected to decrease by 46% by 2050
relative to 2018 levelswithout anyon-farmchanges in energy source or
demand. Due to the phase-out of the PTC and ITC that is scheduled to
begin in 2032, emissions are projected to reach a minimum in 2038
and then begin to increase again through 2050. Keeping these tax
credits in place would reduce annual emissions by 59% in 2050 relative
to 2018. Without the IRA, we project only a 39% emissions reduction
by 2050.

Although projected grid improvements will substantially reduce
irrigation pumping emissions, full decarbonization will require both a
net-zero-emission electrical grid and a transition from natural gas,
diesel, propane, and gasoline to electricity or other zero-emission
energy sources. For each policy scenario, we additionally modeled the
effects of fuel-switching from natural gas, diesel, propane, and gaso-
line to electricity at a rate of 5% of remaining non-electric energy use
per year (Fig. 4, open symbols). Because barriers such as electrical grid
connectivity may preclude electrification in some irrigated areas, our
electrification scenario implies that ~8% of 2018 non-electric fuel use
will not be electrified by 2050. This rate does not attempt to reflect
historical trends, but rather serves as a benchmark to exemplify dec-
arbonization potential associated with electrification. Pump elec-
trification coupledwith current policy could decrease annual pumping
emissions by 70% in 2050 relative to 2018, and by 86% if the PTC and
ITC are extended. Compared to the scenario with no IRA or elec-
trification, current policy coupled with the tax credit extension and
pump electrification would reduce irrigation energy use emissions by
an additional 5.92MMT CO2e annually by 2050, to only 1.83MMT
CO2e yr

-1. Electrification will additionally reduce total energy demand
due to increased efficiency, helping to offset anticipated increases in
energy demand associated with groundwater depletion and irrigation
expansion. Under our electrification scenario, total pumping energy
demand would fall by 29.9% by 2050 relative to 2018 (saving
~46.8 PJ yr-1).

Further work is needed to understand and reduce infrastructural
and economic barriers to pump electrification. Electrification requires
an up-front investment in a newpumping system, a reliable connection
to the electrical grid, and potentially higher operational costs

depending on local energy prices. Strategic incentives for electric
pump adoption could offset cost-related barriers and help to accel-
erate pump electrification. For areas where grid connectivity is limit-
ing, expansion of solar pump usage may be needed to fully eliminate
pumping emissions. In addition, scenario analyses that integrate the
effects of pump electrification and grid decarbonization with variables
that will influence pump energy demand would be useful to clarify
future projections of irrigation-related emissions. For instance,
declining groundwater levels, migration of irrigation and crop types,
changes to surface versus groundwater reliance, and changes to irri-
gation water demand due to climate change will all affect total pump
energy requirements.

Importantly, reducing emissions from irrigation will require more
than simply decarbonization of energy use for on-farm pumping.
Several additional emissions sources contribute to the total GHG
footprint of irrigation, such as elevated N2O emissions due to
increased soil moisture, degassing of groundwater supersaturated in
CO2 and N2O, energy use for off-farm pumping, and CH4 production
from reservoirs used for irrigation. Thus, the total GHG emissions
impact of irrigation is higher than the values presented here, which
include only emissions from on-farm pumping. CO2 degassing from
groundwater depletion for all end uses has been estimated at 1.7MMT
CO2e annually21, while field-scale studies have identified increases in
N2O emissions of up to 170% under irrigated vs. rainfed conditions45.
We expect spatial patterns of these additional emissions to vary,
exacerbating total irrigation-related emissions in areas with extensive
groundwater depletion (due to groundwater CO2 degassing), in arid
areas (due to larger impacts on soil moisture and subsequently N2O
emissions), and in areaswith heavy reliance on importedwater (due to
pumping requirements and extensive reservoir storage). Mitigation of
emissions from these alternative sources is likely to be more complex
than mitigation of energy use emissions; a comprehensive quantifica-
tion will help guide GHG reduction efforts.

As the irrigated area continues to expand in the US and globally,
we suggest that the carbon costs of irrigation expansionbe considered
in conjunction with the sustainability of water withdrawals and
anticipated benefits to agricultural yields and system stability. Here,
we identified that energy use for irrigation pumping contributes sub-
stantially to agricultural sector GHG emissions in the US, and that
irrigation pumping emissions are highly spatially heterogeneous. Irri-
gation expansion is likely to be less emissions-intensive in areas with
low groundwater dependence, shallow water tables, lower supple-
mental water requirements, high rates of electrical pump adoption,
and cleaner electrical grids. Common frameworks for national-scale
GHG accounting are limited with respect to their ability to resolve
emissions to specific subsectors and management practices, and the
emissions impacts of energy use for irrigation had not previously been
evaluated at the national scale. However, this degree of resolution is
useful for identifying potential adaptation-mediated feedback loops
and for targeting emissions reduction efforts. Ultimately, a combina-
tion of grid decarbonization and policies incentivizing electric and
solar pump adoption will be needed to fully eliminate emissions from
energy use for irrigation pumping.

Methods
Emissions from energy use for irrigation were calculated according to
Eq. (1), where Ef,w,s denotes emissions (tonnes CO2e) for each fuel (f),
water source (w), and state (s).Df,w,s denotes per-acre expenditures on
fuels for irrigationpumps,Af,w,sdenotes the acres irrigated,Pf,sdenotes
the price of the fuel, and Ff,s denotes the emissions factor for the fuel.
Emissions for each fuel and water source were summed to determine
total state-level emissions. State-level rates of emissions per irrigated
hectarewere calculated by dividing the total emissions by the irrigated
hectares in each state. All data used for the calculation of energy use
emissions are publicly available, and data sources are described in

Fig. 4 | Effects of grid decarbonizationon future irrigationpumping emissions.
Projected greenhouse gas emissions from irrigation pumping from 2018 to 2050
associatedwith changes in the fuelmix for electricity generationunder three policy
scenarios: current policy, including the InflationReduction Act (IRA; black and gray
squares); no IRA (red circles); and an extension of key tax credits expanded by the
IRA (dashed lines). For each of these,we additionally incorporated electrificationof
non-electric irrigation pumps at a rate of 5% of remaining non-electric energy use
per year (open symbols).
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Supplementary Table S2. This approach broadly follows that of Sowby
and Dicataldo30, who first presented national-scale estimates of irri-
gation energy use by integrating data on pump fuel expenditures with
fuel prices.

Ef ,w,s =
Df ,w,s ×Af ,w,s

Pf ,s
× Ff ,s ð1Þ

Fuel expenditures
State-level data on per-acre fuel expenditures (Df,w,s) for the operation
of on-farm irrigation pumps were acquired from the 2018 USDA Irri-
gation andWaterManagement Survey (IWMS), a Census of Agriculture
supplement that collects detailed information from irrigators31.
Although survey data are subject to limitations, such as incomplete
response rates and potential misreporting by respondents, they are
the best available data at the national scale. In addition, the IWMS
provides coefficients of variation alongside the data, which were
incorporated into the uncertainty analysis. Because irrigators do not
directly report energy use, we rely on integration of energy expendi-
tures and energy prices as a proxy for energy use. Per-acre expendi-
tures and irrigated area (Af,w,s) are reported separately for each fuel
type (electricity, natural gas, gasoline, diesel, and propane) and water
source (surface water and groundwater). Total expenditures for on-
farm irrigation pumping were calculated for each state by multiplying
the per-acre expenditure by the irrigated area for each fuel and water
source combination. Some state-level data on expenditures and/or
associated area were not available due to data withholding for con-
fidentiality. By leveraging discrepancies between the state-level USDA
data and national totals (as detailed in Supplemental Methods), we
identified that these omitted data represented a small percentage of
both the total area (0.48%) and the total emissions (0.42%). Emissions
estimated from these data are included in the reported national totals
(Figs. 1 and 4), but not in any spatially explicit or crop-specific results.

Fuel prices
To calculate the quantity of fuel used, fuel expenditures were divided
by 2018 fuel prices (Pf,s) acquired from the US Energy Information
Administration (EIA) and aggregated to the state level. Price data are
reported by the EIA at different spatial and temporal resolutions for
each fuel; details are provided in the supplementary methods. The EIA
data for diesel and gasoline include federal and state excise taxes that
are applicable to on-road users but not agricultural users. To better
reflect off-road diesel and gasoline prices, federal and state taxes were
subtracted from the on-road prices. For electricity prices, we used EIA
prices for industrial users. To our knowledge, these are the best
available data, butwe acknowledge that there is substantial variation in
electrical pricing between individual utilities. Thus, the prices paid by
irrigatorsmay diverge from the EIA estimates, and the development of
energyprice estimates specific to agricultural userswouldbeuseful for
future analyses. Because electricity and natural gas are purchased at
the time of use and cannot be stored, we included only prices from
months during which the average minimum temperature was greater
than 0 °C. To calculate the average minimum temperature for this
purpose, daily data on 2018 minimum temperatures (PRISM Climate
Group, 4-km resolution) were aggregated to monthly, county-scale
values by weighting each PRISM grid cell by the proportion of area
classified as cropland by the GFSAD30NACE product from NASA
EarthData (30-m resolution). Temperatures were thenweighted by the
extent of irrigated, harvested cropland area in each county based on
the 2017 Census of Agriculture and averaged to the state level.

Emissions factors
Emissions factors (Ff,s) for the stationary combustion of natural gas,
distillate fuel oil no. 2 (diesel),motor gasoline, andpropanewere taken

from the Environmental Protection Agency (EPA) Greenhouse Gas
Emissions Factor Hub and converted to CO2e-based on the 100-year
global warming potential for CH4 and N2O. Electricity emissions fac-
tors are spatially variable, as they depend on the fuel mix used for
electricity generation. We used state-level emissions factors from the
EPA Emissions and Generation Resource Integrated Database (eGRID),
which are based on in-state electricity generation. These emissions
factors do not account for the transmission of electricity across state
borders, and irrigators near state boundaries may have out-of-state
electricity providers.

Uncertainty analysis
Weused aMarkov ChainMonte Carlo approach to capture uncertainty
inherent in the IWMS irrigated area data, the IWMS fuel expenditure
data, and the EIA fuel price data. Truncated normal distributions with a
lower bound at zero were generated for each variable based on the
reported coefficient of variation from the IWMS data and the standard
deviation of the temporal variability in the fuel price data. We calcu-
lated emissions estimates 10,000 times by randomly resampling with
replacement from each generated distribution. The 5th and 95th per-
centile emissions estimates were recorded for each state, fuel, and
water source combination and used for the construction of 90% con-
fidence intervals throughout.

County-level downscaling
State-level emissions estimates were downscaled to the county level
(Ec) based on the volume (V) of surface (a) and ground (g) water
withdrawn for agricultural irrigation in each county, as reported by the
US Geological Survey (USGS) in the Estimated Use of Water in the
United States County-Level Data for 201527, according to Eq. (2). USGS
estimates of surface water withdrawals were adjusted for national
average conveyance losses of 15.9%, as estimated by the 2019 USDA
Survey of Irrigation Organizations46. For 13 states, the USGS estimates
of crop water withdrawals also include golf course irrigation. Adjust-
ments to exclude golf course irrigation are detailed in the Supple-
mentary Methods.

Source-specific, county-level water withdrawals for agricultural
irrigation were summed to the state level, and the source-specific rate
of emissions per cubic kilometer of water withdrawn per year was
calculated for each state and water source by dividing the mean, 5th
percentile, and 95th percentile emissions estimates by the volume of
water withdrawn. County-level surface water emissions were calcu-
lated bymultiplying surfacewater emissions rates by the surfacewater
withdrawals (Vc,a). To account for variable groundwater depths within
states, we scaled county-level groundwater emissions rates by
groundwater depth. We first calculated county average water table
depths using modeled estimates (1 km resolution) of year-round
averagewater table depthbetween2004 and2014, updated in2020by
Fan et al.32. We then calculated the weighted average state-level water
table depth based on the volume of water withdrawn in each county
and calculated county-level scaling factors as the county averagewater
table depth (Dc) divided by the state average water table depth (Ds).
County-level groundwater emissions were calculated by multiplying
state-level groundwater emissions rates by this scaling factor and
county-level groundwater withdrawals (Vc,g). County-level, water
source-specific emissions estimates and irrigation water volumes are
provided in Supplementary Data 1.

Ec =
Es,a

Vs,a
×Vc,a

� �
+

Es,g

Vs,g
×
Dc

Ds
×Vc,g

 !
ð2Þ

Emissions allocation to major field crops
We estimated the relative contribution of 12 major field crops (t) to
emissions in each county based on county-level emissions rates and
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crop-specific data on the volume of water applied per acre (Rs,t) from
the 2018 IWMS data. Crops included corn for grain, corn for silage,
soybeans, wheat, alfalfa hay and haylage, other hay and haylage, rice,
cotton, peanuts, dry beans, sorghum for grain, and vegetable totals,
and available area data for these crops accounted for 74.3%of irrigated
area. Hay and haylage data for both alfalfa and other hay include only
harvested area, not pastured area. The selection of crops was based on
data availability and the extent of irrigated area. Treatment of missing
water application rate data for these crops is described in the Sup-
plementary Methods and affected only 0.1% of total irrigated area.
Irrigated pasture was omitted due to a lack of data, as were orchards,
barley, and sugar beets. County- and crop-specific emissions (Ec,t) were
estimated according to Eq. (3), where Ec refers to the total irrigation
emissions in the county (including the 5th and 95th percentile esti-
mates), Vc refers to the total volume of water withdrawn for irrigation
in the county, and Ac,t refers to the county-level irrigated area for
each crop.

Rc,t refers to the scaled, county-level rate ofwater applied for each
crop type (t), which was calculated by scaling Rs,t by precipitation (P)
minus reference evapotranspiration (ETo) for months in 2018 with an
average minimum temperature above 0 °C. All meteorological and
other input data were cropland-weighted according to the procedures
described in the fuel price section. Daily ETo for 2018 was calculated
according to the FAO Penman-Monteith equation47 using meteor-
ological data from PRISM and AgERA534 and elevation data from
GMTED201048; calculation details are provided in the Supplementary
Methods. We fit a linear regression with a log link between the state-
level P-ETo and Rs,t, which was then used to estimate county-level rates
of water applied based on county-level P-ETo. Rc,twasmultiplied by the
irrigated area for each crop and county (Ac,t) to calculate the total
volumeof water applied. Finally, these values were reconciled with the
state-level census data by multiplying the total volume by the ratio of
the state-level volume over the state sums of the county-level volume.

Ec,t =
Ec

Vc
×Rc,t ×Ac,t ×

Rs,t ×As,tPðRc,t ×Ac,tÞ
ð3Þ

Potential impacts of grid decarbonization and pump elec-
trification on emissions
We leveraged state-level projections of electrical grid emissions fac-
tors from 2022 to 2050 from the National Renewable Energy Labora-
tory’s (NREL) 2022 Standard Scenarios Report35 to project potential
declines in irrigation energy use emissions associated with changes to
the fuel mix for electricity generation. We selected three policy sce-
narios developed by NREL to represent a range of potential future
emissions factors, including (1) a “Current Policy” scenario, which uses
median assumptions for model inputs, assumes that no new policies
incentivizing decarbonization are passed, and includes the impacts of
the Inflation Reduction Act passed in August of 2022, (2) a counter-
factual scenario in which the Inflation Reduction Act was not passed,
(3) and a scenario that includes the extension of two key tax credits for
renewable energy generation that are currently scheduled for phase-
out beginning in 2032. For consistency with the 2018 estimate based
on eGRID data, we scaled state-level 2020 eGRID estimates by the
changes projected in theNREL scenarios. These emissions factorswere
used to project future emissions from irrigation energy use under each
scenario, assuming no changes in energy demand or fuel reliance.

In addition, we developed a “pump electrification” projection, in
which we assumed an annual 5% decline in usage of each non-electric
fuel in terms of energy content in each state. We assumed that the
reduction in non-electric energy would be offset by a commensurate
increase in electricity use, after controlling for standard estimates of
fuel-specific motor efficiencies44 (25% for propane, 23% for gasoline,
21% for natural gas, 31% for diesel, and 88% for electricity). We

combined these projections of pump fuel-switching with each of the
NREL policy scenarios to explore the potential impacts of pump
electrification.

Data availability
All sourcedata associatedwith thismanuscript arepublicly available as
described in Supplementary Table S2. All data generated as part of this
study are publicly available in Supplementary Table 3 and via Zenodo
at https://doi.org/10.5281/zenodo.10416689.

Code availability
All code associated with this manuscript is publicly available via
Zenodo at https://doi.org/10.5281/zenodo.10416689.

References
1. Crippa, M. et al. Food systems are responsible for a third of global

anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).
2. Tubiello, F. N. et al. Greenhouse gas emissions from food systems:

building the evidence base. Environ. Res. Lett. 16, 065007 (2021).
3. Rosenzweig, C. et al. Climate change responses benefit from a

global food system approach. Nat. Food 1, 94–97 (2020).
4. Clark, M. A. et al. Global food system emissions could preclude

achieving the 1.5° and 2 °C climate change targets. Science 370,
705–708 (2020).

5. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and
the sustainable intensification of agriculture. Proc. Natl. Acad. Sci.
USA 108, 20260–20264 (2011).

6. van Dijk, M., Morley, T., Rau, M. L. & Saghai, Y. A meta-analysis of
projected global food demand and population at risk of hunger for
the period 2010–2050. Nat. Food 2, 494–501 (2021).

7. Siebert, S. & Döll, P. Quantifying blue and green virtual water con-
tents in global crop production as well as potential production
losses without irrigation. J. Hydrol. 384, 198–217 (2010).

8. Lobell, D. B., Bonfils, C. J., Kueppers, L. M. & Snyder, M. A. Irrigation
cooling effect on temperature and heat index extremes. Geophys.
Res. Lett. 35, (2008).

9. Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in
the US Midwest. Glob. Change Biol. 26, 3065–3078 (2020).

10. Meza, I. et al. Global-scale drought risk assessment for agricultural
systems. Nat. Hazards Earth Syst. Sci. 20, 695–712 (2020).

11. Lesk, C. et al. Compound heat and moisture extreme impacts on
global crop yields under climate change. Nat. Rev. Earth Environ. 3,
872–889 (2022).

12. Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C
warmer climate. Proc. Natl. Acad. Sci. USA 117, 29526–29534
(2020).

13. Shrestha, D., Brown, J. F., Benedict, T. D. & Howard, D. M. Exploring
the regional dynamics of U.S. irrigated agriculture from 2002 to
2017. Land 10, 394 (2021).

14. Hrozencik, R. A. & Aillery, M. Trends in U.S. irrigated agriculture:
increasing resilience under water supply scarcity. United States
Department of Agriculture, Economic Research Service EIB-
229 (2021).

15. Overpeck, J. T. & Udall, B. Climate change and the aridification of
North America. Proc. Natl Acad. Sci. USA 117, 11856–11858 (2020).

16. Vora, N., Shah, A., Bilec, M. M. & Khanna, V. Food–energy–water
nexus: quantifying embodied energy and GHG emissions from
irrigation through virtual water transfers in food trade. ACS Sustain.
Chem. Eng. 5, 2119–2128 (2017).

17. Sanders, K. T. &Webber, M. E. Evaluating the energy consumed for
water use in the United States. Environ. Res. Lett. 7, 034034 (2012).

18. Trost, B. et al. Irrigation, soil organic carbon and N2O emissions. A
review. Agron. Sustain. Dev. 33, 733–749 (2013).

19. Beaulieu, J. J., Smolenski, R. L., Nietch, C. T., Townsend-Small, A. &
Elovitz, M. S. High methane emissions from a midlatitude reservoir

Article https://doi.org/10.1038/s41467-024-44920-0

Nature Communications |          (2024) 15:675 7

https://doi.org/10.5281/zenodo.10416689
https://doi.org/10.5281/zenodo.10416689


draining an agricultural watershed. Environ. Sci. Technol. 48,
11100–11108 (2014).

20. Beaulieu, J. J. et al. Methane and carbon dioxide emissions from
reservoirs: controls and upscaling. J. Geophys. Res.: Biogeosci. 125,
e2019JG005474 (2020).

21. Wood, W. W. & Hyndman, D. W. Groundwater depletion: a sig-
nificant unreported source of atmospheric carbon dioxide. Earth’s
Future 5, 1133–1135 (2017).

22. Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006
IPCC Guidelines for National Greenhouse Gas Inventories. (2006).

23. Flammini, A. et al. Emissions of greenhouse gases from energy use
in agriculture, forestry and fisheries: 1970–2019. Earth Syst. Sci.
Data 14, 811–821 (2022).

24. Sowby, R. B. & Burian, S. J. Survey of energy requirements for
public water supply in the United States. J. AWWA 109,
E320–E330 (2017).

25. Chini, C. M. & Stillwell, A. S. The state of U.S. urban water: data
and the energy-water nexus. Water Resour. Res. 54, 1796–1811
(2018).

26. Twomey, K. M. & Webber, M. E. Evaluating the energy intensity of
the US public water system. Economic, Environmental Policy,
Education, Markets and Legal Aspects of Alternate Energy (eds.
Ganguly, A., Ghosh, S.) 1735–1748 (American Society of Mechanical
Engineers Digital Collection, 2012).

27. Dieter, C. A. et al. Estimated use of water in the United States
county-level data for 2015 (ver. 2.0). https://doi.org/10.5066/
F7TB15V5 (2018).

28. McCarthy, B. et al. Trends in water use, energy consumption, and
carbon emissions from irrigation: role of shifting technologies and
energy sources. Environ. Sci. Technol. 54, 15329–15337 (2020).

29. Tidwell, V. C., Moreland, B. & Zemlick, K. Geographic footprint of
electricity use for water services in the western U.S. Environ. Sci.
Technol. 48, 8897–8904 (2014).

30. Sowby, R. B. & Dicataldo, E. The energy footprint of U.S. irrigation: a
first estimate from open data. Energy Nexus 6, 100066 (2022).

31. Perdue, S. & Hamer, H. 2018 Irrigation and Water Management
Survey (United States Department of Agriculture National Agri-
cultural Statistics Service, 2019).

32. Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater
table depth. Science 339, 940–943 (2013).

33. Perdue, S. & Hamer, H. 2017 Census of Agriculture, Volume 1,
Chapter 2: County Level (United States Department of Agriculture
National Agricultural Statistics Service, 2019).

34. Boogaard, H. et al. Agrometeorological indicators from 1979 to
present derived from reanalysis, version 1.0. Copernicus Climate
Change Service (C3S) Climate Data Store (CDS) https://doi.org/10.
24381/cds.6c68c9bb (2020).

35. Gagnon, P. et al. 2022 Standard Scenarios Report: A U.S.
Electricity Sector Outlook (National Renewable Energy Labora-
tory, 2022).

36. Schipanski, M. E. et al. Moving frommeasurement to governance of
shared groundwater resources. Nat. Water 1, 30–36 (2023).

37. Steward, D. R. et al. Tapping unsustainable groundwater stores
for agricultural production in the High Plains Aquifer of Kansas,
projections to 2110. Proc. Natl. Acad. Sci. USA 110,
E3477–E3486 (2013).

38. Senthil Kumar, S. et al. Solar powered water pumping systems for
irrigation: a comprehensive reviewondevelopments andprospects
towards a green energy approach. Mater. Today.: Proc. 33,
303–307 (2020).

39. Closas, A. & Rap, E. Solar-based groundwater pumping for irriga-
tion: sustainability, policies, and limitations. Energy Policy 104,
33–37 (2017).

40. Aliyu, M. et al. A review of solar-powered water pumping systems.
Renew. Sustain. Energy Rev. 87, 61–76 (2018).

41. Vilsack, T. & Reilly, J. T. 2013 Farm and Ranch Irrigation Survey
Volume 3 Special Studies Part 1. (United States Department of
Agriculture National Agricultural Statistics Service, 2014).

42. Grafton, R.Q. et al. Theparadoxof irrigation efficiency.Science361,
748–750 (2018).

43. Ward, F. A. & Pulido-Velazquez, M. Water conservation in irrigation
can increase water use. Proc. Natl. Acad. Sci. USA 105,
18215–18220 (2008).

44. Martin, D. L., Dorn, T. W., Melvin, S. R., Corr, A. J. & Kranz, W. L.
Evaluating energy use for pumping irrigation water. In Proceedings
of the 23rd Annual Central Plains Irrigation Conference (Colorado
State University. Libraries, 2011).

45. McGill, B. M., Hamilton, S. K., Millar, N. & Robertson, G. P. The
greenhouse gas cost of agricultural intensification with ground-
water irrigation in a Midwest U.S. row cropping system. Glob.
Change Biol. 24, 5948–5960 (2018).

46. Irrigation Organizations. United States Department of Agriculture
National Agricultural Statistics Service (Irrigation Organiza-
tions, 2020).

47. Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop evapo-
transpiration: guidelines for computing crop water requirements—
FAO Irrigation and drainage paper 56. (Food and Agriculture
Organization of the United Nations, 1998).

48. Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain ele-
vation data 2010 (GMTED2010): open-file report 2011-1073. United
States Geological Survey https://doi.org/10.3133/
ofr20111073 (2011).

Acknowledgements
This study was supported by the National Science Foundation (DGE-
1828902 and DGE-006784 to AWD and CBET-2144169 to L.T.M.), the
Foundation for Food and Agriculture Research (FF-NIA19-0000000003
to NDM and FF-NIA19-0000000084 to L.T.M.), the United States
Department of Agriculture National Institute for Food and Agriculture
(2021-68014-34141 to N.D.M. and E.C.). Any opinions, findings, and
conclusions or recommendations expressed in thismaterial are those of
the author(s) and do not necessarily reflect the views of the National
Science Foundation or the Foundation for Food and Agriculture
Research.

Author contributions
N.D.M., R.T.C., A.W.D., and L.T.M. conceived and designed the study,
and A.W.D. and E.C. conducted the data analyses. A.W.D. wrote the
initial draft and all authors contributed to the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-44920-0.

Correspondence and requests for materials should be addressed to
Avery W. Driscoll.

Peer review information Nature Communications thanks Anthony Ken-
dall and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-024-44920-0

Nature Communications |          (2024) 15:675 8

https://doi.org/10.5066/F7TB15V5
https://doi.org/10.5066/F7TB15V5
https://doi.org/10.24381/cds.6c68c9bb
https://doi.org/10.24381/cds.6c68c9bb
https://doi.org/10.3133/ofr20111073
https://doi.org/10.3133/ofr20111073
https://doi.org/10.1038/s41467-024-44920-0
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-44920-0

Nature Communications |          (2024) 15:675 9

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Greenhouse gas emissions from US irrigation pumping and implications for climate-smart irrigation�policy
	Results and discussion
	Groundwater use and electrical pumps dominate total emissions
	High spatial variability in county-level emissions
	Crop-specific pumping emissions driven by geography and�extent
	Strong potential for pumping decarbonization under the Inflation Reduction�Act

	Methods
	Fuel expenditures
	Fuel�prices
	Emissions factors
	Uncertainty analysis
	County-level downscaling
	Emissions allocation to major field�crops
	Potential impacts of grid decarbonization and pump electrification on emissions

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




