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Longitudinal plasma proteome profiling
reveals the diversity of biomarkers for
diagnosis and cetuximab therapy response
of colorectal cancer

Yan Li 1,4, Bing Wang 1,4, Wentao Yang2,3,4, Fahan Ma 1,4, Jianling Zou 2,3,4,
Kai Li 1, Subei Tan 1, Jinwen Feng 1, Yunzhi Wang 1, Zhaoyu Qin 1,
Zhiyu Chen 2,3 & Chen Ding 1

Cetuximab therapy is the major treatment for colorectal cancer (CRC), but
drug resistance limits its effectiveness. Here, we perform longitudinal and
deep proteomic profiling of 641 plasma samples originated from 147 CRC
patients (CRCs) undergoing cetuximab therapy with multi-course treatment,
and 90 healthy controls (HCs). COL12A1, THBS2, S100A8, and S100A9 are
screened as potential proteins to distinguish CRCs from HCs both in plasma
and tissue validation cohorts. We identify the potential biomarkers (RRAS2,
MMP8, FBLN1, RPTOR, and IMPDH2) for the initial response prediction. In a
longitudinal setting, we identify two clusters with distinct fluctuations and
construct the model with high accuracy to predict the longitudinal response,
further validated in the independent cohort. This study reveals the hetero-
geneity of different biomarkers for tumor diagnosis, the initial and long-
itudinal response prediction respectively in the first course and multi-course
cetuximab treatment,may ultimately be useful inmonitoring and intervention
strategies for CRC.

Colorectal cancer (CRC) is the third most common cancer
worldwide and the second most frequent cause of cancer deaths1.
For CRC patients, screening has been proven to reduce cancer
mortality in average-risk women and average-risk men2. Screening
approaches includes noninvasive fecal occult blood tests, faecal
immunochemical tests, carcinoembryonic antigen test, and
colonoscopy3–5. However, the slow and asymptomatic nature of
disease progression renders diagnosis at an early stage challen-
ging, which severely reduce opportunities for timely disease
detection and intervention6. Therefore, the pressing need is to
explore the potential biomarkers to distinguish the CRC patients

from healthy controls, thus improving the noninvasive accurate
diagnostic strategies.

Approximately half of patients with CRCdie ofmetastatic disease;
the overall five-year survival of these patients is less than 10%7. Current
first-line standard of care for patients with unresectable CRC is che-
motherapy in combination with monoclonal antibodies (mAbs),
including anti–epidermal growth factor receptor (EGFR) mAbs or the
anti–vascular endothelial growth factor (VEGF) mAb. After more than
20 years of translational and clinical investigation, EGFR family and its
intracellular signaling pathways still represents the most relevant
keystone for the targetedmolecular treatment of CRC8. EGFR (HER1) is
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a growth factor receptor belonging to a family of cell membrane
growth factor receptors with tyrosine kinase enzymatic activity,
includingHER2/c-neu (ERBB2), HER3 (ERBB3), andHER4 (ERBB4)9. The
specific ligand binding to the EGFR extracellular domain induces
receptor homodimerization or heterodimerization, which, in turn,
triggers the phosphorylation of specific tyrosine residues in the EGFR
intracellular domain. This activates a complex intracellular signaling
cascade, which regulate cancer cell proliferation, survival, invasive-
ness, metastatic spread, and tumor-induced angiogenesis10.

Cetuximab, a chimerized monoclonal antibody to EGFR, specifi-
cally bind to the EGFRwith high affinity by occluding the ligand-binding
region, blocking ligand-induced EGFR tyrosine kinase activation and
subsequent signal-transduction events leading to cancer cell
proliferation9,11,12. A randomized trial (CO.17) showed that among
patients with CRC that had not responded to advanced chemotherapy,
cetuximab improved overall survival and progression-free survival and
preserved the quality of life better than did best supportive care alone13.
Although EGFR is expressed in approximately 85% of patients with CRC,
resistance to cetuximabwas common that the disease hadprogressed in
more than 50% of treated patients at the first assessment13,14. Therefore,
it is necessary to find potential predictive biomarkers of the first treat-
ment response to cetuximab. Activating mutations in KRAS are found in
approximately 35−40% of CRC patients, which could result in EGFR-
independent intracellular signal transduction activation, thus rendering
EGFR inhibitors ineffective10,15,16. The presence of KRAS-activating muta-
tions was discovered as the first predictive negative biomarker for anti-
EGFR treatment in CRC17. A series of potential biomarkers that could be
useful in predicting response to EGFR inhibitors has been
investigated18–20. Because tumor heterogeneity is strongly associated
with anti-EGFR drug resistance21, a single biomarker is unlikely to satisfy
the sensitivity and specificity required for most applications in pre-
dicting therapeutic response. In addition, acquired resistance inevitably
emerges, disease progression occurs in all patients which limits the
clinical efficacy of the drug8,22.

The emergence of acquired resistance makes patients unable to
benefit in the long term; however, the early warning of acquired
resistance remains unclear. Therefore, the dynamic sampling at each
therapy course ofCRCpatients is necessary, and contribute to thewell-
understanding of the dynamic trajectories related to therapy response
during cetuximab treatment. Clinical analysis of tissue and blood is the
most commonly used method to support treatment decisions for
patients. Due to the invasiveness and risk for the patient, tissue biop-
sies could hardly monitor dynamic temporal and spatial changes that
occur during CRC disease. The dynamic nature of the body fluid cir-
culatory system and its constituent reflects diverse physiological or
pathological states. Proteins circulating in the blood can be both
mediators of organ cross talk and markers of whole-body states, and
the ease of which in blood can be used for biomarker applications23,24.
Mass spectrometry (MS)-based plasma proteomics has been success-
fully applied to disease diagnosis and characterization of protein
change trajectories in disease, indicating that it is an optimal tech-
nology for biomarker discovery in this easily accessible plasma
samples25–29.

Here, we collected 540 plasma samples from 116 CRC patients
(CRCs) undergoing cetuximab therapy with continuous multiple treat-
ment courses and 66 healthy controls (HCs) in the plasma discovery
cohort, 101 plasma samples from 31 CRCs and 24 HCs in the plasma
validation cohort, as well as 31 tumor tissue samples and 27 paired
normal-adjacent tissues (NATs) originated from 31 therapy-naïve CRCs
in the tissue validation cohort in this study. We proposed an unbiased
comprehensive analysis of plasma proteome to search for biomarker
panels for CRC diagnosis and therapy response to cetuximab therapy.
We firstly performed comparative proteomic analysis of proteome
profiles between pre-treated CRC patients and healthy controls. The
results showed that pre-treated CRC patients were featured by

extracellularmatrix organization (ECM).We identifiedCOL12A1, THBS2,
S100A8, and S100A9 proteins, mainly involved in ECM pathway, could
be used as effective biomarkers for distinguishing CRCs from HCs with
high accuracy in our plasma discovery cohort, which was further vali-
dated in the independent tissue and plasma validation cohorts. In
addition, we validated the predictive effect of the four proteins on a
wider population scale of CRC patients, but not limited to the RASwild-
type CRC patients or metastatic CRC patients. We also explored the
predictive efficacy of the four proteins (COL12A1, THBS2, S100A8, and
S100A9) in multi-cancer cohort composed of 115 plasma samples from
95 patients with treatment-naive patients with various cancer types and
20 HCs, and two public cohorts related to the non-malignant diseases.
The results showed four proteins couldwell distinguishCRCs fromHCs,
but could not distinguish the patients with other cancers and the non-
malignant diseases (such as autoimmune diseases and infections),
includinggastric cancer (GC), esophageal cancer (EC), breast carcinoma
(BRCA), lung cancer (LC), ulcerative colitis (UC), bladder cancer (BLCA),
malignant lymphoma (ML), and SARS-CoV-2 infection, demonstrating
the relative specificity of the four proteins for the CRC diagnosis. Then,
we performed consensus clustering analysis on the proteome profiles
of the pre-treated CRC patients, and identified three proteomic sub-
types featured by distinct bioprocesses and associated with diverse
therapeutic responses. We found that immune activation signaling and
RRAS/RRAS2-mediated ECM pathways were associated with different
responses to the initial cetuximab treatment. We proposed the key
regulators involved in these pathways, including RRAS2, MMP8, FBLN1,
RPTOR, and IMPDH2, could be used as the biomarkers for the initial
response prediction of the first cetuximab treatment, in distinguishing
sensitive patients from non-sensitive patients, which was also validated
in the independent tissue and plasma validation cohorts. Furthermore,
we analyzed a longitudinal cohort to identify the proteins with dynamic
change associated with the treatment response to cetuximab. Finally,
we used the logistic regression strategy to construct the predictive
model composed of IDH3G, MDN1, KLC4, MYL9, SBF1, and HTRA3,
which achieved high accuracy to predict response in multi-course
cetuximab treatment. The robustness of this predictive model was
further validated in the independent plasma cohorts. Overall, this study
provides plasma protein dynamic changes throughout the cetuximab
therapy course at an individual patient level, and identifies the potential
biomarkers for tumor diagnosis, the initial response prediction and
longitudinal response prediction, revealing the heterogeneity of these
different biomarkers in the clinical management of CRC.

Results
The characteristics ofCRCanti-EGFR therapy cohorts for plasma
and tissue proteome profiling
To investigate the proteomic patterns of CRC and the association with
response to cetuximab therapy, we collected 641 plasma samples from
the plasma cohort composed of two independent cohorts including
plasma discovery cohort (CRC patients (CRCs), N = 116; and healthy
controls (HCs),N = 66) and plasma validation cohort (CRCs,N = 31; and
HCs, N = 24). In the plasma cohort, we collected 89 pre-treatment
plasma samples and 385 post-treatment plasma samples from CRC
patients during continuous multiple courses anti-EGFR therapy in the
plasma discovery cohort; and 31 pre-treatment plasma samples and 46
post-treatmentplasma sampleswerecollected in theplasmavalidation
cohort. In addition, we included 31 tumor tissues and 27 paired NATs
originated from 31 therapy-naïve CRC patients matched with the
plasma samples in the independent tissue validation cohort. For CRC
patients, patients pathologically diagnosed with CRC at Fudan Uni-
versity Shanghai Cancer Center (Shanghai, China)were included in this
study retrospectively. The anti-EGFR therapy regimen was given at
standard dosing as described in previous studies, of which patients
were given 500mg/m2 cetuximab once-every-2-weeks combined with
FOLFOX/FOLFIRI/irinotecan30–32. The post-treatment sampling was
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acquired after each course of the treatment (up to eight weeks), and
this longitudinal cohort included in this study covered up to 9 sam-
pling time points during the treatment period. The inclusion criteria
were as follows: diagnosis of CRC; presence of at least onemeasurable
or unmeasurable but evaluable lesion (described according to
Response EvaluationCriteria in Solid Tumors [RECIST] 1.1); presenceof
polymerase chain reaction (PCR)-confirmed wild-type KRAS (exon 2/3/
4), NRAS (exon 2/3/4), and BRAF (exon 15) genotypes in tumor tissue
before the receipt of anti-EGFR therapy; no history of severe heart or
liver disease, psychiatric disorders, hemorrhage, or perforation of the
digestive tract; and an Eastern Cooperative Oncology Group (ECOG)
performance status of 0/1 at 3 days before treatment33 (Methods).
According to the National Comprehensive Cancer Network® (NCCN®)
stated the NCCN Clinical Practice Guidelines in Oncology (NCCN
Guidelines®) for available at NCCN.org, all the CRC patients receiving
cetuximab therapy included in this study were left-sided RASwild-type
metastatic CRC. All the baseline clinical characteristics of the indivi-
duals included in this study were collected, including age, gender,
degree of tumor differentiation, ECOG performance-status score, and
other biochemical indicators (such as lactate dehydrogenase (LDH)
level, white blood cell (WBC) count, lymphocyte number (LYMPHN),
hemoglobin (HB), and platelet count) (Supplementary Data 1). Statis-
tical analysis revealed that age and sex distributions were balanced
among the CRC patients (CRCs) and healthy controls (HCs) both in
plasma discovery cohort, plasma validation cohort and tissue valida-
tion cohort, showing there was no selection bias among these indivi-
duals in this study. In addition, there was no statistically significant
difference in the clinical parameters of serum LDH level, WBC count,
lymphocyte number, hemoglobin, and platelet count among the CRC
groups (Table 1). An overview of proteomics workflow was shown
in Fig. 1A.

The plasma proteomic biomarkers to distinguish CRC patients
from healthy controls
For the quality control of the performance of MS, the mixture of all
plasma samples was measured every twenty samples, which was

adopted in proteomic studies34–36. A Pearson’s correlation coefficient
was calculated for all the quality-control runs, and the results were
shown in Supplementary Fig. 1A. The average correlation coefficient
among the control samples was 0.978, demonstrating the consistent
stability of the MS platform. Proteomics measurement resulted in
1587–2502 gene products (GPs) in each sample (Supplementary
Fig. 1B). A total of 9852 gene products (GPs) were identified in all
plasma samples of the plasma discovery cohort, of which 9714 GPs
were identified in CRC patients (CRCs, N = 474), and 7512 GPs were
identified in healthy controls (HCs,N = 66) (Fig. 1B and Supplementary
Fig. 1B; Supplementary Data 2). To explore themolecular difference of
CRC patients from healthy controls, we then performed the com-
parative proteomic analysis of the pre-treatment CRCs (N = 89) and
HCs. Firstly, we found nomajor differences in the proteomic coverage
between the pre-treatment CRCs (7967 GPs) and HCs (7512 GPs) (two-
sided Student’s t test, P > 0.05) (Fig. 1C). We observed that 78.9% GPs
(6829 GPs) were commonly identified in the pre-treatment CRCs and
HCs, which were majorly grouped into secreted proteins according to
the protein classes in the Human Protein Atlas (HPA) database.
Importantly, 13.2% proteins (1138 GPs) were exclusively identified in
the pre-treatment CRCs and HCs; among these proteins, CRC related
proteins ranked the higher proportion, representing plasmaproteome
could mostly reflected molecular alteration of CRC (Fig. 1C, D). Our
study has so far presented a comprehensive view of the plasma pro-
teomic landscape of the CRC cohort.

To detect changes in the plasma proteome between the pre-
treatment CRC patients and healthy controls, we compared the pro-
teome profiles of CRC and HC groups and identified a total of 1269
differentially expressed proteins (DEPs), of which 745 proteins up-
regulated in the CRC group and 524 proteins up-regulated in the HC
group (adj P value < 0.05, fold change >2) (Fig. 1E and Supplementary
Data 3).We then performed pathway enrichment analysis based on the
DEPs according to theConsensusPathDB (CPDB)molecular interaction
data obtained from 31 different public repositories37. As shown in
Fig. 1F, G, we found that glycolysis/gluconeogenesis, signaling by
ERBB2, cellular response to chemical stress, MAPK activation, and

Table 1 | Baseline characteristics in the discovery and validation cohorts

Plasma discovery cohort Plasma validation cohort Tissue validation cohort P-value

Healthy control CRC Healthy control CRC CRC
(N = 66) (N = 116) (N = 24) (N = 31) (N = 31)

Age (years), median (range) 62 (57−63) 55.5 (21−76) 55 (25−68) 56 (29−77) 57 (25−76) 0.660a

Gender 0.334b

Female 44 (66.7%) 36 (31.0%) 12 (50.0%) 11 (34.4%) 14 (45.2%)

Male 22 (33.3%) 80 (69.0%) 12 (50.0%) 20 (65.6%) 17 (54.8%)

Degree of tumor differentiation 0.444b

Poorly differentiated - 29 (25.0%) - 5 (15.6%) 11 (35.5%)

Moderately differentiated - 54 (46.6%) - 17 (56.2%) 16 (51.6%)

Well differentiated - 2 (1.7%) - 0 (0.0%) 0 (0.0%)

NA - 31 (26.7%) - 9 (28.1%) 4 (12.9%)

ECOG performance status 0.511b

1 - 111 (95.7%) - 31 (100%) 31 (100%)

0 - 5 (4.3%) - 0 (0.0%) 0 (0.0%)

Lactate dehydrogenase level (U/L), median (range) - 237 (97−3000) - 184 (118−2231) 235 (118−2231) 0.262a

White Blood Cell count (109/L), median (range) - 5.75 (1.7−15.2) - 6.1 (2.9−11.9) 6.5 (2.9−14.8) 0.529a

Lymphocyte number (109/L), median (range) - 1.4 (0.3−3.1) - 1.7 (0.3−107) 1.6 (0.9−107) 0.139a

Hemoglobin (g/L), median (range) - 126 (39−163) - 127 (97−155) 126 (39−152) 0.365a

Platelet Count (109/L), median (range) - 198.5 (48−561) - 206 (105−417) 205 (112−506) 0.692a

aone-way ANOVA analysis was applied for continuous variables.
btwo-sided Fisher’s exact test was used for categorical variables.
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Fig. 1 | Summary of the plasma proteomic analysis of CRC cohort and healthy
control. A Overview of the plasma proteomic workflow, including cohort con-
struction (including plasma discovery cohort (CRC: N = 116 and Healthy control
(HC): N = 66), plasma validation cohort (CRC: N = 31 and HC: N = 24), and tissue
validation cohort composed of 31 CRC patients), proteomic profiling (data-inde-
pendent acquisition (DIA), data-dependent acquisition (DDA), and parallel reaction
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For the plasma samples, the pre-treatment plasma samples and post-treatment
plasma samples covering multi-course treatment were collected; for tissue sam-
ples, the pre-treatment samples were collected from the therapy-naïve CRC
patients. B The dynamic range of the protein identification of CRC cohort and
healthy control according to the descending sort of protein abundance in CRC and
HC. Proteins are quantified as log10 transformed intensity.C Venn diagram showing

the protein overlap of pre-treatment CRC and HC. The number of proteins is
quantified in pre-treatment CRC patients (N = 89) and healthy controls (N = 66)
(two-sided Student’s t test, P =0.749). Boxplots show median (central line), upper
and lower quartiles (box limits), 1.5×interquartile range (whiskers). D The barplot
showing the proportion of proteins in pre-treatment CRC patients and healthy
controls (HCs). E Volcano plot showing the differential expression of pre-treatment
CRC cohort and healthy control (two-sided Wilcoxon rank-sum test). The adj
P <0.05 is considered statistically significant. Blue, upregulated proteins in pre-
treatment CRC patients; green, upregulated proteins in HCs. Bubble plots showing
the CPDB pathway enrichment (two-sided Fisher’s exact test) of pre-treatment CRC
(F) andHC (G) groups. The adj P <0.05 is considered statistically significant. Source
data are provided as a Source Data file.
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extracellular matrix organization pathways were enriched in the
plasma samples of CRC patients. The plasma samples of healthy indi-
viduals were featured by neutrophil degranulation, innate immune
system, etc. (adj P value < 0.05) (Fig. 1F, G; Supplementary Data 3). To
explore how much of the alteration of these proteins and pathways in
plasma could be reflected in the tumor, we reviewed all the archival
formalin-fixed paraffin-embedded (FFPE) tissues from the therapy-
naïve CRC patients included in this study. Then, we collected 31 tumor
tissues and 27 paired NATs of CRC patients matched with the plasma
samples, as the tissue validation cohort, for MS-based proteomic
profiling. Proteomic analysis of tumor tissues andNATs identified9258
GPs and 7452 GPs, respectively, of which 2232 GPs were specifically
detected in tumor tissues (Supplementary Fig. 1D). In addition, we
found the 6927 proteins were detected both in plasma and tissue
samples (Supplementary Fig. 1E). We applied the same differential
expression analysis in the tissue validation cohort, resulting in 2573 up-
regulated proteins and 251 down-regulated proteins in tumor tissues
(fold change (Tumor vs NAT) >2, adj P value < 0.05) (Supplementary
Fig. 1F). Further comparison of the DEPs identified in plasma samples
and tissue samples showed that, among the 745 proteins up-regulated
in the plasma samples from CRC patients, 235 (31.54%) proteins were
also up-regulated in tumor tissues from CRC patients (Supplementary
Fig. 1G), which demonstrated a relatively high overlapped proportion
of theDEPs in theplasmasamples and tumor tissue samples of theCRC
patients. To further explore the alteration of the pathways identified in
theCRCplasma, weperformed thepathway enrichment analysis based
on these DEPs of the tissue validation cohort. Consistent with the
enrichment results in the plasma proteome, we found that glycolysis
and gluconeogenesis, adherens junction, TP53 transcriptional regula-
tion, cellular response to chemical stress, and oncogenic MAPK sig-
naling pathways were enriched in the tumor tissues; while immune
regulation pathways such as complement system were enriched in the
NATs (Supplementary Fig. 1H). These results revealed the alteration of
proteins and pathways in plasma proteome had a relatively well
reflection in the tissue samples. Therefore, a combined analysis of
plasma and tissue proteome profile will identify robust biomarkers
with potential clinical utility.

To search for the potential proteins applied for plasma and tissue
samples that could be used as biomarkers for distinguishing CRC
patients from healthy controls, we adopted strict screening strategy in
the plasma and tissue samples as follows (Fig. 2A): (1) The candidate
proteins were expressed in at least 50% of the samples; (2) The can-
didates were significantly increased in tumor samples than normal
samples (two-sidedWilcoxon rank-sum test, adj P value < 0.01); (3) The
candidates were identified with at least 2-fold increase in CRC samples
than normal samples or NATs. At a result, we screened 148 proteins
and 797 proteins significantly and stably overexpressed in the plasma
samples and tumor tissues of CRCpatients, respectively; among them,
an overlapped 15 signatures (CPT1A, NUP205, CDC37, MAT2A, RPN1,
GMPS, PSMA1, CDH1, SRSF7, FUBP3, PIGR, S100A8, S100A9, THBS2,
and COL12A1) were elevated both in plasma and tissue samples of CRC
patients. To further refine a protein panel to distinguish the CRC
patients from healthy controls, we included the other independent
CRC cohort in the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) study38. We applied the same criteria in the pairwise com-
parison between tumor tissue andmatched non-tumor adjacent tissue
proteomic data of the CRC cohort from CPTAC, which resulted in 31
proteins that were significantly overexpressed in tumor tissues of CRC
patients. Combined the three independent cohorts, we ultimately
narrowed down a group of four proteins, COL12A1, THBS2, S100A8,
and S100A9, significantly increased both in plasma and tissues of CRC
patients in our study and the CPTAC study (Fig. 2B). When the differ-
ential expression was dropped from 2-fold to 1.5-fold change, there
were still only the four proteins (COL12A1, THBS2, S100A8, and
S100A9) were screened among the three independent cohorts

(Supplementary Fig. 2A), indicating the four proteins could be used as
the potential biomarkers to distinguish CRC patients from healthy
controls. In addition, transcriptomic data from the public TCGA CRC
cohortofTIMER2.0database and immunohistochemical (IHC) staining
data from the HPA database further confirmed the high expression of
COL12A1, THBS2, S100A8, and S100A9 in CRC (Supplementary Fig. 2B,
C). In a conclusion, the four proteins showed a consistent elevation
both in plasma and tumor tissues of CRC patients, suggesting the
potential to distinguish CRC patients from healthy controls.

Then, we performed gene set enrichment analysis (GSEA) for
pathway enrichment analysis39 to explore the potential biological
association of the four proteins (COL12A1, THBS2, S100A8 and
S100A9). The GSEA results demonstrated that the four proteins
COL12A1, THBS2, S100A8, and S100A9 were enriched in collagen-
containing extracellular matrix (GO:0062023) based on the cellular
component database according to the Gene Ontology annotation
(FDR =0.03, NES = 1.34) (Fig. 2C). To validate this association, we
performed single sample gene set enrichment analysis (ssGSEA)40.
Further correlation analysis revealed that COL12A1, THBS2, S100A8,
and S100A9 showed significantly positive correlation with extra-
cellular matrix organization (ECM) ssGSEA score (Supplementary
Fig. 2D). The protein-protein interaction network revealed a close
connection among these proteins involving in ECM, especially for the
four proteins including COL12A1, THBS2, S100A8, and S100A9
(Fig. 2C), consistent with the previous related reports41–44. Overall, the
four biomarkers had the potential biological association, which
showed significant enrichment to the collagen-containing extracellular
matrix. Additionally, we also explored the association of the four
proteins with clinical prognosis. We found a significantly negative
correlation with clinical outcomes of the four proteins’ expression of
the TCGA CRC cohort in the CPTAC study45 (two-sided log rank test,
P <0.05; hazard ratio (HR) > 1). According to the HPA annotation, the
four proteins belonged to secreted proteins and were identified in
plasma; among them, S100A8 and S100A9 have known clinical utilities
as potential markers and inhibitors (Fig. 2D).

To further determine whether these four proteins could effec-
tively distinguish CRC patients from healthy controls, we used
machine learning algorithms to assess the predictive capabilities of
these proteins. We calculated the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve plot for the four proteins
in the plasmadiscovery cohort, and found the AUCof at least 0.674 for
a single marker (range: 0.674–0.843); and the AUC of the combined
plasma markers was increased to 0.910 (95%CI: 0.863–0.957), exhi-
biting the better performance to distinguish CRC patients from heal-
thy controls (Fig. 2E). To assess the predictive performance of the four
proteins, 60%of sampleswere used as a training set, and the remaining
40% represented the independent testing set. Finally, the predictive
model with a 10-fold cross validation yieldedwith high sensitivity (true
positive rate) (90%) and specificity (true negative rate) (93.02%)
(Fig. 2F). When applied to the independent testing set samples, the
predictive model also achieved 72.6% accuracy (Fig. 2F). More impor-
tantly, the combined prediction of the four proteins achieved good
performancewith anAUCof0.945 in the independent tissue validation
cohort (Fig. 2G and Supplementary Fig. 2E). To further validate the
prediction effect of the four proteins to distinguish CRC patients from
healthy controls, we included an independent plasma validation
cohort composed of 31 CRC patients and 24 healthy controls. As a
result, the four proteins demonstrated a well distinguish of CRC
patients from healthy controls with an AUC of 0.952 in the indepen-
dent plasma validation cohort (Fig. 2G and Supplementary Fig. 2F).

Due to the four proteins were screened in the CRC patients
receiving cetuximab therapy (RAS wild-type metastatic CRC patients),
therewas possible limitation of the clinical validity of the four proteins
in CRC diagnosis. To explore whether the four proteins could also be
applied on a wider population scale of CRC patients, we included a
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plasma validation cohort composed of patients of CRC (N = 20), of
which 50% (N = 10) patients with CRC had RAS mutation and 50%
(N = 10) patients with CRC had no tumor metastases, and healthy
controls (HCs, N = 20). To eliminate the possible limitations that the
four proteins could not distinguish CRC patients with RAS mutation
and no metastases, we performed the differential analysis and ROC
analysis based on the plasma proteomic data, respectively in total 20

CRC patients, CRC patients with RASmutation, and CRC patients with
no metastases. The differential analysis identified the four proteins
(COL12A1, THBS2, S100A8, and S100A9) showed significant up-
regulation in the total 20 CRC patients, and the ROC analysis demon-
strated the four proteins showed a well distinguish of CRCs from HCs
with an AUC of 0.948 (Fig. 2H and Supplementary Fig. 2G). As for the
CRC patients with RAS mutation, we also found the four proteins
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showed a consistent up-regulation in the CRC patients with RAS
mutation; meanwhile, the four proteins achieved a high prediction
with an AUC of 0.985 (Fig. 2H and Supplementary Fig. 2G). As for the
CRC patients with no metastases, the differential analysis also showed
a consistently significant up-regulation of the four proteins in the CRC
patients with no metastases, with achieving a good performance with
an AUC of 0.950 in distinguishing CRC patients with no metastases
from HCs (Fig. 2H and Supplementary Fig. 2G).

In addition, to further verify whether the four proteins (COL12A1,
THBS2, S100A8, and S100A9) showed consistent up-regulation in the
tissue samples respectively from CRC patients with RASmutation and
no metastases, we also searched the public cohort from the CPTAC,
which composed of a total of 96 tumor and matched normal adjacent
tissues (NATs) pairs fromCRCpatients38. In the CPTACCRC cohort, we
found the four proteins showed a consistent up-regulation in the tissue
samples from CRC patients, which suggested that the four proteins
were indeed up-regulated in the tumor samples from CRC patients
with RAS mutation and no metastases (Supplementary Fig. 2H). The
ROC analysis demonstrated that the four proteins combined predic-
tion could achieve a high prediction with an AUC of 0.917 for the CRC
diagnosis, suggesting the stability and universality of the four proteins
in CRC diagnosis (Fig. 2I). In the CPTAC CRC cohort, 42% (N = 40)
patients with CRC had RAS mutation, and 90% (N = 86) patients with
CRC had no tumor metastases. To further demonstrate the predictive
efficient of the four proteins was not limited to the patients with RAS
wild-type metastatic CRC, we further stratified 40 CRC patients with
RAS mutation, of which ROC analysis showed a well distinguish from
tumor and NATs with an AUC of 0.912 (Fig. 2I). In addition, we also
stratified 86 non-metastatic CRC patients, of which ROC analysis also
showed a good prediction with anAUC of 0.931 (Fig. 2I). Therefore, we
validated the predictive effect of the four proteins on a wider popu-
lation scale of CRC patients, but not limited to the RAS wild-type CRC
patients or metastatic CRC patients.

To explore whether the four proteins were specific to CRC diag-
nosis rather than other cancers, we further enrolled a multi-cancer
(including other six cancer types) plasma independent cohort com-
posed of a total of 115 plasma samples, including 95 plasma samples
from treatment-naive patients with various cancer types (including
colorectal cancer (CRC, N = 20), lung cancer (LC, N = 15), malignant
lymphoma (ML, N = 10), bladder cancer (BLCA, N = 10), breast carci-
noma (BRCA, N = 15), gastric cancer (GC, N = 10), esophageal cancer
(EC, N = 15)), and 20 plasma samples from healthy controls (HCs,
N = 20). The proteomic measurement showed the four proteins
(COL12A1, THBS2, S100A8, and S100A9) were consistently up-
regulated in the patients with CRC compared with HCs, while the
four proteins didn’t exhibited the consistency of up-regulation in
patients with other cancers (including GC, EC, BRCA, LC, BLCA, and
ML), suggesting the consistency of up-regulation of the four proteins
only in CRC but not in other cancers. To further verify the predictive
efficacy of the four proteins in distinguishing patients with CRC, but
not other cancers, from HCs, we also performed the ROC analysis to
evaluate the predictive effect. The ROC analysis revealed the four
proteins combined prediction achieved good performance with an

AUC of 0.910 in distinguishing CRC patients from HCs, while the four
proteins hadpoor performancewithAUCvalues nomore than0.685 in
distinguishing patients with other cancers from HCs (GC: 0.685, EC:
0.663, BRCA: 0.673, LC: 0.670, BLCA: 0.440, ML: 0.655) (Supplemen-
tary Fig. 2I). Overall, we validated the consistency of up-regulation of
the four proteins (COL12A1, THBS2, S100A8, and S100A9) was only
observed in CRC but not in other cancer types; and the four proteins
could achieve good performance in the diagnosis of CRC, but not
other cancer types.

In addition, to explore the predictive efficacy of the four proteins
to distinguish patients with some non-malignant conditions, we also
searched for the public datasets related to ulcerative colitis (an
inflammatory bowel disease) and infection disease (such as SARS-CoV-
2 infection). The GSE11223 dataset was composed of ulcerative colitis
patients (UC, N = 129) and healthy controls (HCs, N = 73), and the
GSE207015 dataset was composed of SARS-CoV-2 infected patients
(COVID-19, N = 124) and non-infected healthy controls (N = 70). Then,
the differential expression analysis showed the four proteins
(COL12A1, THBS2, S100A8, and S100A9) showed no obvious change in
the UC patients or the SARS-CoV-2 infected patients. To further
investigate whether the four proteins could distinguish the patients
with these non-malignant conditions, we performed the ROC analysis.
The results revealed the four proteins combination could not distin-
guish the patients with the non-malignant diseases such as inflamma-
tory diseases and infections from healthy controls with AUC values no
more than 0.660 (UC: 0.659, SARS-CoV-2 infection: 0.612) (Supple-
mentary Fig. 2I).

Overall, in this study, we validated that the combination of four
proteins couldwell distinguish theCRC fromHC, but not limited to the
RAS wild-type CRC patients or metastatic CRC patients, validating the
clinical validity of the four proteins on a wider population scale of CRC
patients. In addition, we also validated that the four proteins could not
distinguish the patients with other cancer types and the non-malignant
diseases, demonstrating the relative specificity of the four proteins for
the CRC diagnosis. These results demonstrated the robustness of the
four proteins in distinguishing CRCpatients fromhealthy controls. For
the clinical validity of the potential biomarkers for CRC diagnosis, we
recommended that it is deserved to apply these biomarkers in the
consecutive patients in a colonoscopy cohort for the CRC diagnosis
during several years in the future.

The potential molecular features and biomarkers for the initial
response to cetuximab therapy
Cetuximab therapy is the major targeted treatment of CRC, but drug
resistance limits its effectiveness. As reported, the disease had pro-
gressed in more than 50% of treated patients at the first assessment of
the CRCpatients, whichmight due to tumor heterogeneity. To explore
the potential biomarkers for predicting the therapy response, we
focused on the baseline plasma proteome profiles of the 89 therapy-
naiveCRCpatients, and evaluated the initial therapy response after the
first cetuximab treatment among these patients according to the
widely accepted RECIST (version 1.1). Here, the objective response rate
(ORR), defined as partial response (PR) plus complete response (CR),

Fig. 2 | Plasma protein biomarkers for diagnosis of CRC patients. A The
screening criteria of biomarkers for CRCdiagnosis applied in Fudan cohort and the
CPTAC CRC cohort. B The heatmaps showing the relative abundance (Z score) of
the four proteins in Fudan cohort and the CPTAC CRC cohort. The little heatmaps
and barplots showing the differential expression (two-sided Wilcoxon rank-sum
test, adj P value < 0.05). C Left: the GSEA shows collagen containing extracellular
matrix are enriched in CRCpatients. Right: the protein-protein interaction network.
D Left: hazard ratio (HR) of overall survival in CPTAC cohort (N = 95; two-sided log
rank test, P value < 0.05) and immunohistochemistry (IHC) staining scores defined
by the Human Protein Atlas (HPA) of these diagnostic biomarkers. Data are pre-
sented as median values (HR) with range (95%CI). Right: Overlap with plasma

proteins and secreted proteins annotated by HPA, as well as clinical utilities and
inhibitors.EThe receiver operating characteristic (ROC) curves of the four proteins
to distinguish CRCs fromHCs. FClassification errormatrix using logistic regression
classifier of 60% training set and 40% testing set in distinguishing CRCs fromHCs in
the plasma discovery cohort. The number of samples identified is noted in each
box. G The ROC curves of the four proteins in the independent tissue validation
cohort and plasma validation cohort. The ROC curves of the four proteins to dis-
tinguishCRCpatients fromHCsorNATs, CRCpatientswithRASmutation fromHCs
or NATs, and CRC patients with no metastases from HCs or NATs in the Fudan
plasma validation cohort (H) and CPTAC tissue validation cohort (I) on awider CRC
population scale. Source data are provided as a Source Data file.
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was selected for the efficacy evaluation; patients with CR and PR were
defined as sensitive (S) and those with stable disease (SD) and pro-
gressive disease (PD) were defined as non-sensitive (NS), consistent
with the previous research46.Wepreliminarily explored the association
of diagnostic biomarkers (COL12A1, THBS2, S100A8, and S100A9)
identified above with therapy response. As a result, the differential
analysis of the diagnostic biomarkers showed no significant difference

between S and NS groups, and ROC analysis also indicated a poor
prediction of the four biomarkers in initial therapy response (Supple-
mentary Fig. 2J). Therefore, the diagnostic biomarkers, used for dis-
tinguishing the CRC patients from healthy controls, could not be
regarded as the indicator for the initial therapy response prediction.

Although proteins have been regarded as the “executors of life”,
we have no direct evidence for that whether the proteome pattern can
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distinguish different therapy responses. Therefore, herein, we firstly
performed consensus clustering analysis, an unsupervised clustering
method, on the 89 therapy-naïve plasma samples based on 1500 most
variable proteins (Methods), which resulted in three subtypes: G-I
(N = 24), G-II (N = 34), and G-III (N = 31) (Supplementary Fig. 3A, B, and
Supplementary Data 4). Further statistical analysis of all these clinical
characteristics among the three proteomic subtypes revealed sig-
nificant association of proteomic subtypes with therapy response
(Fisher’s exact test, P = 0.014) (Fig. 3A), but this association was not
observed with either grade, degree of tumor differentiation, ECOG, or
any other biochemical indicators (P >0.05) (Table 2). These results
demonstrated that the proteomic subtype could reflect the strong
association with therapy response, which was irrespective of other
clinical parameters. The therapy response exhibited a gradual
decreasing resistance phenomenon fromG-I to G-III, as the percentage
of sensitive patients (S: CR and PR) dramatically increased from 16.7%
in G-I to 53.6% in G-III, while the percentage of non-sensitive patients
(NS: SD and PD) dramatically decreased from 83.3% in G-I to 46.4% in
G-III (Fisher’s exact test, P = 0.014) (Fig. 3A). Comparative analysis of
proteomic profiling resulted in 313 (G-I), 403 (G-II), and 416 (G-III) GPs
(adj P value < 0.05) among the three subtypes (Supplementary Data 4).
Based on these differential proteins, we performed a functional
enrichment analysis according to the CPDB database37, and deter-
mined the dominant bioprocesses of each subtype: the G-I subtype, as
the non-sensitive subtype, was characterized with PPAR-alpha path-
way, integrin-linked kinase signaling, metabolism of vitamins and
cofactors, extracellular matrix organization (ECM), RHO GTPase cycle
and MAPK signaling pathway (adj P value < 0.05); the G-III subtype, as
the sensitive subtype, was featured by cellular response to chemical
stress (adj P value = 8.1E-6), neutrophil degranulation (adj P value =
3.1E-5), autophagy (adj P value = 4.9E-5), innate immune system (adj
P value = 1.2E-4), TP53 regulates metabolic genes (adj P value = 8.2E-4),
and T cell receptor signaling pathway (adj P value = 2.1E-2); while for
the G-II subtype, as the mixed subtype, was featured by DNA Double
Strand Break Response (adj P value = 1.2E-6), protein ubiquitination
(adjP value = 2.6E-5), protein processing in endoplasmic reticulum (adj
P value = 2.6E-5), spliceosome (adj P value = 7.8E-4), hemostasis (adj
P value = 7.8E-4), and ribosome (adj P value = 4.7E-2), in which the
proteins involved showed no significant association with therapy
response (Supplementary Fig. 3B, C). This preliminarily determined
the association between proteome pattern and therapy response,
which provided the direct basis for further comparison between sen-
sitive group and non-sensitive group.

Next, we explored the potential resistant/sensitive mechanism
andbiomarkers for the initial therapy response basedon themolecular
features revealed by consensus clustering analysis. As a sensitive
subtype, the overrepresented pathways of G-III subtypewere validated
by GSEAwith significant enrichment of these pathways in G-III subtype
compared with the other subtypes (FDR <0.05) (Supplementary
Fig. 3D). Consistently, we found the immunepathways, such as antigen
processing, TCR signaling, and autophagy were enriched in the sen-
sitive group in the tissue validation cohort (Supplementary Fig. 3E).

Further analysis based on the ssGSEA scores showed that among these
pathways enriched in G-III subtype, autophagy showed significant
association with neutrophil degranulation (Pearson r =0.26, P =0.014)
or innate immune system (Pearson r =0.44, P = 1.71E-5), indicating the
biological association of autophagywith neutrophil degranulation and
innate immune system (Fig. 3B). As reported, the tumor micro-
environment infiltration estimated by proteomic data had a high
Pearson correlation with ones estimated by transcriptomic data con-
cluded from these published researches, indicating the potential of
proteome in xCell analysis to reveal the tumor microenvironment
infiltration47,48. We then evaluated the immune microenvironment
among three subtypes by xCell analysis (Supplementary Data 4). We
found that G-III subtype had the highest immune score compared with
other two subtypes (Fig. 3C), and CD8+ Temwas significantly enriched
inG-III subtype (fold change>2, adjP value < 0.05) (Fig. 3D). To explore
the associationof these cell typeswith therapy response,wecompared
the xCell scores between S group and NS group. We found the xCell
score of CD8+Tem was significantly dominant in S group (Fig. 3E). To
validate this finding, we performed xCell analysis on the tissue pro-
teomic data of the independent tissue cohort composed of 12 S
patients and 19 NS patients. Consistently, the xCell score of CD8+Tem
was significantly elevated in S group compared with NS group based
on the tissue proteome (Fig. 3E). Furthermore, we performed immu-
nohistochemistry (IHC) of the representative signatures (CD44 and
GZMK) of the CD8+ Tem49 to evaluate tumor infiltration in tissue
samples from therapy-naïve CRC patients. As a result, the expression
of CD44 and GZMK was significantly increased in S group compared
with NS group. Moreover, S group had higher percentage of CD44
positive cells (53.9%) and GZMK positive cells (47.2%), compared with
NS group (9.7% and 15.7%, respectively) (P < 1E-4) (Fig. 3F). Overall,
these results demonstrated that high level of CD8+Tem associated
with cetuximab sensitivity, both in plasma and tissue proteomic data.

To further explore the clinical implication of CD8+Tem, we fur-
ther associated the CD8+Tem score with tumor size evaluated by CT/
MRI (Supplementary Fig. 3F). The results demonstrated patients with
higher CD8+Tem xCell score were prone to have a smaller tumor size
in the baseline evaluation (Fig. 3G). Further correlation analysis
showed there was a significantly negative correlation (Pearson
r = −0.39, P = 0.033) between tumor size and CD8+Tem xCell score
(Fig. 3H), implying the CD8+Tem could be the potentialmarker for the
cetuximab sensitivity. To further validate this finding, we included
the single-cell transcriptome data from CRC patients, which provided
the reference of microenvironment in CRC and could be obtained
from Gene Expression Omnibus (accession number GSE108989)49.
Then, we combined the single-cell transcriptome data and the clinical
characteristics of each patient for the further analysis. We performed
the correlation analysis of the CD8+Tem cell percentage and tumor
size in the single-cell transcriptome data. Consistent with our findings
uncovered by the proteome data, the result demonstrated the inferred
proportion of CD8+Tem cell showed a significantly negative correla-
tion (Spearman r = −0.72, P = 0.019) with tumor size, which further
confirmed the association of CD8+Tem cell with tumor size

Fig. 3 | The potential mechanism and biomarkers for cetuximab sensitivity.
A Association of proteomic subtypes with therapy response (two-sided Fisher’s
exact test). B Correlation of the pathways of the G-III subtype (two-sided Pearson’s
correlation test). C, E Boxplots for immune score among G-I (N = 24), G-II (N = 34),
and G-III (N = 31) (P =0.042) (C), and CD8+Tem score between S and NS groups in
plasma samples (N (S) = 16, N (NS) = 15; P =0.035) and tissue samples (N (S) = 12, N
(NS) = 19; P =0.005) (two-sided Student’s t test). D Differential cell types between
G-III and other subtypes (two-sided Student’s t test). F Qualification of CD44
(P = 1.0E-5) and GZMK (P = 8.0E-6) stained by IHC in representative examples (two-
sided Student’s t test). Data are shown as mean± SD (n = 3 independent experi-
ments).GAssociation between CD8+Tem score (Z score) with tumor size (cm), and

S/NS group.H Correlation of CD8+Tem score and tumor size (two-sided Pearson’s
correlation test).Data are presented asPearson rwith 95%CI. IDiagramshowing the
potential mechanism of cetuximab sensitivity. The little heatmap depicted the log-
transformed fold-change of S versus NS groups. J Correlation of CD8+Tem score
and RPTOR/IMPDH2 (two-sided Pearson’s correlation test).K Kaplan–Meier curves
of Overall survival (OS) in the CPTAC cohort (two-sided log rank test).LDifferential
expression of RPTOR (P = 8.9E-5, 2.9E-5) and IMPDH2 (P = 4.2E-8, 3.4E-6) in dis-
covery cohort (N (S) = 31, N (NS) = 45) and validation cohort (N (S) = 16, N (NS) = 15)
(two-sided Wilcoxon rank-sum test). PRM, parallel reaction monitoring. Boxplots
showmedian (central line), upper and lower quartiles (box limits), 1.5×interquartile
range (whiskers) (C, E, and L). Source data are provided as a Source Data file.
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(Supplementary Fig. 3G). These results demonstrated that CD8+Tem
could be regarded as a potential marker for the cetuximab sensitivity.

Then, we investigated the potential biological interaction asso-
ciated with the therapy response. As reported, autophagy has been
incorporated into multiple innate and adaptive immune pathways50,51.
Accumulating evidence indicates that autophagy has important roles
in regulating neutrophil functions, including degranulation, metabo-
lism, and NET formation52. Autophagy deficiency disrupts neutrophil
degranulation53. We presented the potential comprehensive network
diagram, in which the related proteins involved in autophagy, neu-
trophil degranulation and T cell activation, were predominant in
S group (Fig. 3I). Among these proteins, RPTOR and IMPDH2 were
significantly positive correlated with CD8+Tem both in plasma and
tissue samples (r ≥0.23, P < 0.05) (Fig. 3J, and Supplementary Fig. 3H,
I), and the high expression of RPTOR and IMPDH2 were significantly
associated with better prognosis validated by CPTAC cohort (two-
sided log rank test, HR < 1, P <0.05) (Fig. 3K). In addition, the key
sensitive regulators (RPTOR and IMPDH2) identified by the data-
independent acquisition (DIA) strategy were further validated by par-
allel reaction monitoring (PRM) assay in the plasma samples from the
plasma discovery cohort and another independent plasma validation
cohort composed of 16 sensitive (S) patients and 15 non-sensitive (NS)
patients (Fig. 3L and Supplementary Data 4). Overall, the high activa-
tion of autophagy and the aggregation of CD8+Tem,might result in an
improved response to cetuximab therapy.

As a non-sensitive subtype, the G-I subtype had the highest pro-
portion of NS patients (Fig. 4A), which was characterized by PPAR-
alpha pathway, integrin-linked kinase signaling, metabolism of vita-
mins and cofactors, extracellular matrix organization (ECM), RHO

GTPase cycle and MAPK signaling pathway (adj P value < 0.05)
(Fig. 4B). To further determine the association of pathways enriched in
G-I subtype with treatment response, we performed ssGSEA analysis
between S group andNS group. As a result, the ssGSEA pathway scores
of MAPK signaling, RHO GTPase cycle, and ECM pathway were sig-
nificantly increased in NS group (P <0.05), which were validated by
GSEA with significant enrichment of these pathways in the NS group
(FDR <0.05) (Fig. 4C, D), showing these signaling pathways might as
the indicator of non-response to cetuximab therapy. Clinically, the
KRASmutation status is predictive of response to cetuximab therapy in
CRC.Cetuximabhasbeenproven to be effective for patientswithKRAS
wild type CRC in randomized clinical trials53–56. However, only a small
percentage of CRC patients are sensitive to anti-EGFR therapy, and
even those who initially respond to the therapy eventually develop
resistance to it57–59. The other RAS-related subfamily members (RRAS
and RRAS2) approximately 55–60% identical to their classic counter-
parts and share activating signals and cascades with KRAS proteins
(such as regulation of the MAPK signaling pathway)60–62. The associa-
tion of these members with response to cetuximab therapy remains
unclear. In this study, we found that CRC patients with high expression
of RRAS and RRAS2 were prone to be resistant to the cetuximab
therapy (FC > 2, P <0.05) (Fig. 4E). Then, we wondered and explored
which downstream pathway was activated accompanied with high
expression of RRAS/RRAS2. According to the average expression of
RRAS/RRAS2, we divided the cohort into RRAS high expression group
and RRAS low expression group. Interestingly, we found the ssGSEA
scores of the MAPK signaling, RHO, and ECM pathways were sig-
nificantly upregulated in the RRAS high expression group (P < 0.05)
(Fig. 4F), which were validated by GSEA (FDR <0.05) (Fig. 4G). As
shown in Fig. 4H, we proposed the potential regulation axis that RRAS/
RRAS2 proteins positively regulate the activation of the three down-
stream pathways, which showed association with resistance to cetux-
imab therapy. Among proteins involved in these pathways, FBLN1,
MMP8, and ITGA5 showed significantly positive correlationwith RRAS/
RRAS2, and the high expression of FBLN1, MMP8, and ITGA5 were
significantly associated with worse prognosis validated in CPTAC
cohort (HR > 1, two-sided log rank test, P <0.05) (Fig. 4I, J, K). These
results demonstrated that RRAS/RAS2 positively regulate the ECM
pathway, which associated with resistance to cetuximab therapy as
well as poorprognosis of CRCpatients. Finally, we evaluated the ability
of the combination of these proteins (RRAS2, MMP8, FBLN1, RPTOR,
and IMPDH2) to predict initial response to the first cetuximab treat-
ment. The ROC analysis revealed the combination of these proteins
yielded high accuracy with an AUC of 0.849 (range: 0.765–0.932). To
further validate the robustness of this protein combination, we used
themachine learning algorithms in the independent tissue and plasma
validation cohorts. The results of ROC analyses exhibited well perfor-
mance in distinguishing Spatients fromNSpatientswithAUC values of
0.816 (95%CI: 0.645–0.986) and 0.890 (95%CI: 0.757–1) in the tissue
and plasma validation cohorts, respectively (Fig. 4L).

Taken together, the proteomic subtypes were identified with
distinct biological functions and associated with therapy response to
cetuximab. Specifically, patients of G-III subtype tended to benefit
from cetuximab therapy, accompanied by anticancer immune
response such as activation of T cell receptor (TCR) signaling and
increase of CD8+ Tem; while patients of G-I subtype were unlikely to
benefit from it, featured by RRAS and RRAS2-mediated ECM pathway
activation. Importantly, we identified key proteins involved in these
overrepresented pathways, including RRAS2, MMP8, FBLN1, RPTOR,
and IMPDH2, which yielded a high prediction in distinguishing the
sensitive patients from the non-sensitive patients receiving cetuximab
therapy, which were validated in the independent plasma and tissue
validation cohorts, demonstrating the stability and robustness of the
predictive model for predicting initial response to the first cetuximab
treatment.

Table 2 | The association of proteomic subtypes and other
clinical variables

G-I G-II G-III P value
(N = 24) (N = 34) (N = 31)

Age (years), med-
ian (range)

53.5
(24–69)

55 (21–74) 61 (25–76) 0.287a

Gender 0.571b

Female 7 (29.2%) 8 (23.5%) 11 (35.5%)

Male 17 (70.8%) 26 (76.5%) 20 (64.5%)

Degree of tumor
differentiation

0.232b

Poorly differentiated 7 (29.2%) 12 (35.3%) 5 (16.1%)

Moderately
differentiated

11 (45.8%) 16 (47.1%) 14 (45.2%)

Well differentiated 0 (0.00%) 1 (2.94%) 0 (0.00%)

NA 6 (25.0%) 5 (14.7%) 12 (38.7%)

ECOG performance
status

0.187b

1 22 (91.7%) 34 (100%) 29 (93.5%)

0 2 (8.33%) 0 (0.00%) 2 (6.45%)

Lactate dehydrogenase
level (U/L), med-
ian (range)

232.5
(126–1121)

330
(135–3000)

326
(119–3000)

0.190a

White Blood Cell count
(109/L), median (range)

5.5
(2.5–14.8)

5.95
(1.7–14.7)

5.8
(2.8–10.5)

0.227a

Lymphocyte number
(109/L), median (range)

1.35
(0.4–2.2)

1.4 (0.6–2.2) 1.4 (0.3–3.1) 0.502a

Hemoglobin (g/L),
median (range)

131
(88–155)

120.5
(75–163)

124 (39–163) 0.149a

Platelet Count (109/L),
median (range)

171.5
(48–366)

210.5
(107–452)

216 (102–313) 0.069a

aone-way ANOVA analysis was applied for continuous variables.
btwo-sided Fisher’s exact test was used for categorical variables.
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Construction andvalidationof thepredictivemodels applied for
the multi-course cetuximab therapy in CRC
In this study, the plasma sampling of the plasma discovery cohort
covered a cetuximab therapy period of up to 72 weeks from the
therapy-naïve sampling, of which the plasma from each patient were
collected when completing each therapy course (8-week therapy),
resulting in a total of 474 plasma samples from 116 CRC patients cov-
ering 9 sampling time points during the cetuximab treatment period

(Methods). In the longitudinal cohort, one subset (defined as sub-
cohort 1) was composed of 22 CRC patients sensitive to cetuximab
therapy in the first treatment and gradually resistant in the following
seven course cetuximab treatments, inwhich 105 plasma sampleswere
collected; another subset (defined as subcohort 2) was composed of
stable sensitive group (SSG: 18 patients, 38 samples) and stable non-
sensitive group (SNSG: 58 patients, 153 samples), featured with con-
sistently sensitive or non-sensitive to cetuximab therapy regardless of
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the course of treatment in the nine courses cetuximab treatment.
Taken the longitudinal characteristics of our cohort into considera-
tion, to explore whether the biomarkers for CRC diagnosis and the
initial response prediction of the first treatment could be used for the
longitudinal response prediction of the multi-course treatment, we
applied the diagnostic model and predictivemodel in the longitudinal
cohort covering multi-course treatment. As a result, the diagnostic
model composed of the four biomarkers (COL12A1, THBS2, S100A8,
and S100A9), and the predictive model composed of the key proteins
(RRAS2, MMP8, FBLN1, RPTOR, and IMPDH2) didn’t well distinguish
sensitive patients from non-sensitive patients during the cetuximab
treatment (AUC<0.7) (Supplementary Fig. 4A, B).

Therefore, to identify the protein dynamic change associatedwith
the treatment response to cetuximab during multiple treatment
courses, we focused on the subcohort 1 of the longitudinal cohort.
According to the cetuximab treatment response trajectory, we per-
formed statistical analysis of the distribution of CRC patients with
sensitive (S)/non-sensitive (NS) to cetuximab treatment during treat-
ment period. We found that the proportion of NS was gradually
increased with the sampling time during cetuximab treatment (Fig. 5A
and Supplementary Fig. 4C). Then, we explored the regulations of
plasma protein levels during multiple therapy courses, which resulted
in 139 significant positively (Positive correlation-sig) and 374 nega-
tively correlated proteins (Negative correlation-sig) (P <0.05) (Fig. 5B
and Supplementary Data 5). Taken together, the course-resolved
analyses implicate that a large proportion of the quantified plasma
proteins are significantly altered in the course of cetuximab treatment.

To further confirm the association of these proteinswith response
to cetuximab treatment, we performed a comparative proteomic
analysis of the subcohort 2 of the longitudinal cohort. The differential
analysis between SSG and SNSG groups identified the DEPs with
1.5-fold changes of each group (adj P value < 0.05) (Supplementary
Fig. 4D and Supplementary Data 5). We then performed pathway
enrichment on the DEPs of each group according the CPDBmolecular
interaction annotations shown in Supplementary Fig. 4E. The SNSG
group was dominant for glycolysis/gluconeogenesis, VEGFA-VEGFR2
signaling pathway, signaling byRhoGTPases, ECMproteoglycans, etc.;
while SSG group was featured by downregulation of ERBB4 signaling,
mRNA Splicing, autophagy, iron uptake and transport, cellular
response to heat stress, ferroptosis, Neutrophil degranulation, etc.
(Supplementary Fig. 4E). Ultimately, we screened for a panel of pro-
teins identified in the overlapof both the negative correlation-sig (with
a range of r: −0.98 to −0.75) and the SSG-sig, and defined them as
sensitive biomarkers of cetuximab therapy in CRC patients (N = 29).
Similarly, we also found the non-sensitive biomarkers of cetuximab
therapy in CRCpatients (with a range of r: 0.75–0.94) (N = 10) (Fig. 5C).
The K-means plot demonstrated sensitive biomarkers presented a
gradual downward trend with the increase of sampling time during
cetuximab treatment, and non-sensitive biomarkers showed a gradual
upward trend with the increasing courses during cetuximab treatment
(Fig. 5C, D). We observed an obvious differential expression of these
biomarkers in SSG and SNSG, and the dynamic changes across seven

courses cetuximab treatment (Fig. 5D). This highlights the potential
application of the plasma biomarkers for efficient monitoring during
the continuous multiple courses to cetuximab treatment.

Having identified biomarkers with fluctuations at protein level
associated with response to cetuximab therapy, we next set out to
determine whether these biomarkers could be used for predicting
response to cetuximab treatment in CRC patients during the con-
tinuous courses. We employed stepwise logistic regression, which is
robust to noise and overfitting, to identify a subset of signatures that
accurately discriminates SSG and SNSG (named as S-sig and NS-sig).
The S-sig include IDH3G, MDN1, and KLC4, while the NS-sig include
MYL9, SBF1, and HTRA3. To train and subsequently test the model,
samples were partitioned based on sample type; among them, 60% of
samples were used as a training set, and the remaining 40% repre-
sented the independent testing set. Based on S-sig and NS-sig, we
applied 10-fold cross-validation to the training set yielded predictive
model with high AUC (0.756); when applied to the testing set, the
predictive model also achieved an AUC of 0.797 (Fig. 5E). This sug-
gested that the combination of S-sig and NS-sig proteins (IDH3G,
MDN1, KLC4, MYL9, SBF1, and HTRA3) could predict the response to
cetuximab treatment in CRC patients. We further determined the
ability of the predictive model for the response of cetuximab treat-
ment across different courses. After applying the predictive model to
different treatment courses, we observed the predictive model had a
good performance in the overall therapy courses with an accuracy of
0.724. The ability of this plasma-protein panel to identify sensitive
group and non-sensitive group in the subset of different treatment
courses is demonstrated in the bar graph (Fig. 5F). Importantly, this
model also achieved high accuracy in predicting treatment efficacy in
the second course (0.818), the third course (0.737), and the fourth
course (0.800) (Fig. 5F and Supplementary Fig. 4F). To improve the
interpretation of the predictive power of these signatures, we also
presented thedynamicof these signatures over themultiple courses of
cetuximab treatment in individual patient. The results demonstrated
that, the S-sig proteins (includingMDN1, KLC4, and IDH3G) exhibited a
significant drop when resistance emerged, and maintained a gradual
downward trend in the subsequent courses of cetuximab treatment;
while theNS-sig proteins (including SBF1, HTRA3, andMYL9) exhibited
a significant rise when resistance emerged, and maintained a gradual
upward trend in the subsequent courses of cetuximab treatment
(Supplementary Fig. 5). Overall, we observed a consistent expression
pattern of these signature proteins across the multiple courses of
cetuximab treatment, indicating the effectiveness of these biomarkers
for predicting cetuximab response of individual patient. Subsequently,
the accuracy of the predictive model was further validated in the
independent cohort composed of 31 CRC patients, 77 plasma samples,
covering two course cetuximab treatment. The results of confusion
matrix analyses exhibited an accuracy of 0.929 (95%CI: 0.765–0.991) in
the first course treatment, and 1 (95%CI: 0.815–1) in the second course
treatment in the plasma validation cohort (Fig. 5G). Taken together,
the predictive model had high accuracy prediction performance in
different treatment course, exhibiting good performance in either

Fig. 4 | The potential mechanism and biomarkers for cetuximab resistance.
A Proportion of responses to cetuximab therapy in G-I subtype. B The CPDB
pathway enrichment (two-sided Fisher’s exact test) of G-I subtype. C Boxplots for
pathway ssGSEA score between S and NS groups (two-tailed Student’s t test). N
(S) = 31, and N (NS) = 45. Boxplots show median (central line), upper and lower
quartiles (box limits), 1.5×interquartile range (whiskers). D GSEA enrichment of
MAPK signaling, RHO GTPase cycle, and ECM pathway in the NS group compared
with S group (FDR<0.05 is considered statistically significant). EBoxplots forRRAS
and RRAS2protein abundance between S and NS groups. N (S) = 31, andN (NS) = 45
(two-tailed Wilcoxon rank-sum test). Boxplots show median (central line), upper
and lower quartiles (box limits), 1.5×interquartile range (whiskers). F Heatmap
showing the relative abundance of ssGSEA pathway scores between RRAS low and

RRAS high groups (two-tailed Student’s t test). G GSEA showing the enrichment of
MAPK signaling, RHOGTPase cycle, and ECMpathway in the RRAS high expression
group compared with RRAS low expression group. H Diagram showing the
potential mechanism of resistant to cetuximab therapy of CRC patients. The little
heatmapundereachproteindepicted the log-transformed fold change inNSversus
S groups. I Correlation of RRAS or RRAS2 and proteins involved in the three
pathways (shown inH) (two-sided Pearson’s correlation test). J, K The hazard ratio
(HR) and Kaplan–Meier curves of OS in the CPTAC cohort (N = 95) based on the
protein abundance (two-sided log rank test). Data are presented as median values
(HR) with range (95%CI). L The ROC curves of a panel of proteins in predicting drug
sensitivity in the plasma discovery cohort and its predictive performance in the
tissue andplasmavalidationcohorts. Sourcedata are providedas a SourceDatafile.
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overall treatment period or the first four times of therapy evaluation,
which were further validated in the independent cohort.

We further evaluate the performance of the predictive model
applied in one case over seven courses treatment. In the typical case,
we found the highly significantly positive correlation between protein
expression of NS-sig in model and sampling time during treatment
(r =0.8, P <0.05); while the highly significantly negative correlation

between protein expression of S-sig in model and sampling time dur-
ing treatment (r = −0.78, P <0.05), which were consistent to the MRI
image related to therapy response evaluation (Fig. 5H, I). These results
demonstrated the consistency between the dynamic changes of pro-
teins included in this predictive model and clinical therapy response,
which further validated the stability of the predictive model panel.
Taken together, we built the predictive model, which could be applied
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for the continuous multiple courses of cetuximab therapy in CRC, and
achieved the good performance in monitoring therapy process.

Discussion
CRC is the main leading cause of cancer-related death. Although
impressive advances, such as better screening methods and improved
effective therapies, in CRC therapy have been achieved over the last
years, CRC is still with undesirably high mortality, mainly due to the
metastatic setting. Cetuximab, a human-mouse chimeric monoclonal
antibody (IgG1 subtype), was proven to improve progression-free sur-
vival, overall survival, and response rate in several phase II and III clinical
trials in combination with chemotherapy or as single agent63,64. Unfor-
tunately, only a small percentage of CRC patients are sensitive to anti-
EGFR therapy due to primary or innate resistance; and even those that
initially respond, eventually acquire resistance and relapse under this
therapy (secondary resistance). The high complexity of mechanisms of
resistance to cetuximab limits the therapy efficient in CRC patients.
Accordingly, a major challenge need to be addressed to optimize the
efficacy of cetuximab therapy is the elucidation of the molecular basis
for primary or acquired resistance to cetuximab16, to find the bio-
markers for the therapy response in the first treatment andmulti-course
treatment. Overall, the pressing need is to screen patients with CRC for
noninvasive accurate diagnostic strategies, and screen sensitive patients
to cetuximab therapy for noninvasive predictive strategies.

To achieve a comprehensive perspective of CRC patients’
response to cetuximab therapy, in this study, we applied a scalable and
highly reproducible MS-based proteomics workflow to 540 plasma
samples from thewell-characteristic CRC cohort composed of 116 CRC
patients, especially with continuous multiple treatment courses of
cetuximab therapy, as well as 66 healthy individuals. We firstly per-
formed comparative proteomic analysis on plasma samples from
therapy-naïve CRC patients and healthy individuals. We identified 745
DEPs up-regulated in the plasma samples from therapy-naïve CRC
patients, which were mainly enriched in glycolysis/gluconeogenesis,
signaling by ERBB2, MAPK activation, and extracellular matrix orga-
nization pathways. Interestingly, the alteration of proteins and path-
ways identified in plasma could also be reflected on the tumor tissue,
suggesting a well consistency of biological change between plasma
and tumor tissue, which promoted us to find biomarkers applied both
in plasma and tissue for CRC diagnosis. Furthermore, after applying
strict criteria in our plasma and tissue cohorts as well as the public
CPTAC CRC cohort, we screened the potential candidates (including
COL12A1, THBS2, S100A8, and S100A9), highly expressed in both
plasma and tissue samples. The combined predictive effect of the four
proteins was evaluated by ROC analysis, exhibiting a well performance
in distinguishing CRC patients from healthy individuals in both plasma
and tissue cohorts. The four proteins were enriched in extracellular
matrix organization and interacted with other ECM proteins, showing
the potential biological association. We also validated the predictive
effect of the four proteins on a wider population scale of CRCpatients,

but not limited to the RAS wild-type CRC patients or metastatic CRC
patients both in plasma and tissue validation cohorts. Although the
potential proteins forCRCdiagnosis,were elevatedboth inplasmaand
tumor tissues of CRC patients, we couldn’t completely exclude the
contribution of other organs or tissues to the level of these proteins in
plasma in this study. Some of these potential proteins (COL12A1,
THBS2, S100A8, and S100A9) were reported to associate with other
cancers and non-malignant diseases42,65–67, which limited the clinical
validity of the potential proteins in CRC. Furthermore, we validated
that the four proteins could not distinguish the patients with other
cancer types and the non-malignant diseases, showing the relative
specificity of the biomarkers for the diagnosis of CRC. For the clinical
validity of the diagnostic biomarkers for CRC, we recommended to
perform a colonoscopy in a consecutive series of patients in the future.

Besides tumor diagnosis, the resistant or sensitive mechanisms
for cetuximab therapy remain a major problem to be unsolved. We
found thesediagnostic biomarkers couldnot be regarded as indicators
for the therapy response prediction. In this study, to search for the
biomarkers for predicting the therapy response, we determined the
molecular features associated with therapy response by consensus
clustering analysis and identified the potential predictive biomarkers
by logistic regression strategy.We identified three proteomic subtypes
featured with different bioprocesses and associated with various
therapeutic responses. Asmain findings of this study, among the three
proteomic subtypes, G-III subtype was featured with autophagy
mediated aggregation of CD8+ Tem, and prone to sensitive to cetux-
imab therapy. Consistently, as reported, tumor immune cell infiltration
was associated with the cetuximab sensitivity68. Furthermore, the
immune microenvironment estimated by xCell analysis on the plasma
and tissue proteomic data revealed the association of CD8+ Tem with
cetuximab sensitivity, which was further validated by IHC measure-
ment of the representative signatures of CD8+ Tem in the tissue
samples. In addition, we explored the clinical implication of CD8+
Tem, and proposed that CD8+Tem could be regarded as the potential
marker for the cetuximabsensitivity,whichwasvalidatedby the single-
cell transcriptome data from CRC patients (GSE108989). In this study,
we identified two proteins RPTOR and IMPDH2 positively associated
with both expressionofCD8+Temandbetter prognosis.We proposed
that the potential function of RPTOR and IMPDH2 in regulation of
tumor immune cell infiltration, and their association with the cetux-
imab sensitivity is deserved to be further explored in the future. While
G-I subtype was featured with RRAS and RRAS2-mediated an axis of
resistant mechanism including MAPK, RHO, and ECM pathways, and
prone to be resistant to cetuximab therapy. As reported, known
mechanisms of resistance to cetuximab therapy mainly included (i)
upstream mutations in the extracellular domain of EGFR that directly
confer resistance to antibody blockade69, (ii) downstream pathways
activated by EGFR, such as RAS-RAF-MAPK-ERK, PI3K-PTEN-AKT, and
JAK/STAT pathways mainly through mutations of KRAS, NRAS, BRAF,
andMAP2K170–72, and amplifications ofMET and ERBB273,74. Importantly,

Fig. 5 | The construction of predictive model for response to multiple con-
secutive courses of cetuximab therapy in CRC. A The distribution of CRC
patients with sensitive (S)/non-sensitive (NS) during the cetuximab treatment
period. B Correlation of protein dynamic change abundance with sampling time
during cetuximab treatment (two-sided Pearson’s correlation test). C Upper: Venn
diagram showing the overlap of negative correlation-sig and SSG-sig proteins. The
K-means plot showing the dynamic trajectory of the longitudinal distribution of
sensitive biomarkers. Bottom: Venn diagram showing the overlap of positive
correlation-sig and SNSG-sig proteins. The K-means plot showing the dynamic
trajectory of the longitudinal distribution of non-sensitive biomarkers. D Heatmap
showing differential expression of these signature proteins in SSG and SNSG, and
the dynamic changes across seven courses cetuximab treatment (two-tailed Wil-
coxon rank-sum test). E The ROC curves of a panel of signature proteins in pre-
dicting cetuximab therapy response in 60% train set and 40% test set in stable

response cohort. F The accuracy of the predictivemodel to predict the response of
cetuximab treatment at different sampling times. “1–7” represented that all sam-
pling covered the overall treatment course were included; “2” meant that the sec-
ond sampling after receiving two course treatments; “3” was defined as the third
sampling after receiving three course treatments; “4” was defined as the fourth
sampling after receiving four course treatments. The minimum accuracy of the
predictive model was 0.724. G Classification error matrix using logistic regression
classifier in distinguishing S and NS in the plasma longitudinal validation cohort.
The number of samples identified is noted in each box. H The MRI image assess-
ment at every sampling point among overall treatment process in one typical case.
I Correlation analysis of protein expression of the panel of signature proteins in
predictivemodelwith treatment course (two-sided Pearson’s correlation test).Data
are presented as Pearson r with 95%CI. Source data are provided as a Source
Data file.
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in this study, we identified MAPK signaling activation mediated by
RRAS and RRAS2 associated with cetuximab resistance. In addition,
besides MAPK signaling, we identified the downstream ECM pathway
showed a significant association with cetuximab resistance. We pro-
posed that the potential function of RRAS and RRAS2 in regulation of
ECM pathway, and the potential drugs to improve the cetuximab
sensitivity were worth being developed in the future. Interestingly, the
key proteins (RRAS2, MMP8, FBLN1, RPTOR, and IMPDH2) involved in
these represented resistant/sensitive pathways and associated with
clinical prognosis, had a good combined prediction of the initial
response to first cetuximab treatment, further validating the associa-
tion with cetuximab therapeutic response. These findings provided a
solid reference for further investigating the sensitive or resistant
mechanism,which also suggested that the non-tumor, immune related
events could contribute towards responses to anti-EGFR therapy. This
revealed the difference of the approach (systemic circulating markers
from patient blood) versus experimental systems or tumor-only pro-
filing where it is direct anti-tumor effect of drug without interaction
with potential effector cells. In addition, although we observed the
consistent alteration of the proteins and pathways uncovered both in
plasma samples and tumor tissues of CRC patients, we couldn’t com-
pletely exclude the contribution of other tissues or cells in plasma. It is
deserved to explore the components secreted by circulating immune
cells associated with the therapy response in the future.

Furthermore, the biomarkers and predictive model for the initial
response to the first cetuximab therapy could not well predict the
longitudinal response in themulti-course cetuximab therapy, showing
the heterogeneity of different biomarkers for the initial response
prediction and longitudinal response prediction respectively in the
first course and multi-course cetuximab treatment. The similar phe-
nomenon was also observed in the reported researches. For example,
as Tang et al. reported in the research related to serum immune pro-
teomics in predicting response to preoperative chemotherapy of
gastric cancer, the pre-treatment serum biomarker level should have
greater clinical significance than the post-treatment samples75. One
potential reason for the attenuation of the prediction efficiency of
biomarkers for initial response prediction in longitudinal response
prediction was that, the biomarkers for the initial response prediction
were identified and differentially expressed between the sensitive and
non-sensitive groups in the therapy-naïve (pre-treatment) samples, but
this difference was not significant between the sensitive and non-
sensitive groups in the samples after cetuximab treatment (post-
treatment). Another possibility was that the difference of the proteins
or pathways related to therapy response in the pre-treatment samples
possibly changed during the treatment, for instance, some sensitive
features could be attenuated while some resistant features could be
reserved or even enhanced during the multi-course treatment.
Therefore, we focused on the longitudinal cohort to explore the
longitudinal trajectories of a cohort covering seven courses cetuximab
treatment, and identified proteins dynamic change associatedwith the
treatment response to cetuximab. For more accurate to predict ther-
apeutic response, we screened two panels of proteins significantly-
regulated in SSG/SNSG and highly correlated with therapy courses.
Based on these candidates, we further employed stepwise logistic
regression and identified a subset of signatures that accurately dis-
criminates SSG and SNSG, including IDH3G, MDN1, KLC4, MYL9, SBF1,
and HTRA3. These signature proteins exhibited a consistent expres-
sion pattern across the multiple courses of cetuximab treatment,
indicating the effectiveness of these biomarkers for predicting cetux-
imab response of individual patient. In addition, we also observed the
variability of these proteins with longitudinal response among intra-
patients, suggesting the potential heterogeneity of the biomarkers for
response prediction among different individual patients. To examine
the prediction effect, we further applied this predictive model in dif-
ferent sampling time during treatment; excitingly, we found this

predictive model had stable high accuracy for predicting response in
sampling time during treatment, indicating the robustness and
applicable potential of the predictive model. In addition, we validated
the performance of biomarkers for the longitudinal response predic-
tion of the multi-course treatment in the independent plasma cohort.
Interestingly, we also applied this predictive model in a typical case.

In conclusion, we integrated ourmajor findings, clinical cohorts,
as well as clinical characteristics, summarized the primary endpoints
and second endpoints, and provided a comprehensive diagram
showing the connection of each result of our study (Supplementary
Fig. 6). The primary endpoints included the different biomarkers for
tumor diagnosis (COL12A1, THBS2, S100A8, and S100A9), the initial
response prediction of the first treatment (RRAS2, MMP8, FBLN1,
RPTOR, and IMPDH2), as well as the longitudinal response prediction
of the multi-course treatment (IDH3G, MDN1, KLC4, MYL9, SBF1, and
HTRA3). As for the secondary endpoints, for example, (i) the over-
represented pathways significantly enriched in the CRC and HC
groups, and the potential biological association among the diag-
nostic biomarkers; (ii) the molecular features associated with dif-
ferent therapy response; (iii) the two protein panels positively or
negatively correlated with therapy response trajectories respec-
tively, and the molecular features associated with the stable sensitive
patients and stable non-sensitive patients, we defined these findings
as the secondary endpoints of the study. Overall, our study revealed
the heterogeneity of different biomarkers for tumor diagnosis, the
initial response prediction of the first treatment, as well as the
longitudinal response prediction of the multi-course treatment. Our
work emphasizes the value of longitudinal study design for bio-
marker discovery, which allow us to explore proteome alterations in
disease progression and identify biomarkers used for dynamic
monitoring in the continuous treatments. Compared to studies with
single time points between CRC patients and controls that provided
potential insights into potentially regulated proteins, our compar-
ison of plasma proteomes over the cetuximab treatment course of
resistance progression provided a clear set of potential biomarkers
which might be used for the early intervening in the therapy process.

Limitations of the study
In this study, we established the longitudinal plasma proteome pro-
filing of CRC to identify the effective diagnosticmarkers andpredictive
markers for cetuximab therapy, thus contributing to the monitoring
and intervening in the treatment. Among the limitations to this study,
first, this study is a single-center research likely does not represent all
the heterogeneous mechanisms underlying clinical resistance to
cetuximab therapy. The multi-center cohorts need to be included for
sucha study in the future. Second, there are around 1/6ofCRCpatients
but not all CRC patients receiving seven course cetuximab treatment
(which reflects the real clinical world), the biomarkers for the response
predictionof themulti-course treatment identified in this study should
be validated in the more complete multi-course longitudinal cohort.
Third, although the potential biomarkers for CRC diagnosis, were
elevatedboth in plasmaand tumor tissues ofCRCpatients, we couldn’t
completely exclude the contribution of other organs or tissues to the
level of these proteins in plasma, which might need to be explored
through comparison among more tissues. A more rigorous multi-
tissue comparison research is worth studying in the future. Fourth, it is
deserved to explore the components secreted by circulating immune
cells associated with the therapy response in the future.

Methods
Clinical sample acquisition
The studies involving humanparticipantswere reviewed and approved
by the Ethics Committee of Fudan University Shanghai Cancer Center
(1506147). The patients/participants provided their written informed
consent to participate in this study.
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The plasma samples used in this study were obtained from
patients with CRC or healthy controls, from April, 2015 to February,
2021, were reviewed in the Shanghai Cancer Center, Fudan University
(Shanghai, China). The study included a total of 756 plasma samples
from the discovery cohort composed of 116 CRC patients undergoing
anti-EGFR therapy with continuous multiple treatment courses and
66 healthy controls (HCs), the validation cohort composed of 31 CRC
patients and 24 HCs, as well as the multi-cancer cohort composed of
95 patients with cancers and 20 HCs. In the plasma discovery cohort,
we collected 89 pre-treatment plasma samples and 385 post-treatment
plasma samples during continuousmultiple treatment courses of anti-
EGFR therapy from CRC patients. In the plasma validation cohort,
31 pre-treatment plasma samples and 46 post-treatment plasma sam-
ples fromCRC patients were included in the plasma validation cohort.
In addition, 31 tumor tissues and 27 paired NATs of CRC patients
matched with the plasma samples were also included in this study. In
themulti-cancer plasma independent cohort, 115 plasma samples were
collected from 95 pre-treatment patients with cancers and 20 healthy
controls.

For the CRC patients, there are 80 males and 36 females with a
median age of 55.5 years (ranging from 21 to 76 years) in the discovery
cohort, and 20 males and 11 females with a median age of 56 years
(ranging from 29 to 77 years) in the independent plasma validation
cohort, as well as 17 males and 14 females with a median age of 57 years
(ranging from 25 to 76 years) in the independent tissue validation
cohort. The anti-EGFR therapy regimen was given at standard dosing as
described in previous studies, of which patients were given 500mg/m2

cetuximab once-every-2-weeks combined with FOLFOX/FOLFIRI/
irinotecan30–32. The inclusion criteriawere as follows: (i) diagnosis of CRC
reviewed by three expert pathologists; (ii) presence of at least one
measurable or unmeasurable but evaluable lesion (described according
to Response Evaluation Criteria in Solid Tumors [RECIST] 1.1 by CT/MRI
scanning and grouped into complete response (CR), partial response
(PR), stable disease (SD), or progressive disease (PD)); (iii) presence of
PCR-confirmed wild-type KRAS (exon 2/3/4), NRAS (exon 2/3/4), and
BRAF (exon 15) genotypes in tumor tissue before the receipt of anti-
EGFR therapy; (iv) no history of severe heart or liver disease, psychiatric
disorders, hemorrhage, or perforation of the digestive tract; (v) and an
ECOGperformance status of 0/1 at 3 days before treatment33. According
to NCCN guidelines, all the CRC patients receiving cetuximab therapy
included in this study were left-sided RAS wild-type metastatic CRC76–79.
Here, the ORR, defined as PR plus CR, was selected for the efficacy
evaluation; patients with CR and PR were defined as sensitive (S) and
those with SD and PD were defined as non-sensitive (NS)46.

For the healthy controls, there are 22males and 44 females with a
median age of 62 years (ranging from 57 to 63 years) in the discovery
cohort, and 12 males and 12 females with a median age of 55 years
(ranging from 25 to 68 years) in the independent plasma validation
cohort. The enrollment criteria for HC subjects were as follows: (i) the
absence of benign or malignant tumors; (ii) a qualified physical
examination finding no dysfunction of vital organs and (iii) normal
renal function and without albuminuria.

For the multi-cancer plasma independent cohort, there were
95 patients with cancers and 20 healthy controls. Among them, for the
patients with cancers, there were 49 males and 46 females with a
median age of 63 years (ranging from 25 to 88 years); for the healthy
controls, there were 12 males and 8 females with a median age of
53.5 years (ranging from 38 to 71 years). In the multi-cancer plasma
independent cohort, we collected 115 plasma samples, including 95
plasma samples from treatment-naive patients with various cancer
types (including colorectal cancer (CRC, N = 20), lung cancer (LC,
N = 15), malignant lymphoma (ML, N = 10), bladder cancer (BLCA,
N = 10), breast carcinoma (BRCA, N = 15), gastric cancer (GC, N = 10),
esophageal cancer (EC, N = 15)), and 20 plasma samples from healthy

controls (HCs, N = 20). After collection, plasma and tissue samples
were stored at −80 °C.

Plasma proteome sample preparation
Blood samples were collected and centrifuged in Streck tubes. Plasma
was separated by centrifugation at 1600g at 4 °C for 10min to remove
insoluble solids and stored at −80 °C until proteomic analysis. Lysis
buffer [98μL of 50mM NH4HCO3 added with 1mM PMSF (Amresco,
M145)] wasmixed with the equal amounts of separated plasma sample
(2μl), and subsequently kept at 95 °C for 3min, which was used for
biomarker discovery of various body fluids in our previous study80.
Plasma samples underwent trypsin digestion (enzyme-to-substrate
ratio of 1:50 at 37 °C for 18–20 h), and the peptideswere then extracted
and dried (SpeedVac, Eppendorf). Peptide concentrations were mea-
sured optically at 280 nm (Nanodrop 2000, Thermo Scientific). A total
of 500ng peptide was subjected to LC-MS/MS analysis.

Tissue proteome sample preparation
The biopsy tumor FFPE samples derived from therapy-naïve CRC
patients were collected, and the tumor regions were determined by
pathological examination. For clinical sample preparation, sections
(10μm thick) from FFPE blocks were macro-dissected, deparaffinized
with xylene, and washed with ethanol. The ethanol was removed com-
pletely and the sections were left to air-dry. The equivalent tissues were
added with the lysis buffer [0.1M Tris-HCl (pH 8.0), 0.1M DTT (Sigma,
43815), 1mM PMSF (Amresco, M145)], and subsequently sonicated for
1min (3 s on and 3 s off, amplitude 25%) on ice. The supernatants were
collected, and the protein concentration was determined using the
Bradford assay. The extracted tissues were then lysed with 4% sodium
dodecyl sulfate and kept for 2–2.5 h at 99 °C with shaking at 1800 rpm.
The solution was collected by centrifugation at 12,000× g for 5min. A
4-fold volume of acetone was added to the supernatant and kept in
−20 °C for a minimum of 4h. Subsequently, the acetone-precipitated
proteins were washed three times with cooled acetone. Filter-aided
sample preparation procedure was used for protein digestion81. The
proteins were resuspended in 200μL 8M urea (pH 8.0) and loaded in
30 kD Microcon filter tubes (Sartorius) and centrifuged at 12,800g for
20min. The precipitate in the filter was washed three times by adding
200μL 50mM NH4HCO3. The precipitate was resuspended in 50μL
50mM NH4HCO3. Protein samples underwent trypsin digestion
(enzyme-to-substrate ratio of 1:50 at 37 °C for 18–20h) in the filter, and
then were collected by centrifugation at 12,800g for 15min. Additional
washing, twice with 200μL of water, was essential to obtain greater
yields. Finally, the centrifugate was pumped out using the AQ model
Vacuum concentrator (Eppendorf, Germany).

LC-MS/MS analysis
The acquisition of samples was randomized to avoid bias. Peptide
samples were analyzed on a Q Exactive HF-X Hybrid Quadrupole-
Orbitrap Mass Spectrometer (Thermo Fisher Scientific, Rockford, IL,
USA) coupled with a high-performance liquid chromatography system
(EASY nLC 1200, Thermo Fisher Scientific). In single-shot plasma pro-
teome analysis, peptides, re-dissolved in Solvent A (0.1% formic acid in
water), were loaded onto a 2-cm self-packed trap column (100-μm
inner diameter, 3-μm ReproSil-Pur C18-AQ beads, Dr. Maisch GmbH)
using Solvent A, and separated on a 150-μm-inner-diameter column
with a length of 8 cm (1.9-μm ReproSil-Pur C18-AQ beads, Dr. Maisch
GmbH) with 6–95%Mobile Phase B (80% ACN and 0.1% formic acid) at
600 nL/min for 8.2min, then held constant at 95% solvent B at 800nL/
min for 4.1min and then back to 3% B for an additional 2.7min to
equilibrate the column. The eluted peptides were ionized under 2 kV
and introduced into the mass spectrometer. The MS analysis was
performed in a DIAmode82. The DIA method consisted of MS1 Spectra
full scan with m/z ranging from 300 to 1400 at a high resolution of
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30,000 with an automatic gain control (AGC) target value of 3E + 06.
The maximal ion injection time was 20ms. Then, 30 DIA segments
were acquired at 15,000 resolution with an AGC target 1E + 06 for
maximal injection time. The setting “inject ions for all available paral-
lelizable time”was enabled. HCD fragmentation was set to normalized
collision energy of 27%. The spectra were recorded in profile mode.
The default charge state for theDIAwas set to 2. All datawere acquired
using Xcalibur software v2.2 (Thermo Fisher Scientific).

In single-shot tissue proteome analysis, peptide, re-dissolved in
Solvent A (0.1% formic acid in water), were loaded onto a 2-cm self-
packed trap column (100-μm inner diameter, 3-μm ReproSil-Pur
C18-AQ beads, Dr. Maisch GmbH) using Solvent A, and separated on
a 150-μm-inner-diameter column with a length of 15 cm (1.9-μm
ReproSil-Pur C18-AQ beads, Dr. Maisch GmbH) over a 75min gra-
dient (Solvent A: 0.1 % formic acid in water; Solvent B: 0.1 % formic
acid in 80 % ACN) at a constant flow rate of 600 nL/min (0–75min,
0min, 4% B; 0–10min, 4–15% B; 10–60min, 15–30% B; 60–69min,
30–50% B; 69–70min, 50–100% B; 70–75 min, 100% B). The eluted
peptides were ionized under 2 kV and introduced into the mass
spectrometer. MSwas operated under a data-dependent acquisition
(DDA) mode. For the MS1 Spectra full scan, ions with m/z ranging
from 300 to 1400 were acquired by Orbitrapmass analyzer at a high
resolution of 120,000 with an AGC target value of 3E + 06. The
maximal ion injection time was 80ms. MS2 Spectra acquisition was
performed in top-speed mode. Precursor ions were selected and
fragmented with higher energy collision dissociation with a nor-
malized collision energy of 27%. Fragment ions were analyzed using
an ion trap mass analyzer with an AGC target value of 5E + 04, with a
maximal ion injection time of 20ms. Peptides that triggered MS/MS
scans were dynamically excluded from further MS/MS scans for 12 s.
All data were acquired using Xcalibur software v2.2 (Thermo Fisher
Scientific).

Peptide identification and protein quantification
All data were processed using the Firmiana proteomics workstation83,
which were used in our previous studies46,84,85. The DIA were searched
using FragPipe (v12.1) with MSFragger (2.2)86, and the DDA files were
searched using the Mascot search engine (version 2.4, Matrix Science
Inc), against the NCBI human Refseq protein database. The mass toler-
ances were: 20ppm for precursor and 50mmu for product ions col-
lected by Q Exactive HF-X. Up to two missed cleavages were allowed.
The database searching considered cysteine carbamidomethylation as a
fixed modification, and N-acetylation, and oxidation of methionine as
variable modifications. Precursor ion score charges were limited to +2,
+3, and +4. The datawere also searched against a decoy database so that
protein identifications were accepted at a false discovery rate (FDR) of
1%. The results of DIA data were combined into spectra libraries using
SpectraST software. A total of 327 libraries were used as reference
spectra libraries, which were used in our previous research related to
identifying blood molecular markers for the pathophysiology and clin-
ical progress of COVID-1987. The raw data were processed using DIA-NN
(v1.7.10) in the “robust LC (high precision)” mode with RT-dependent
median-based cross-run normalization enabled in the default settings88.
Protein quantification was performed using the MaxLFQ algorithm89 as
implemented in the DIA-NN R-package (https://github.com/vdemichev/
diann-rpackage, version 1.0, commit “eb4607a”) according to the
common data procession90.

As for theDDA, the percolatorwas used to obtain the quality value
(q value), validating the FDR (measured by the decoy hits) of every
peptide-spectrum match (PSM), which was lower than 1%. All the
peptides shorter than seven amino acids were removed. The cutoff ion
score for peptide identification was 20. All the PSMs in all fractions
were combined to comply with a stringent protein quality control
strategy. We employed the parsimony principle and dynamically

increased the q values of both target and decoy peptide sequences
until the correspondingproteinFDRwas less than 1%. Finally, to reduce
the false positive rate, the proteins with at least one unique peptide
were selected for further investigation. The one-stop proteomic cloud
platform “Firmiana” was further employed for protein quantification.
Identification results and the raw data from the mzXML file were loa-
ded. Then for each identified peptide, the extracted-ion chromato-
gram (XIC) was extracted by searching against the MS1 based on its
identification information, and the abundance was estimated by cal-
culating the area under the extracted XIC curve. For protein abun-
dance calculation, the nonredundant peptide list was used to assemble
proteins following the parsimony principle. The protein abundance
was estimated using a traditional label-free, intensity-based absolute
quantification (iBAQ) algorithm91, which divided the protein abun-
dance (derived from identified peptides’ intensities) by the number of
theoretically observable peptides. A match between runs92 was
enabled to transfer the identificationbetween separate LC-MS/MS runs
based on their accurate mass and retention time after retention time
alignment. We built a dynamic regression function based on the
commonly identified peptides in tumor samples. According to corre-
lation value R2, Firmiana chose linear or quadratic functions for
regression to calculate the retention time (RT) of corresponding hid-
den peptides, and to check the existence of the XIC based on the m/z
and calculated RT. Subsequently, the fraction of total (FOT), a relative
quantification value was defined as a protein’s iBAQ divided by the
total iBAQ of all identified proteins in one experiment, and was cal-
culated as the normalized abundance of a particular protein among
experiments (Supplementary Data 2). Finally, the FOT values were
further multiplied by 105 for ease of presentation, and missing values
were assigned 10−5 according to the previous study36.

Quality control of the mass spectrometry data
To quality control the MS performance, the mixture of all plasma
samples was measured every twenty samples as the quality control
standard. The quality control standard was digested and analyzed
using the same method and conditions as the CRC samples. Pearson’s
correlation coefficient was calculated for all quality control runs using
the R statistical analysis software v.3.5.1 (Supplementary Fig. 1A). The
average correlation coefficient among the standards was 0.978, and
the maximum and minimum values were 1 and 0.92, respectively. The
dynamic range of protein identification of each sample was shown
according to the descending sort of protein abundance with a range of
1587–2502 proteins identified in each sample (Supplementary Fig. 1C).
The protein with highest intensity has the minimum rank number,
representing the highest rank; the protein with lowest intensity has the
maximum rank number, representing the maximum identification
number in one sample.

Differential protein and pathway analysis
Two-sided Wilcoxon rank-sum test was used to examine whether pro-
teins were differentially expressed between CRC and HC in plasma
cohort, or CRC tumors and NATs in tissue cohort. Upregulated or
downregulated proteins in tumors were defined as proteins differen-
tially expressed in CRC plasma samples compared with HC plasma
samples CRC/HC>2 or <0.5 or CRC tissue samples comparedwithNATs
(T/NAT>2 or <0.5) (two-sided Wilcoxon rank-sum test, Benjamini-
Hochberg (BH) adjusted P-value (adj P value) <0.05) (Supplementary
Data 3). The significantly DEPs of stable sensitive group (SSG) and stable
non-sensitive group (SNSG) in plasma cohort were defined as differ-
ential proteins with at least 1.5-fold change (two-sided Wilcoxon rank-
sum test, adj P value <0.05) (Supplementary Data 5); Pathway enrich-
ment analysis was performed byCPDB based on theDEPs in each group.
Pathways with an adjusted P value less than 0.05 were regarded to be
significant enrichment (Supplementary Data 3 and 5).
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Identification of potential biomarkers for CRC diagnosis
The plasma and tissue samples from therapy-naïve CRC patients and
healthy controls (or NATs) were included for screening potential bio-
markers for CRC diagnosis. To search for potential signatures applied
for plasma and tissue samples that could be used as potential bio-
markers for CRC patients, we used the following criteria in this study:
(1) The candidate proteins were expressed in at least 50% of the sam-
ples; (2) The candidates were significantly increased in tumor samples
than normal samples or NATs (two-sided Wilcoxon rank-sum test, adj
P value < 0.01); (3) The candidates were identified with at least 2-fold
increase in CRC samples than normal samples. The same screening
criteria were adopted in our tissue validation cohort and the CPTAC
CRC cohort38. Ultimately, we obtained four proteins (including
COL12A1, THBS2, S100A8, and S100A9) for distinguishing CRC
patients from healthy controls. The predictive effect of the four pro-
teins combinationwas verified byROC analysis using (pROCRpackage
version 1.16.2 and Caret R package version 6.0–86), in which sensitiv-
ity, specificity, accuracy, and AUC were used to determine predictive
values. The 10-fold cross validation was used, and samples were par-
titioned based on sample types; among them, 60% of samples were
used as a training set, and the remaining 40% represented the inde-
pendent testing set.

Protein–protein interaction (PPI) network
Protein–protein interaction (PPI) network was constructed to reveal
the correlations of proteins using the Search Tool for the Retrieval of
Interacting Genes (STRING; http://string-db.org) (version 11.5) online
database93,94, which is a database of known and predicted protein-
protein interactions. The PPI network identified by String and Cytos-
cape visualization software.

The potential molecular features and biomarkers for the initial
therapy response
The protein expression matrix of the plasma samples from therapy-
naïve CRC patients was used to identify the proteomic subtypes using
the consensus clustering method implemented in the R package Con-
sensusClusterPlus v.3.895,96. The top 1500 proteins with the highest
median absolute deviation were subjected to ConsensusClusterPlus in R
v.3.5.1 for unsupervised consensus clustering. The cluster analysis was
performed with the following setting: maxK= 10, reps = 1000, pItem=
0.8, pFeature = 1, clusterAlg = “hc”, distance = “pearson” for the clus-
tering runs. A preferred cluster result was selected by considering the
profiles of the consensus cumulative distribution function (CDF) and
delta area under the CDF curve for clustering solutions between 2 and
10 clusters. As shown in Supplementary Fig. 3, the rank survey profiles of
the consensus CDF and the delta area under the CDF curve, along with
the consensus membership heat maps, indicated a three-subtype solu-
tion for 89 samples of pre-treatmentCRCusing the proteomic data. This
showed clear separation and the significant therapy response among
3 subtypes. To generate the abundance heatmap, the CRC samples in
each subtype were rearranged from G-I to G-III, using the signature
protein abundance matrix enriched in the signature pathways for each
subtype. The signature proteins of each subtype were defined with
significantly differential expression (fold change >1.5, adj P value <0.05,
two-sidedWilcoxon rank-sum test) when comparedwith other subtypes
(Supplementary Data 4). ConsensusPathDB (CPDB) molecular interac-
tion data obtained from 31 different public repositories97, and deter-
mined the dominant bioprocesses of each subtype. The adj
P value <0.05 is considered statistically significant of the pathway
enrichment. The key regulators involved in the overrepresented path-
ways associated with therapy response were identified. Among these
proteins, a group of proteins with significant (positively or negatively)
correlation with clinical prognosis were regarded as the potential bio-
markers (including RRAS2, MMP8, FBLN1, RPTOR, and IMPDH2). The
predictive effect of the five biomarkers combination was verified by

ROC analysis using (pROC R package version 1.16.2 and Caret R package
version 6.0–86), inwhich sensitivity, specificity, accuracy, andAUCwere
used to determine predictive values.

Correlation between proteomic subtype and clinical
characteristics
To explore the association of clinical baseline characteristics (includ-
ing age, gender, degree of tumor differentiation, and ECOG
performance-status score) and other biochemical indicators (such as
lactate dehydrogenase (LDH), WBC, lymphocyte number (LYMPHN),
hemoglobin (HB) and platelet count) with proteomic subtypes, two-
sided Fisher’s exact test was performed on categorical variables and
one way-ANOVA analysis was applied for comparison for the con-
tinuous variables (GraphPad Prism 8 software). P values less than 0.05
were considered as significantly different (Table 2).

The gene set enrichment analysis (GSEA)
GSEA is a computationalmethod todeterminewhether a priori defined
set of genes has statistical significance and concordant differences in
two biological states39, whichwas applied for pathway analysis inmany
researches98–100. Sample grouped according to different groups (the
proteomic subtypes, or S/NS groups or RRAS high/low expression
groups)were subjected toGSEAbasedon theproteomicdata using the
clusterProfiler R package (v3.18.1)101. Molecular Signatures Database
(MSigDB) of hallmark gene sets (H), curated gene sets (H2) and GO
gene sets (C5) were used for enrichment analysis. An FDR value of 0.05
was used as a cutoff. The enrichment score (ES) inGSEAwas calculated
by first ranking the proteins from the most to least significant, the
entire ranked list was then used to assess how the proteins of each
gene set were distributed across the ranked list.

The single sample gene set enrichment analysis (ssGSEA)
All scores were inferred by single sample gene set enrichment analysis
(ssGSEA) method from the GSVA R package based on the protein
expression matrix. The gene set (c2.all.v7.4.symbols) of Molecular
Signature Databse(MSigDB) was used to ssGSEA40. The parameters:
min.sz = 10, max.sz = 300 were set and other parameters were used
default. The ssGSEA scores of pathways in each sample were obtained
for the further correlation analysis among pathways and comparison
between two groups.

Immune cell type composition
The cell type enrichment score assessed with statistical significance
wascalculated andused to infer the relative abundanceofdifferent cell
types in the tumor microenvironment in the online enrichment
streamline at https://xcell.ucsf.edu/, which was also applied in many
transcriptomic and proteomic researches47,102,103. The abundance of 64
different cell types were computed via xCell based on proteomic
profiles104. The Supplementary Data 4 contains the final score com-
puted by xCell of different cell types. To identified significantly dif-
ferential cell types in G-III subtype, two-sided Wilcoxon rank-sum test
with Benjamini-Hochberg (BH) adjust was used to compare the dif-
ference between G-III subtype and other subtypes (G-I and G-II), cell
types with fold change (G-III/others) >2 and adj P < 0.05 as significantly
different (Supplementary Data 4).The tumor size evaluated by CT/MRI
was used for the correlation analysis with CD8+Tem xCell score. The
single-cell transcriptome data (GSE108989)49 was included for the
association of CD8+Tem with tumor size.

Identifying biomarkers for the longitudinal response prediction
of the multi-course cetuximab treatment
To explore the plasma biomarkers for efficient monitoring during the
continuous multiple courses to cetuximab treatment, we used the
following these criteria in this study: (1) The plasma proteins were
significantly altered during multiple cetuximab treatment courses
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screened by significant positive or negative correlation, defined as
positive correlation-sig or negative correlation-sig; (2) The candidates
were significantly differential expression in the stable sensitive and
non-sensitive group (fold changes> 1.5 or <0.67; two-sided Wilcoxon
rank-sum test, adj P value < 0.05), defined as SSG-sig and SNSG-sig; (3)
The overlapped proteins of SSG-sig and negative correlation-sig, as
well as SNSG-sig and positive correlation-sig were regarded as the
candidate biomarkers for the further stepwise logistic regression.
Samples was randomly divided into 60% of individuals (the training
set) and the remaining 40% (the testing set)105. The backward stepwise
method was utilized to feature selection on the training set. The
10-fold cross validation was used. Moreover, the value of this model
was verified using ROC analysis. Sensitivity, specificity, accuracy, and
AUC were used to determine predictive values.

Targeted PRM analysis
Using the library search results, a set of target peptides that unique to
RPTOR and IMPDH2 proteins were selected and PRM method was
designed. Besides, house-keeping proteins, such as VCP, RPLP0,
PSMB4, were also included for the reference. Equal amount of plasma
from each sample was digested as described in the part of profiling
preparation. Peptide samples were injected into the Q Exactive HF-X
Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Scientific)
operating in PRM mode with quadrupole isolation and HCD frag-
mentation. The full MS mode wasmeasured at resolution 45,000 with
AGC target value of 3E6 and maximum IT of 20ms, with scanning
range of 150 to 2000m/z. Target ions were submitted toMS/MS in the
HCD cell (1.6m/z isolation width, 27% normalized collision energy). All
the PRM events were performed after MS1 scanning, at resolution
15,000 with AGC target value of 1E6 and maximum IT of 25ms.
Separation was achieved on a 150-μm-inner-diameter column with a
length of 15 cm (1.9-μmReproSil-Pur C18-AQ beads, Dr. Maisch GmbH)
in an Easy 1200nLC HPLC system (Thermo Scientific). Solvent A was
0.1 formic acid inwater and solvent Bwas 0.1% formic acid, 80%ACN in
water. Peptideswere separated at 600or 800nL/min across a gradient
as following over 15min: 0–15min, 0min, 6% B, 600 nL/min; 0–6min,
30% B, 600nL/min; 6–8.2min, 50% B, 600 nL/min; 8.2–9.2min, 95% B,
800nL/min; 9.2–12.3min, 95% B, 800 nL/min; 12.3–13.3min, 3% B,
800nL/min; 13.3–15min, 3% B, 800 nL/min.

Rawdata was searched by Skyline-daily (4.2.1.19004, University of
Washington, USA), as described in our previous study46. The proteins
were quantified with the fragment total area reported by Skyline-daily.
We selected peptides and tested their stability of signal and shape of
peaks in the pool sample for final quantification, and referred to the
ranking offered by skyline. The list of targeted peptides and the
expression matrix were included in the Supplementary Data 4.

Survival analysis
Overall survival (OS) was used as primary endpoint. Hazard ratio (HR)
and P values were calculated by two-sided log rank test, and P
values < 0.05 were considered as significantly different. Survminer
(version 0.2.4, R package) with maximally selected rank statistics was
used to determine the optimal cut-off point of a given protein for the
following calculation including Kaplan–Meier analysis, log rank test,
according to the previous studies35,106. OS curves were based on the
optimal cut-off point.

Immunohistochemistry staining and evaluation
A standard IHC protocol was followed to stain the tumor tissue sam-
ples of the CD8+ Tem markers by using the rabbit monoclonal anti-
body against CD44 (1:200, Signalway Antibody, catalog No: 48911-1),
and the rabbit polyclonal antibody against GZMK (1:300, Signalway
Antibody, catalog No: 40985-1). IHC evaluation was analyzed using an
IHC profiler compatible plugin with integrated options for the quan-
titative analysis of digital IHC images stained for cytoplasmic or

nuclear proteins. Moreover, the intensity of the cytoplasmic staining
and the percentage of positively stained tumor cells were also scored
numerically.

Statistics and reproducibility
Standard statistical tests were used to analyze the clinical data, includ-
ing but not limited to Student’s t test, Wilcoxon rank-sum test, Fisher’s
exact test, Pearson’s correlation test, Spearman correlation test, log-
rank test, one-way ANOVA. Unless otherwise specified, all statistical
tests were two-sided. The two-sided Fisher’s exact test was performed
on categorical variables (including age, gender, degree of tumor dif-
ferentiation, andECOGperformance-status score), andoneway-ANOVA
analysis was applied for comparison for the continuous variables
(including lactate dehydrogenase (LDH), WBC, lymphocyte number
(LYMPHN), hemoglobin (HB) and platelet count) (GraphPad Prism
8 software). P values less than 0.05 were considered as significantly
different. The Wilcoxon rank-sum test was used to examine whether
proteins were differentially expressed between Pre-treatment CRC
(N =89) and HC (N =66), Tumor tissues (T, N = 31) and normal-adjacent
tissues (NAT, N= 27), each proteomic subtype and other subtypes (G-I
(N = 24), G-II (N = 34), G-II (N= 31)),SSG (N = 38) and SNSG (N = 153). The
Student’s t test was used to examined whether the cell types were dif-
ferentially expressed each proteomic subtype and other subtypes (G-I
(N = 24), G-II (N = 34), G-II (N = 31)). All statistical tests were two-sided,
and statistical significance was considered when P value < 0.05. To
account for multiple testing, the P values were adjusted using the
Benjamini-Hochberg FDR correction. Kaplan–Meier plots with log-rank
test were used to describe survival analysis. All the analyses of clinical
data were performed in R (v3.5.1) and GraphPad Prism 8 software. For
functional experiments, each was repeated at least three times inde-
pendently, and results were expressed as mean ± SD. Statistical analysis
was performed using GraphPad Prism 8 software. The P values less than
0.05, 0.01, 0.001, 0.0001weremarkedwith *, **, ***, ****, respectively. All
the statistical analysis had been checked by two statisticians.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw mass spectrometry (MS) proteomics data and parallel
reaction monitoring (PRM)-MS proteomics data generated in this
study have been deposited in the deposited in the ProteomeXchange
Consortium (dataset identifier: PXD047207) via the iProX partner
repository (https://www.iprox.cn/)107 under the project ID
IPX0005221000. The Human Protein Atlas (HPA) IHC Staining Data
and the list of protein classes could be accessed at https://www.
proteinatlas.org/. Molecular Signatures Database (MSigDB) could be
accessed at https://www.gsea-msigdb.org/gsea/msigdb. TIMER2.0
database could be accessed at http://timer.cistrome.org/. The Con-
sensusPathDB (CPDB) molecular interaction data could be accessed
at http://www.consensuspathdb.org/. The STRING database could be
accessed at https://cn.string-db.org/. The public datasets related to
ulcerative colitis (an inflammatory bowel disease) and infection dis-
ease (such as SARS-CoV-2 infection) could be obtained from Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) with
the accession number GSE11223 and GSE207015, respectively. The
remaining data are available within the Article and Supplementary
Information. NCBI human Refseq protein database could be accessed
at https://www.ncbi.nlm.nih.gov/refseq/. Source data are provided
with this paper.

Code availability
This study did not generate custom computer code. No special code
wasused in this study. The relatedR scripts used for statistical analyses
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in this study have beenpublicly available onGitHub repository: https://
github.com/buranoyanlee/Prediction108 and Zenodo repository:
https://zenodo.org/records/10200747109.
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