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Applying a genetic risk score model to
enhance prediction of future multiple
sclerosis diagnosis at first presentation
with optic neuritis
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Tiinamaija Tuomi 2,11,12,13, David J. Carey3, UKBB Eye & Vision Consortium*,
FinnGen*, Geisinger-Regeneron DiscovEHR Collaboration*,
Richard A. Oram 4,14,18 & Tasanee Braithwaite 15,16,18

Optic neuritis (ON) is associated with numerous immune-mediated inflam-
matory diseases, but 50% patients are ultimately diagnosed with multiple
sclerosis (MS). Differentiating MS-ON from non-MS-ON acutely is challenging
but important; non-MS ON often requires urgent immunosuppression to
preserve vision. Using data from the United KingdomBiobank we showed that
combining anMS-genetic risk score (GRS) with demographic risk factors (age,
sex) significantly improved MS prediction in undifferentiated ON; one stan-
dard deviation ofMS-GRS increased theHazard ofMS 1.3-fold (95% confidence
interval 1.07–1.55, P < 0.01). Participants stratified into quartiles of predicted
risk developed incidentMS at rates varying from4% (95%CI 0.5–7%, lowest risk
quartile) to 41% (95%CI 33–49%, highest risk quartile). The model replicated
across two cohorts (Geisinger, USA, and FinnGen, Finland). This study indi-
cates that a combined model might enhance individual MS risk stratification,
paving the way for precision-based ON treatment and earlier MS disease-
modifying therapy.

Optic neuritis (ON) presents most frequently in young adults with
subacute uni- or bilateral vision loss1. It is a rare but treatable cause of
blindness. The incidence of ON has been stable over decades, and
varies by latitude, with a population-based incidence of 3.7 to 5.1 per
100k person-years in the United Kingdom (UK) and United States of
America (USA), respectively2,3. Approximately two-thirds are undiffer-
entiated at presentation with the remainder having either a prior
diagnosis of Multiple Sclerosis (MS) or preceding infectious or
immune-mediated inflammatory disease (I-IMID)2. By five years of
follow-up, approximately 20% of undifferentiated ON cases are

diagnosed withMS, compared to 0.1% controls (adjusted Hazard Ratio
[aHR] 285, P < 0.001)2. By 15 years, up to 50% of all ON cases, excluding
those with bilateral presentation, are diagnosed with MS4,5.

Importantly, ON ultimately associated with diagnosis of MS (MS-
ON)6, including Clinically Isolated Syndrome (CIS, consisting of ON
plus magnetic resonance imaging features of demyelination at
presentation)1, has different management and prognosis to non-MS-
associated ON. In MS-ON, vision usually recovers spontaneously to
near-baseline over 3 months7. Trial evidence indicates an equivocal
role for corticosteroid therapy8–10, although there may be a role for
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hyperacute corticosteroid therapy11. Non-MS ON may be associated
with subsequent diagnosis of corticosteroid-responsive diseases
including sarcoidosis, neuromyelitis optica spectrum disorder
(NMOSD), and vasculitides12. In marked contrast to MS-ON, axonal
injury can be swift and vision loss irreversible, with significant impacts
on patients’ lives13. Cliniciansmanaging acute undifferentiatedON face
a challenging and time-critical decision while awaiting diagnostic
investigations14: whether or not to initiate potentially sight-saving
corticosteroid therapywhich risks serious adverse effects15. There is an
unmet clinical need for a tool to improve acute risk stratification, dif-
ferentiating those at low future MS risk, who may benefit from urgent
corticosteroids, from those at high future MS risk, who may benefit
from earlier disease-modifying therapy to reduce long-term neurolo-
gical disability16,17.

Many autoimmune and autoinflammatory diseases, including MS,
are heritable. Almost 20% of MS risk heritability can be attributed to
common genetic variants16,18, and the latest genome-wide association
studies (GWAS) from the International Multiple Sclerosis Genetics
Consortium (IMSGC)19 study of 47,429 MS patients and 68,374 control
subjects identified over 200 associated loci20. The identification of
strong, complex, human leukocyte antigen (HLA) class II associations,
combined with non-HLA associations, offers the opportunity to aggre-
gate MS genetic risk as a continuous MS genetic risk score (GRS).
Additional risk factors forMS include female sex, age at onset21, latitude
of country of residence, low serum 25-hydroxyvitamin22–24, increased
body mass index22,24–26, Epstein-Barr virus seropositivity27, and
smoking28,29. In the first MS-GRS model, De Jager et al. (2009) studied
2215 individualswithMSand2189 controls, and in independent samples
confirmed that 16 MS susceptibility alleles (2 MHC alleles and 14 non-

MHC alleles) hadmodest discriminatory ability, whichwas enhanced by
integrating of non-genetic risk factors (sex (ROC AUC 0.74), smoking
and anti-EBV antibody titers (ROCAUC0.68) in themodel30. Their study
included subjects with MS-ON, including CIS, and showed that they
share a similar genetic architecture as thosewithMS. Toour knowledge,
genetic data has not previously been used in combination with other
risk factors to aid MS risk stratification in undifferentiated ON which
includes, but is not limited to, CIS. This UK Biobank (UKBB) study had
two aims: Firstly, to determine whether an MS-GRS, created using
published GWAS summary statistics, aids prediction of future MS in
people presenting with undifferentiated ON; secondly, whether com-
bining MS-GRS with demographic and clinical variables enhances MS
diagnosis risk stratification at first ON presentation.

Results
MS, ON and MS-ON cases and demographic characteristics
From 483,506 unrelated individuals with available genetic and pheno-
type data, of whom83.9%were of European ancestry, we identified 2369
MS cases (prevalence 0.49%, or 490 per 100,000 participants) and 687
ON cases (prevalence 0.14% or 142 per 100,000 participants) (Fig. 1). ON
cases included 545 (545 out of 687, 79.3%) who were not known to have
MS at first ON presentation and 142 (20.7%) with prior or simultaneous
diagnosis of MS (MS-ON). During cumulative follow-up from first ON
presentation to latest data extraction in 2019ordeath (median 18.4 years,
IQR 9.9–30.2) a further 124 out of 545 (22.8%) were diagnosed with MS.

Demographic and clinical characteristics are summarised in
Table 1 and Supplementary Table 5 for the cases presenting with MS-
ON and undifferentiated ON, in comparison to the group with MS
without ON, and the control population. At ON presentation, the

Fig. 1 | Flow diagram of participants, illustrating exclusions and quality
control steps. The figure describes the exclusion and inclusion criteria used in the
UK Biobank (UKBB) population. The boxes in the last row show the number of
participants within each group: healthy controls (yellow), MSwithout ON (MS only,

blue), MS-associated ON (MS-ON, purple), and ON without MS (ON only, red). An
extended version is available in the supplement, which describes sources of diag-
noses inmore detail (Supplementary Fig. 1). UKBB UK Biobank, QC quality control,
ON optic neuritis, MS multiple sclerosis.
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female to male ratio was 1.8 in the initially undifferentiated ON group
(n = 545) and 2.9 in the MS-ON group (n = 142), in comparison to 2.5 in
the group with MS alone (n = 2103), and 1.2 in the control population
(n = 480,690) (χ², 9 degrees of freedom,P <0.00001). Themean age at
onset of undifferentiated ON was 44.7 (SD 15.0, range 1 to 80) years
compared to 47.3 (12.2, range 20 to 73) years in the group presenting
with MS-ON. The percentage of European ancestry cases was 84.8%
(n = 462) in undifferentiated ON and 85.2% (n = 121) in MS-ON at pre-
sentation, compared to 87.7% (n = 1845) in the MS without ON group,
and 83.9% (n = 403,051) in the control population. Supplementary
Tables 6 and 7 present the data for all ON and all MS by end of
cumulative follow-up.

MS-GRS was discriminative of MS
We assessed the MS-GRS in MS cases and the rest of the UKBB
(including ON without MS) (Fig. 2a). Both the HLA and non-HLA mean
scores were higher in people withMS (mean 0.74 (SD 0.78) vs 0.29 (SD

0.71), P <0.0001 for HLA, 2.88 (SD 0.92) vs 2.37 (0.92), P <0.0001 for
non-HLA) and were discriminative of MS (ROC-AUC (95% CI) 0.666
(0.663–0.669) and 0.656 (0.653–0.659) respectively, Fig. 2 and Sup-
plementary Fig. 2). The full MS-GRS had a ROC AUC of 0.721
(0.718–0.723), and 0.752 (0.750–0.755) when combined with a subset
of risk factors associated with MS (sex, age at UKBB entry, Townsend
deprivation index) and the first four genetic principal components
(Fig. 2a, d).

Genetic overlap of MS, ON and MS-associated ON
We assessed the distribution of MS-GRS in healthy controls, ON only
(undifferentiated ON at the end of follow-up), MS-ON and MS only
(Fig. 2a–c), with groups defined by diagnosis at the end of cumulative
follow-up. We found that the MS-GRS distribution of the non-MS-ON
group (mean 3.02 (SD 1.29) lay between that of healthy controls 2.66
(1.15) andMS-ON cases 3.71 (1.17) (P <0.0001 for both, Fig. 2a). TheMS-
GRS significantly differentiated MS cases from cases with non-MS-ON

Table 1 | Demographic characteristics of participants presentingwithMS-ONversus undifferentiatedON, and comparisonwith
healthy control population, and group with MS without ON (MS Only) between three datasets

MS-ON at
presentation

MS Only Controls Undifferentiated ON at
presentation

Hazard ratio ofMSdiagnosis in
undifferentiated ON

Study participants (n) UKBB 142 2103 480,690 545

Geisinger 280 1901 113,751 835

FinnGen 262 1544 369,633 977

Of which European
ancestry (%)

UKBB 121 (85.2) 1845 (87.7) 403,051 (83.9) 462 (84.8) 0.77 (0.48–1.24), P = 0.28

Geisinger 247 (88.2) 1656 (87.1) 96,569 (84.9) 751 (89.9)

FinnGen NA NA NA NA

Median age at cohort
enrolment (IQR,
range), years

UKBB 54.5 (48–59,
40 to 69)

56 (49–62,
40 to 70)

58 (50–63,
37 to 73)

57 (50–62, 40–70) 0.94 (0.92–0.97), P < 0.0001**

Geisinger 52.4 (45–62,
23 to 84)

56 (49–62,
40 to 70)

58 (50–63,
37 to 73)

59.8 (48–73, 14–89)

FinnGen 46.6 (37–55, 9 to 82) 50.3 (40–60,
10 to 90)

56.2 (41–67,
0.0 to 105)

49 (37–62, 6–95)

n Females (F:M) UKBB 106 (2.9) 1504 (2.5) 260,093 (1.2) 352 (1.8) 2.20 (1.41–3.45), P =0.0005*

Geisinger 220 (3.7) 1440 (3.1) 68,175 (2.4) 546 (1.9)

FinnGen 216 (4.7) 1133 (2.8) 206,268 (1.3) 711 (2.7)

ONdiagnosed between
18 and 50 years of age

UKBB 89 (62.3) NA NA 336 (62.0) 2.43 (1.43–4.17), P =0.0014*

Geisinger 125 (44.6) NA NA 259 (31.0)

FinnGen 220 (84.0) NA NA 705 (72.2)

Mean MS-GRS (SD) UKBB 3.74 (1.15) 3.71 (1.17) 2.66 (1.15) 3.17 (1.30) 1.29 (1.07–1.55), P =0.0067*

Geisinger 3.80 (1.28) 3.35 (1.31) 2.74 (1.14) 2.92 (1.23)

FinnGen 3.96 (1.24) 3.73 (1.25) 2.74 (1.13) 3.41 (1.30)

Variables not included in Cox regression

Mean age at onset ON
(SD, range), years

UKBB 47.3 (12.2, 20 to 73) NA NA 44.7 (15.0, 1 to 80)

Geisinger 40.8 (11.5, 15.7
to 69.6)

NA NA 52.2 (17.1, 11 to 89)

FinnGen 38.7 (11.3, 10.5
to 72.9)

NA NA 38.8 (15.4, 7 to 89)

Mean age at onset MS
(SD, range), years

UKBB 38.7 (9.6, 18 to 58) 44.9 (12.5, 15 to 80) NA 45.5 (11.2, 20 to 73)

Geisinger 45.0 (12.1, 16 to 77) 47.1 (13.0, 4 to 88) NA 40.4 (11.9, 15 to 80)

FinnGen 33.5 (9.7, 11 to 68) 41.3 (12.6, 13 to 87) NA 36.3 (11.3, 15 to 76)

Mean Non-HLA-
GRS (SD)

UKBB 2.86 (0.86) 2.89 (0.93) 2.37 (0.92) 2.63 (0.98)

Geisinger 3.12 (0.90) 2.85 (0.98) 2.50 (0.91) 2.62 (0.95)

FinnGen 3.11 (0.86) 3.01 (0.93) 2.44 (0.90) 2.86 (0.99)

Mean HLA-GRS (SD) UKBB 0.88 (0.74) 0.73 (0.795) 0.29 (0.71) 0.53 (0.77)

Geisinger 0.68 (0.82) 0.50(0.78) 0.25 (0.69) 0.30 (0.75)

FinnGen 0.85 (0.85) 0.72 (0.78) 0.30 (0.69) 0.55 (0.77)

P-values in the rightmost column are derived from a univariate MS-free Cox proportional hazardmodel in the undifferentiated ON UKBB population, unless specified otherwise with an asterisk: *P-
values frommultivariate CoxMS-free survivalmodel with binary age atONdiagnosis, sex, andMS-GRS; **P-values fromamodel with binary age at ONdiagnosis, sex,MS-GRSand age at UKBiobank
(UKBB) enrolment.
Variables included in the final MS-free survival model are highlighted in bold.
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Fig. 2 | MS-GRS distribution and ROC-AUC analysis across three cohorts.
a–cMS-GRSdistribution violin plots: comparative distributionofMS-GRS (multiple
sclerosis genetic risk score) among different participant groups in three datasets:
UK Biobank (a), Geisinger (b), and FinnGen (c). Groups are defined on the x-axis:
healthy controls (Controls), individuals with optic neuritis without MS (ON only),
MS-associated optic neuritis (MS-ON), and individuals with MS without optic
neuritis (MSonly). Themean is represented as awhite circle, interquartile rangeas a
black box, and the outside line shows the kernel density estimate of the underlying
distribution. Each colour corresponds to a specific group: healthy controls (yellow),
ON without MS (red), MS without ON (blue), and MS-ON (purple). The statistical
analysis utilized two-sided Welch’s t-test with Bonferroni correction term to
account for multiple comparisons. d–f ROC-AUC analysis: receiver operating

characteristic area under the curve (ROC-AUC) analysis for differentiation between
any form of MS (including MS only and MS-ON) versus healthy controls in three
distinct datasets: UK Biobank (d), Geisinger (e), and FinnGen (f). The null model
(grey line) encompassed the same covariates as theMS-GRS+covariatesmodel (red
line) but excluded the MS-GRS. MS-GRS without covariates is shown as a blue line.
Covariates included in the models were: sex, TDI (Townsend Deprivation Index),
age at cohort entry, and the first four principal components for UK Biobank;
reported sex, index age, and the first four principal components for Geisinger; and
sex, age at DNA sample collection, and the first four principal components for
FinnGen. The ROC-AUC analysis provides insight into the discriminatory power of
the models in distinguishing between MS cases and healthy controls.
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at the end of study follow-up (3.62 (1.22), P <0.0001), but not from
cases with MS-ON (Table 1 and Fig. 2a, Supplementary Table 6). Fig-
ure 2 further demonstrates the distribution of MS-GRS in external
validation datasets, with in-detail description provided in Supple-
mentary Results. In individuals with MS-ON, MS-GRS did not differ
significantly whether MS diagnosis preceded or followed first ON
presentation in UKBB, although deviations from this were observed in
one of the external datasets (Supplementary Fig. 9). There was a weak
association between MS-GRS and age at onset of MS (R2 = 0.011,
P <0.0001); higher MS-GRS was associated with younger age at MS
diagnosis (Supplementary Fig. 10).

MS-GRS predictive of future MS after first diagnosis of ON
For the MS-free survival analysis, we limited our primary analysis of
MS-GRS to undifferentiated ON cases (n = 545) after excluding people
with MS diagnosed before ON (n = 122), and cases with first presenta-
tion of MS including ON (n = 20). This group had a median cumulative
follow-upperiodof 18.4 (IQR 10–30) years.We includedbothprevalent
ON (435/545 diagnosed before UKBB entry) and incident ON (110/545,
diagnosed after UKBB entry). The outcome event, MS diagnosis, was
documented in 22.9% (n = 124) cases, at a median interval of 3.8 years
(IQR 0.8–12.2) years from ON to MS diagnosis.

Significant variables in Cox proportional hazard model single
variable analysis included sex, binary age at ON diagnosis and MS-GRS
only (Table 1 and Supplementary Table 5). These variables all remained

significant in multivariable analysis. Ancestry-associated principal
components, and interaction between age at ON onset and sex were
not significant in the multivariable model and were excluded (Sup-
plementary Results 2.6). Proportional hazard assumptions weremet in
the final model at P <0.05 in UKBB (Scaled Schoenfeld’s residuals
Supplementary Fig. 14). Themodel containingMS-GRS, sex and binary
age at diagnosis calibrated well at 5, 10, and 20 years of follow-up
(Fig. 3b–d) and the distribution of predicted cumulative MS risk
(expressed as predicted partial hazard) is shown in Fig. 3a.MS-GRSwas
significantly associated with future development of MS, with adjusted
Hazard Ratio (95% CI) of 1.29 (1.07–1.55), P <0.01) per one standard
deviation increase in MS-GRS. Stratification by quartiles of predicted
risk (Fig. 4, Supplementary Fig. 15) identified individuals who, at dif-
ferent durations of follow-up, were at relatively low risk ofMS (Percent
diagnosed withMS at the end of the follow-up, 3.6%, 95% CI 0.5–6.8%),
intermediate risk (14.7%, 8.8–20.7%), higher risk (31.6%, 23.8–39.4%)
and highest MS risk (41.2%, 32.9–49.4%) (Fig. 5a). The median pre-
dicted partial hazard for each quartile is displayed in Supplementary
Fig. 15. The sex-difference by quartile of predicted risk is illustrated in
Fig. 5d and Supplementary Fig. 16. Lastly, we evaluated whether a full
model (MS-GRS, binary age at onset, sex) performed better than cov-
ariates alone using time-dependant ROC-AUC up to 35 years (Supple-
mentary Fig. 4), and found the average time-ROC-AUC for the full
model was 0.627 vs 0.609 for the null model. It is worth mentioning
that both absolute values and the difference between AUCs were

a

b c d

Fig. 3 | Predicted risk of MS by Sex and model calibration plots for 5-, 10-, and
20-yearhorizons.Panel (a) showsboxenplots of predictedpartial hazardbasedon
participants’MS-GRS, sex and age at ON diagnosis for undifferentiated ON that did
not develop MS (ON only, red) and those who did (MS-ON, blue) by the end of
cumulative follow-up. Grey centerline shows the median, with the darkest shade
around showing second and third quartiles. Each successive level outward contains

half of the remaining data and is shaded in lighter colour. Outliers are shown as
diamonds. Panels (b–d) illustrate calibration plots of the Coxmodel at three points
in time (5, 10, and 20 years, respectively). The smoothed calibration curve is shown
in red, and ideal calibration as a blackdotted line. X-axis is the predictedprobability
of developing MS up to 5, 10, and 20 years post ON diagnosis for (b–d),
respectively.
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lowest in UKBB compared to other datasets, which could be explained
by the lack of standardised follow-up in UKBB and overfitting of
covariates.

External validation
The MS prevalence was 1285 per 100,000 people in Geisinger and 556
per 100,000 people in FinnGen. In the FinnGen database, there were
977 cases of undifferentiated ON, of whom 369 (37.8%) developed MS
with median of 1.02 years (IQR 0.24 to 5.46 years). In the Geisinger
database, there were 835 cases of undifferentiated ON, of whom 140
(16.8%) developed MS with median latency of 0.32 years (IQR
0.06–1.68). MS-GRS was higher in both MS-ON and MS alone than
either healthy controls or non-MS-ON in both validation cohorts
(Fig. 2). It is worth mentioning that in both Geisinger and FinnGenMS-
ON cases had higher MS-GRS than MS cases without ON—this was not
observed in UKBB, and to our knowledge, has not been previously
reported (Fig. 2b, c). MS-GRSwas discriminative ofMS cases vs healthy
controls in both Geisinger (0.744 for MS-GRS with sex, index age, first
four principal components, 0.650 for MS-GRS alone) and FinnGen
(0.764 forMS-GRSwith sex, age atDNA sample collection, and the first
four principal components, 0.737 for MS-GRS alone) (Fig. 2e, f), and
both HLA- and non-HLA were independently discriminative of MS
(Supplementary Fig. 2). Amongst people with undifferentiated ON, the
median risk of developing MS was 16.8% in the Geisinger population
and 37.8% in FinnGen population. We used the multivariable Cox MS-
free survivalmodel trained onUKBB data in the Geisinger and FinnGen
datasets and found that it calibrated well after adjusting for differing
prevalence of MS in these different population cohorts (Supplemen-
tary Fig. 3). Using themodel to split the data into quartiles of predicted

MS risk, we observed differing proportions of incident MS over
cumulative follow-up of 5.8 years (IQR 1.6–10.8) in Geisinger, and 8.6
years (IQR 1.6–18.4) in FinnGen. Specifically, in the lowest quartile of
MS-GRS predicted risk, 6.7% (95% CI 3.7–10.1%) in Geisinger, and 10.2%
(95% CI 6.4–14.0%) in FinnGen developed MS. Whereas in the highest
quartile of MS-GRS predicted risk, 30.6% (95% CI 24.4–36.9%) in Gei-
singer, and 60.7% (95% CI 54.5–66.8%) in FinnGen developed MS
(Supplementary Fig. 3). Lastly, in Both Geisinger and FinnGen, full Cox
survival model in undifferentiated ON (MS-GRS, sex, and binary ON
diagnosis between 18 and 50) had better time-ROC-AUC for MS pre-
diction than models containing covariates only (sex and binary age):
0.711 vs 0.692 in Geisinger, and 0.692 vs 0.647 in FinnGen (Supple-
mentary Fig. 4).

Sensitivity analyses
In subgroup analysis of European ancestry British individuals (84%
participants), findings were similar to the main analysis (Supplemen-
tary Results Section 3). Specifically, theMS-GRS had a very similar ROC
AUC of 0.750 (95% CI 0.746–0.753), when combined with risk factors
associated with MS (sex, age at UKBB entry, Townsend deprivation
index) and first four genetic principal components. Similarly, in the
Coxproportional hazardmodel, theHazardRatio (95%CI) of futureMS
diagnosis amongst participants presenting with undifferentiated ON
was 1.29 (1.05–1.58, P < 0.05) per standard deviation increase in
MS-GRS.

In subgroup analysis of non-European ancestry British individuals
(16% participants), findings were also similar to the main analysis
(Supplementary Table 12), but without statistical significance, on
account of the small number of participants. Specifically, the MS-GRS
had a very similar ROC AUC of 0.753 (95% CI 0.746–0.760) when
combinedwith risk factors associatedwithMS (sex, age at UKBB entry,
Townsend deprivation index) and first four genetic principal compo-
nents. Similarly, in the Cox proportional hazard model, the Hazard
Ratio (HR) (95% CI) of future MS diagnosis amongst participants pre-
senting with undifferentiated ON was 1.40 (0.89–2.22, P =0.15) per
standard deviation increase in MS-GRS versus 1.29 (1.07–1.55, P <0.01)
in the whole of UKBB. The HR for female sex was 1.81 (0.53–6.24,
P =0.35) versus 2.20 (1.41–3.45), P <0.001), and the HR for age 18–50
years at ON diagnosis was 2.47 (0.69–8.77, P =0.16) versus 2.43
(1.41–4.17, P <0.001), as compared to the whole of UKBB, respectively.

Additional subgroup analyses restricted to either cases diagnosed
after 20 years of age or diagnoses based on either hospital episode
statistics (HES) or primary care records (GP records) revealed nearly
identical results both for ROC-AUC MS-GRS performance and Cox
models of future MS risk in undifferentiated ON. A summary of these
subgroups and comparisons is provided in Supplementary Table 12.

Pilot application
Here will illustrate how the combined model could be integrated into
an application for use in clinical practice to estimate individual risk:
https://mspredictor.com.

Discussion
This pioneering investigation establishes a link between an individual’s
combined genetic susceptibility, as measured by the MS-GRS encom-
passing numerous MS-associated loci with common alleles, and the
subsequent risk of MS development in those experiencing an initial
episode of undifferentiated ON. Moreover, we unveil a stratification
paradigm for individualswith undifferentiatedON, integrating theMS-
GRS, age at ON onset, and sex, which delineates cohorts characterised
by varying future MS risks: low (3.6%), intermediate (14.7%), higher
(31.6%), and highest (41.2%). Significantly, our study demonstrates
robustness through the successful replication and validation of the
composite MS-GRS model across two distinct datasets from the USA
and Finland, populations also predominantly of European ancestry.

Fig. 4 | Kaplan–Meier analysis of MS-free survival. Kaplan–Meier analysis
demonstrating MS-free survival trends based on quartiles of predicted MS risk.
Quartile divisions were determined by the forecasted partial hazard of Multiple
Sclerosis (MS), derived from individual characteristics utilizing the UK Biobank
(UKBB)-trained Coxmodel. The time span to the event is calculated from the onset
of optic neuritis (ON) diagnosis to the identification of MS, or the conclusion of
follow-up for cases subjected to censoring. MS-free survival curves depicting
quartiles of predicted risk for the validation cohort are provided in Supplementary
Fig. 3 for further reference.
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Fig. 5 | Incidence of multiple sclerosis development in undifferentiated optic
neuritis. a–c Cumulative incidence graphs: Illustration of the percentage of par-
ticipants experiencing undifferentiated optic neuritis (ON) within three distinct
datasets: UKBiobank (a), Geisinger (b), and FinnGen (c). The analysis is stratified by
quartile of predicted Multiple Sclerosis (MS) risk, with colours representing quar-
tiles: orange—first, red—second, purple—third, and blue—fourth. The time points
represent four horizons of cumulative follow-up,with squares representing 5 years,
circles—10 years, triangles—20 years, and crosses—end of follow-up. Vertical lines
denote 95% confidence intervals (95% CI) for the reported percentages estimated
using normal approximation. Numbers adjacent to each marker indicate the
cumulative number of people who developed MS in each quartile by time horizon.
The total number of participants within each quartile are shown below the x-axis.
d–f Sex-specific MS diagnosis rates: Graph depicting the percentage of each sex

who were subsequently diagnosed with MS by the end of follow-up, by quartile of
predicted MS risk. Percentage calculated as number of females (circles) or males
(triangles)withMS-ONdividedby the total numberof that sexwithina quartile. The
size ratio of markers within a quartile corresponds to the participant sex ratio.
Numbers adjacent to eachplot indicate the sex-specificnumberofparticipantswith
MS-ON versus the total number of either males or females in that group. Vertical
lines indicate 95% CI for the sex-specific percentages estimated using normal
approximation. Paneld isUKBiobank (UKBB), e is Geisinger, f is FinnGen cohort. “*”
indicates a range, rather than exact value due to FinnGen’s data protection policy
on presenting potentially identifiable data. Remaining males (less than five parti-
cipants), 100% of who developed MS, are not presented for this reason. It is
important to note the differing y-axis scales in panels (c) and (f).
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While it has been long-established that ON may be the first pre-
sentation of MS, the additional risk stratification outlined in this study
could valuably aid management of ON, and greater international
consensus on this1, in the time-critical window before neuroimaging
and serum and cerebrospinalfluid investigations are available. In usual
clinical practice, European ancestry British women aged 18 to 50
years, who present with mild-moderate vision impairment, would not
typically be offered corticosteroid therapy8, and the MS-GRS would
identify most of these individuals to be at enhanced MS genetic risk.
Whereas, urgent corticosteroid therapy may be better targeted to the
smaller number of individuals at low MS genetic risk, who are more
likely to have an alternative, and potentially corticosteroid-responsive,
cause for ON, averting irreversible vision loss. A low-riskMS-GRS could
also reduce inadvertent initiation of interferon therapy in patients
whose ON is later determined to be associated with NMOSD. Similarly,
theremay be value in avoidance of urgent corticosteroid therapy for a
small number of patients aged less than 18 or over 50 years, whose
presentation is ‘atypical’ for MS (e.g., vision worse than 6/60, no pain
on eye movements or no improvement) but whose MS-GRS reveals
high MS risk15. The availability of an MS-GRS combined model, in the
context of undifferentiated ON, may help advance understanding of a
clinically isolated syndrome, the forme fruste of ON in MS. Indeed,
there is increasing recognition of MS clinical phenotypes falling on a
continuumof disease severity and progression over time16, and further
research is needed to determine whether individuals at high MS risk
should be directed to MS services more rapidly, for consideration of
disease-modifying therapy.

Limitations
The primary analysis was performed on individuals of all ancestries,
with subgroup analyses on European and non-European ancestry
British individuals. Ancestry was not a significant predictor of future
MSdiagnosis inpatients presentingwith undifferentiatedON, but non-
European populations are underrepresented in UKBB. A recent study
indicates that MS-GRS derived from predominantly white European
ancestry populations do not translate well to South Asian ancestry
populations31. It will be important to continue to develop large, diverse
ancestry population biobanks and research studies to address this
deficiency and avoid perpetuating health inequalities.

MS-free survival may have been affected by cohort intrinsic con-
founding, such as age at UKBB enrolment (Supplementary Fig. 18) and
lack of standardised follow-up across the UKBB. Our Cox proportional
hazard model included hazard ratios derived from the UKBB data.
There is a risk of overfitting associations with sex and age at onset of
ONbecauseof the knownselectionbiases in theUKBBdata32, including
healthy volunteer bias. Our use of known risk factors from previous
epidemiology and genome-wide association studies reduces the risk of
a false result. However, we will in future test and calibrate our model
using prospective diagnostic and implementation studies before a
combined model can be integrated into clinical care. Additionally,
UKBBdata did not permit the use of themost recent andmore precise
HLA data20 for HLA-GRS. Other general and important limitations of
the UKBB study have been outlined elsewhere33.

Classification of ON could be enhanced by using segmented
optical coherence tomography (OCT) imaging data in the ON case
definition1. Specifically, a 4%/4μm inter-eye difference in the macula
ganglion cell inner plexiform layer could enhance case definition,
indicating prior unilateral optic nerve damage, as part of new diag-
nostic criteria for ON34,35. Unfortunately, OCT images are currently
available for less than one-fifth of UKBB participants, and output from
automated retinal image segmentation is not yet available in the public
UKBB data repository to permit sensitivity analysis36. We anticipate
that potential misclassification bias resulting from noise in case defi-
nitions, with likely overdiagnosis of optic neuritis based on diagnostic
codes alone,would leadourfindings to underestimate the value ofMS-

GRS in MS risk stratification, as compared to verification of ON cases
with greater precision usingOCT. Reassuringly, even though the UKBB
is not population-representative and recruited adults aged over 40
years, we found comparable ON and MS prevalence to population-
representative national studies2,37.

Furthermore, while Epstein-Barr virus seropositivity was not
available in the UKBB dataset, we explored diagnostic codes for prior
clinical diagnosis of EBV infection or glandular fever, which have been
identified as causal predictors of MS risk, but these diagnoses are
scarcely available in UKBB27. Furthermore, seropositivity for EBV (data-
field 23005) was available for less than ten thousand individuals.
Finally, we would have liked to explore the additional contribution to
future MS risk prediction of the presence or absence of brain lesions
on unenhanced MRI imaging. However, this imaging was only per-
formed in a subset of UKBB participants, and not at the time of ON
diagnosis, and a variable relating to the presence or absence of
demyelinating lesions suggestive of MS was not available for analysis.

Rigorous quality control of phenotype data
Our study highlights that rigorous case definition QC in population
biobanks is important and may reduce noise and increase power of
analyses like ours. We manually checked all the diagnostic codes in
each data source and performed a subgroup analysis which confirmed
that similar results were foundwhen cases were limited to those with a
‘stricter’ definition ofMS andONdiagnosis.We also identified that two
commonRead3 codes for optic neuritis (F4H3 or F4H32) were omitted
from the central UKBB definition of optic neuritis. This resulted in
capture of an additional 194 cases of ON in this study. We also
enhanced specificity for the diagnosis of ON by excluding a few codes
used in the UKBB central ON definition, for example, ‘optic neuro-
pathy’, which has many causes (e.g., genetic, nutritional, toxic, com-
pressive) that are clinically distinct from ON. However, for 34
participants with undifferentiated ON who had only an ICD9 or ICD10
code, we were unable to further review which diagnostic codes made
up the UKBB ON case definition.

Comparison to existing literature
Our study leverages retrospective and prospective healthcare data to
build on existing knowledge of the association betweenONpresenting
as a clinically isolated syndrome (CIS) and future MS risk. The 1992
Optic Neuritis Treatment trial, which recruited 389 adults with acute
unilateral, undifferentiated ON, reported a 5-year cumulative prob-
ability ofMSof 29% rising to 38% at 10 years7, and 50% by 15 years, with
risk significantly associated with the presence of 1 or more lesions on
baseline non-contrast-enhancedmagnetic resonance imaging (MRI) of
the brain4, and also with female sex in participants without baseline
MRI lesions (HR 3.6). This study found that the risk of developing MS
was highest in the first 5 years following ON, and then decreased. A
United States Armed Forces cohort study, including 1427 adults with
ON, reported that 136 (9.5%) people developed MS by 10 years,
including 19% of women and 14% of men with ON, and 68% were
diagnosed within a year of ON38.

In patients with undifferentiated ON, we found female sex to be a
significant independent predictor of MS risk (aHR 2.20, P < 0.005,
Fig. 3a), an association well-established in the literature but not fully
understood, reflecting a complex interplay between genetic, epige-
netic, immunological, hormonal and environmental factors39,40. Binary
age at onset of ON (between 18 and 50 years) was also significantly
associatedwithMS risk (aHR 2.43, P < 0.005). We found aweak inverse
association between MS-GRS and age at MS onset (R2 = 0.011,
P <0.0001, Supplementary Fig. 10), aligning with a recent study by
Misicka et al. (2022) reporting higherMS-GRS risk burden and younger
age at MS diagnosis41. We did not find significant associations with
additional clinical risk factors including BMI, smoking, or vitamin D
insufficiency at UKBB study entry, which have been highlighted in
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other studies22–25,28,29. It is possible that this is because our study only
measures these variables at a single time point (UK Biobank study
entry) unrelated to diagnosis of ON and/or MS. Additionally, risk fac-
tors that are significantly associatedwith disease in large observational
epidemiology studies sometimes do not explain enough variation in
disease development to be useful for clinical prediction.

Future research
Further research is needed to test the hypothesis that an MS-GRS
combined with existing diagnostic6, demographic, and other deep
phenotypic variables, can usefully stratify patients with undiffer-
entiated ON into high/medium/low genetic MS risk in a prospective
diagnostic predictive clinical setting. Patient and public involvement
around the acceptability of integrating genetic risk stratification into
frontline care will be vital. Our study hints at the possibility of clinical
translation, with use of a genetic test at first ON presentation to deliver
better acute clinical care. With up to 5 million adults in the UK soon to
be recruited into the UK’s largest ever health research programme,
including genomic medicine, ‘Our Future Health’, use of GRSs could
soon become part of an enhanced approach to personalised
medicine42.

In summary, our study unveils the potential of a compositemodel
that integratesMS-GRSwith age at ON onset and sex, offering ameans
to stratify patients based on their likelihood of a future MS diagnosis,
thus providing valuable insights for clinical management decisions.
Future research endeavours should delve into the practical application
of the MS-GRS model within clinical settings. We hypothesize that the
knowledge of high MS-GRS, especially in individuals with suspected
clinically isolated syndrome, would facilitate MS follow-up manage-
ment and guide decisions around performing lumbar puncture to seek
earlier MS diagnosis and potentially earlier disease-modifying treat-
ment to reduce relapse rate. Additionally, we posit that a swift MS-GRS
model panel test to identify low MS-GRS could facilitate hyperacute
corticosteroid treatment, especially of subsequent vision-threatening
ON relapses, potentially mitigating visual morbidity in those with non-
MS-ON, while also yielding substantial economic and quality-adjusted
life year benefits.

Methods
Data source and population
We studied participant data in the UKBB, a longitudinal population-
based cohort study, described in detail elsewhere43. In brief, the UKBB
comprises extensive genetic and phenotypic data from ~500,000
individuals (n = 229,134 men, n = 273,402 women) aged 40–69 years.
Participants were recruited from 22 assessment centres in the UK
between 2006 and 2010, with data linkage to hospital episode statis-
tics (HES), the death register, and primary care data.UKBBparticipants
gave informed consent to participate, and ethics committee approval
was granted by the Northwest Multi-Centre Research Ethics Commit-
tee (ref 06/MRE08/65).

Identifying cases and controls
Our case identification process is detailed in Supplementary Meth-
ods 1.1 and Supplementary Fig. 1, with a summary in Fig. 1. We define
the included diagnostic codes in Supplementary Tables 1–3 and
excluded 24 cases who had Read codes indicating a diagnosis distinct
fromON, or to be insufficiently specific for ON diagnosis.We excluded
caseswithMSdiagnosis before the age of 15.0 years, but retained cases
with ON before the age of 15.0 years.

We defined four groups:MSwithout ON,MSwith ON, ONwithout
MS, and controls who had neither ON nor MS. All groups contained
both prevalent and incident cases.We analysed the order of diagnoses
using the earliest available date of diagnosis from all data sources
(Hospital Episode Statistics (HES), GP records, self-report). We limited
our MS-free survival analysis to undifferentiated ON cases, after

excluding those with MS diagnosis preceding ON diagnosis, and
compared those who were subsequently diagnosed with MS to those
who were not.

Genetic data
Weused imputed genetic data downloaded from theUKBiobank44.We
limited our analysis to 11,977,111 genetic variants imputed using the
Haplotype Reference Consortium imputation reference panel with a
minimumminor allele frequency (MAF) > 0.1% and imputation quality
score (INFO) > 0.3. We used eight HLA alleles imputed to four-digit
resolution centrally by UKBB using HLA*IMP:0245.

The primary analysis was based on unrelated individuals of all
ancestries. We excluded one of each pair of related individuals at
random based on the genetic relatedness coefficient (>=0.084) to
exclude third-degree relatives or closer, and to reduce the risk of bias
from cryptic relatedness (n = 3400 in total, n = 21 with MS and n = 4
with ON)46. We performed a secondary analysis of individuals identi-
fied as European ancestry British by principle component analysis
(Data-Field 22006), and then separately those of non-white-European
ancestry.

Generating the MS genetic risk score (MS-GRS)
We used external sources of risk alleles and odds ratios for non-HLA
and HLA alleles (Supplementary Methods 1.2). Specifically, we gener-
ated a non-HLA genetic risk score using 317 autosomal single nucleo-
tide polymorphisms (SNPs) with a genome-wide significance of P
value < 10−5, including 200 SNPs with genome-wide significance
P < 5 × 10−8 and a further 117 strongly suggestive SNPs with genome-
wide significance between P < 10−5 and P > 5 × 10−8 20. All SNPs were
outside the extended HLA region (i.e. excluding the chromosome 6
region from 24 to 35 Mbps, hg19). We ensured that no SNPs were in
linkage disequilibrium (r2 > 0.2) using LDlink (n = 8)47, and excluded
ambiguous (n = 1), missing (n = 1), or duplicated (n = 1) variants,
resulting in 307 SNPs (Supplementary Data 1). We calculated a log-
additive sum of the risk alleles in PLINK2, using a natural log of odds
ratios (log OR) as weights.

Recent work has revealed that accounting for HLA interaction
improves the discriminative performance of autoimmune disease
GRS48,49. A recent GWAS by IMSGCdescribedHLA and nearby non-HLA
genes in-detail, including independent effects within some loci20.
However, we used a 10-allele HLA interaction model developed by
Moutsianas et al. (2015) on 17,456 MS cases and 30,385 controls from
across 11 cohorts to account for non-additive interaction between the
HLA alleles derived externally from UKBB50. This included 8 imputed
HLA alleles and 2 SNPs from theHLA region (29.9 to 33.6Mbps on chr6
hg19). We captured interactions between the alleles by calculating the
interactive model; scoring imputed HLA alleles while employing both
additive effects, homozygote correction terms, and conditional scor-
ing of some HLA alleles (Supplementary Table 4). We performed this
scoring using the Python 3 libraries Pandas and NumPy51,52. We then
scored the two SNPs from the HLA region by multiplying the natural
log odds ratios (OR) by risk allele dosage using PLINK2. Lastly, we
combined the scores calculated from HLA alleles and the two SNPs to
produce the HLA-GRS. The final MS-GRS was a sum of non-HLA- and
HLA-GRS.

Statistical analysis
We analysed the distribution of MS-GRS in the four groups: healthy
controls, MS only cases, ON only cases, and cases with both MS and
ON, using Welch’s t-test. We tested the ability of MS-GRS to dis-
criminate betweenMS cases and healthy controls using the area under
the curve (AUC) of the receiver operating characteristic (ROC). We
compared the discriminative power of covariates only, MS-GRS only,
and MS-GRS plus covariates. To avoid overfitting, we calculated each
ROC-AUC using three-fold cross-validation with ten repetitions,

Article https://doi.org/10.1038/s41467-024-44917-9

Nature Communications |         (2024) 15:1415 9



reporting means with 95% confidence intervals. Covariates selected
from the published literature included sex, age at UKBB entry, Town-
send deprivation index (TDI) and the first four genetic principal
components, as they were previously scrutinised in the context of an
MS genetic risk score53.

Finally, to assess the ability of MS-GRS to predict MS-free sur-
vival time in cases presenting with undifferentiatedON (i.e., without
prior MS diagnosis), we explored Cox proportional hazards survival
regression, by multiple potential predictor variables specified a
priori from literature review. Here, we tested potential predictor
variables more extensively, including those putatively associated
with MS. Binary variables included sex, age group (18–50 years
versus younger and older), and ethnicity (European ancestry British
versus not/unknown, Data-Field 22006)22. Continuous variables
included age, MS-GRS (standardised for 545 individuals with
undifferentiated ON), and Body Mass Index (kg/m2, UK Biobank
Data-Field 21001)22,24–26. Categorical variables included smoking
status (ever vs never vs missing, Data-Field 20160)28,29,54, country of
birth (England, Scotland, Northern Ireland, Republic of Ireland,
Wales andOther/Unknown, Data-Field 1647), Townsend deprivation
index quintiles (1 to 5 or missing, Data-Field 189), and serum 25-OH
vitamin D level at UKBB baseline assessment (sufficient [>50 nmol/
L], insufficient [25–50 nmol/L], deficient [<25 nmol/L] or missing,
Data-Fields 30890–30896)22–24. We assumed the age of diagnosis
was the earliest record of diagnosis across all sources. For the
outcome variable, we estimated the time from diagnosis of ON to
diagnosis of MS using the earliest records of diagnoses available for
both diseases. Censoring was estimated using the latest HES or GP
episode record available for each individual, and where it was
deemed unsuitable or was not available (e.g., last record preceded
enrolment date, or neither HES nor GP records were available for an
individual (n = 26 people with non-MS-ON) we used the last date of
global HES update. Variables reaching statistical significance
P < 0.05 in the single variable analysis were included in the full
multivariable regression model and were removed through back-
ward elimination to identify the most parsimonious model with the
lowest partial AIC (Akaike information criterion). We considered the
interaction term between sex and age at ON diagnosis.

We explored the impact of genetic stratification on our results in
all UKBB participants by performing an analysis of the European
ancestry population only, as defined by UKBB self-reported ethnicity
and genetic principal components (Data-Field 22006) (Supplementary
Results Section 3).While anticipating the analysis to beunderpowered,
we also performed a sensitivity analysis comparing non-European and
European ancestry British participants. Two additional subgroup ana-
lyses included one on ‘strict’ diagnoses from either GP records or HES
only, and one excluding cases diagnosed before 20 years of age
(Supplementary Table 12).

Statistical analyses and visualisations were performed using
Python 3 and NumPy52, Scikit-learn55, Matplotlib56 and Lifelines
libraries57. All codes for the completed analyses are available at https://
github.com/ploginovic/MS-ON-ukb-code.

External validation
We sought to validate our findings in two large genetic and health
datasets, Geisinger, USA58,59 and FinnGen, Finland60,61. We assessed
discrimination and calibration of the UKBB combined model in these
datasets. See Supplementary Methods and Results (Sections 1.3–2.1)
for additional detail.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheGenetic risk scorewill be deposited in the Polygenic Score Catalog
(PGS Catalog: https://www.pgscatalog.org/) upon receiving a DOI of
this study. Individual-level genotype data described in this study are
available to bona fide researchers as per the UK Biobank data-access
protocol (https://www.ukbiobank.ac.uk/enable-your-research/apply-
for-access). Further details and instructions about registration for
access to the data are available at http://www.ukbiobank.ac.uk/
register-apply/. UK Biobank accession codes of this study were 9055
and 9072. For FinnGen data, access to individual-level sensitive health
data must be approved by national authorities for specific research
projects and for specifically listed and approved researchers in
accordance with the National and European regulations (GDPR).
Researchers can apply for the health register data from the Finnish
Data Authority Findata (https://findata.fi/en/permits/) and for
individual-level genotype data from Finnish biobanks via the Finge-
nious portal (https://site.fingenious.fi/en/) hosted by the Finnish Bio-
bank Cooperative FINBB (https://finbb.fi/en/). For Geisinger, the data
was generated as described in Carey et al.58. Further details regarding
phenotype and genotyping data for Geisinger can be found here:
https://www.geisinger.org/precision-health/mycode/discovehr-
project. Institutional Review Board determined this study to be “Non-
human subject research” using de-identified information (IRB #: 2023-
1075). The HLA genotyping data and MS-GRS from the MyCode par-
ticipants in this study may be shared with a third party bona fide
researchers upon execution of the data-sharing agreement.

Code availability
The code used for phenotype, genotype, and statistical analysis is
available through the followingGitHub repository: https://github.com/
ploginovic/MS-ON-ukb-code. Statistical analyses were performed in
Python v3.10 (https://docs.python.org/release/3.10.11/), with adapta-
tions the LifeLines Python package, covered by the MIT license
(https://github.com/CamDavidsonPilon/lifelines). Genetic analyses
were performed in PLINK v1.9 (https://www.cog-genomics.org/plink/)
and PLINK v2.0.a (https://www.cog-genomics.org/plink/2.0/). Pheno-
type analyses were performed in STATA v17 (https://www.stata.com)
and R v3.6 (https://www.r-project.org).
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