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Mechanochemical synthesis of
organoselenium compounds

Shanshan Chen1, Chunying Fan1, Zijian Xu 2, Mengyao Pei1, Jiemin Wang1,
Jiye Zhang1, Yilei Zhang 3, Jiyu Li4, Junliang Lu4, Cheng Peng 1 &
Xiaofeng Wei 1

We disclose herein a strategy for the rapid synthesis of versatile organosele-
nium compounds under mild conditions. In this work, magnesium-based
selenium nucleophiles are formed in situ from easily available organic halides,
magnesium metal, and elemental selenium via mechanical stimulation. This
process occurs under liquid-assisted grinding (LAG) conditions, requires no
complicated pre-activation procedures, and operates broadly across a diverse
range of aryl, heteroaryl, and alkyl substrates. In this work, symmetrical dis-
elenides are efficiently obtained after work-up in the air, while one-pot
nucleophilic addition reactions with various electrophiles allow the compre-
hensive synthesis of unsymmetricalmonoselenideswith high functional group
tolerance. Notably, the method is applied to regioselective selenylation reac-
tions of diiodoarenes andpolyaromatic aryl halides that are difficult to operate
via solution approaches. Besides selenium, elemental sulfur and tellurium are
also competent in this process, which showcases the potential of the metho-
dology for the facile synthesis of organochalcogen compounds.

As an essential trace element for human beings, seleniummanifests a
wide range of physiological processes through in-corporation into
over 25 selenoproteins as selenocysteine1. The selenium-containing
compounds are also prevalent in pharmaceutical libraries2–6, catalyst
scaffolds7–18, and material building blocks19,20 (Fig. 1a). These impor-
tant applications have triggered the development of robust, concise,
and environmentally friendmethods for their synthesis to access new
chemical spaces. Whilst many synthetic methods including metal-
catalyzed (Ni, Cu, Pd, Fe, Co, In, etc.) cross-coupling reactions, metal-
free oxidative coupling reactions, as well as photochemical and
electrochemical reactions have been developed for the synthesis of
organoselenium compounds using preformed activated selenium
reagents21–36, direct utilization of elemental selenium in the synthesis
is a more attractive strategy due to elemental selenium’s low price,
commercial availability, storage stability, odourlessness, and ease of
handing. Nevertheless, the inert chemical property, low solubility in

organic solvent, and tendency to form transition-metal selenium
clusters make direct use of selenium powder for efficient synthesis
challenging (Fig. 1b)37. To date, themajority of thesemethods require
large excess of polar solvents, long reaction time, and harsh condi-
tions. In contrast with traditional solvent-based strategies, mechan-
ochemistry allows efficient energy dispersion and mass
transportation under solid-state condition and therefore provides an
alternative strategy for green and sustainable synthesis38–47. Recently,
the strategy has been applied to facilitate the oxidative addition of
zero valent metals (such as Mg, Mn, Zn, Ca, etc) to organic halides,
generating organometallic species for diverse nucleophilic
transformations48–60. For instance, Ito, Kubota60, and Bolm61 groups
independently demonstrated elegant examples of producing versa-
tile Grignard reagents usingmechanochemical strategy. Remarkably,
in the work of Ito and Kubota60, no degradation of air-sensitive
Grignard reagents was observed even when themilling jar was briefly
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exposed to the air before adding an electrophile, highlighting the
method’s robustness.

In this work, we present a mechanochemical method for synthe-
sizing organoselenium compounds which involves the in situ genera-
tion of magnesium-based selenium species through the
straightforward process of mixing and grinding organic halides,
magnesium, and elemental selenium. Notably, these species exhibit
extreme sensitivity to both oxygen and water, leading to their com-
plete conversion into symmetrical diselenides during the work-up
procedure. Additionally, employing a one-pot process for the addition
of electrophiles enables efficient synthesis of unsymmetrical mono-
selenides, which proceeds smoothly even in the presence of air.
(Fig. 1d). We also achieve the successful preparation of magnesium-
based organoselenium reagents from polyaromatic aryl halides and
diiodoarenes. Notably, it’s important to highlight that converting such
substrates into organochalcogenides poses challenges when employ-
ing conventional solution-basedmethods. Near edge X-ray absorption
fine structure (NEXAFS) spectroscopy is employed to analyze the
generation of the magnesium-based organoselenium nucleophiles
under mechanochemical conditions. The method can be extended to
the straightforward synthesis of organic sulfur and tellurium com-
pounds, suggesting its potential to serve as a highly practically foun-
dation for the comprehensive synthesis of organochalcogen
compounds.

Results
As a proof of concept, we chose iodobenzene (1a) as amodel substrate
to be added to a 1.5mL stainless-steel milling jar loaded with com-
mercially available magnesium turnings (1.0 equiv relative to 1a),

seleniumpowder (1.0equiv relative to 1a), LiCl (1.5 equiv relative to 1a),
THF (η = 1.4 µL/mg), and one stainless-steel balls (diameter: 6mm) in
argon glovebox (For detailed screening of reactionparameters, see the
Supplementary Information, Supplementary Table 2). The reaction
was conducted using Retch MM400, while Retch MM500 was used in
the case of higher vibration frequency (35Hz). The reaction was
monitored and the starting material was completely consumed within
15min. To our surprise, instead of getting benzeneselenol, which was
the predominant product in solvent-based activation of elemental
selenium using Grignard reagents62–64, diphenyl diselenide was
obtained in 88% yield (Fig. 2a). Analysis of crude NMR showed only
approximately 5% benzenselenol was generated, while potential side
products such as biphenyl and diphenylselenide were not observed.
The high chemoselectivity for diselenide showed the advantage of our
strategy. Up to date, preparation of diselenide from elemental sele-
nium generally requires a transition metal catalyst, harsh reaction
conditions, and long reaction time65–68, indicating our approach pro-
vides a solution for their facile synthesis.

Having established the optimal conditions, we next examined the
scope of the reaction. Products were obtained in high yield for aryl
iodides possessing electron-donating groups, halogen, and sterically
hindered substituents at all para-, ortho-, and meta- positions (2a, 2c-
2h, 2j-2k, 2m, 74-98%). Aryl bromide (1b) also performed well under
the optimized condition (2b, 83%). Heteroaryl iodides (1n and 1o) were
also competent under the standard reaction as the corresponding
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products were isolated in satisfying results (2n and 2o, 88% and 73%).
Substrates with relatively strong electron-withdrawing nitrile sub-
stitution at ortho- or para- position (1 l and 1i) showed decreased
reactivity while increasing the loading of magnesium as well as the
vibration frequency significantly improved the yields (2 l and 2i, 68%
and 74%). It is worth noting that both elemental sulfur and tellurium
were also applicable, providing symmetrical disulfides and ditellurides

in moderate to good yields (2ra-2rh and 2sa-2sh). Due to the plastic
feature, S8 was generally considered inert against mechanical impact,
while most of the kinetic energy deriving from the collisions between
the balls and sulfur is consumed its deforming rather than for pro-
moting its reactivity69. Although investigation in chalcogenation pro-
cess via ball-milling strategy is raising considerable concern70–73, direct
construction of carbon-chalcogen bond from chalcogen element is
rare. Herein, we report the mechanochemical synthesis of orga-
nochalcogenides using elemental chalcogen, which showed significant
improvement of conversion compared with solution-based condition
(Supplementary Information, Supplementary Table 2 and Table 3).
Moreover, with modified procedure (Supplementary Information,
Condition C), racemic amino acid derivative (1p) containing protonic
functionality was also applicable, which showcased the compatibility
of our method with protonic functionality, which is challenge in the
process for preparing Grignard reagents. Besides, this method was
applicable for heterocyclic alkyl iodide (1q), providing symmetrical
alkyl diselenide 2q in good yield.

Further, one-pot mechanochemical process was designed to
convert elemental selenium directly to unsymmetrical monoselenides
(Fig. 3a). We assumed the existence of reaction equilibrium between
symmetrical diselenide (2) and magnesium-based selenium nucleo-
philes (2’) in the presence of excess amount of magnesium under ball-
milling condition, therefore the symmetrical diselenide (2) would
gradually transform to monoselenides in the presence of electrophile.
As expected, when N-phenylacrylamide (3a) was added in air, the
subsequent ball-milling reaction afforded conjugate addition product
4a in 94% yield (For detailed screening, see the Supplementary Infor-
mation, Supplementary Table 3). Our protocol was found to be general
and robust with remarkable functional group tolerance even in the
presence of protonic NH functional group of the acryl amides sub-
strates. A broad range of electronic and sterically differentiated sub-
stituted iodoarenes as well as heterocycles delivered the
corresponding products in excellent yields (4a-4w). Alkyl iodide was
also competent, the unsymmetrical dialkylselenide (4x-4z) was
obtained, although elevated temperature was required to achieve
satisfactory yield. Themethodology is also amenable to the utilization
of different acrylamides as acceptors (Fig. 3b). Both electron-donating
and electron-withdrawing substituents at para- and meta-position on
the aryl group bound to nitrogen were well tolerated (5-7). N-alkyla-
crylamides (8 and 9) as well as (2E)-N-phenyl-butenamide (10) were
also compatible, although the reactivity is moderate. Moreover, our
protocol could be further applied to the facile synthesis of unsym-
metrical monosulfides and monotellurides in moderate to good yield
(11a-11n and 12a-12n, Fig. 3c and 3d).

Having demonstrated the validity of our method, we next used
our solid-state strategy to target other selenation processes that
involved alternative electrophilic traps (Fig. 4a). Nucleophilic sub-
stitution of 2-chloropyrimidine (13) and 2-fluoroacetophenone (20)
afforded diarylselenoethers (14 and 21) efficiently. In addition, alkyl
iodides were also compatible, providing versatile alkyl-heteroaryl
monoselenides (15-19) in good yield. As an alternative, switching the
electrophile with alkyl triflate (24) and alkyl iodide (27) provided cor-
responding dialkylselenothers (26 and 28) with excellent yield.
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Conjugate addition reaction using α, β-unsaturated amino acid deri-
vative (22) as electrophile provided selenium-containing amino acid in
good yield (23). The protocol could also be applied to the facile con-
struction of selenoesters, a type of important synthetic intermediates
and widely applied to the synthesis of important bioactive
compounds74–78. Using anhydride (29) as trapping reagent, corre-
sponding selenol ester (30) was synthesized with significantly
improved step and atomic efficiency compared with other
strategies79–82.

Large polyaromatic aryl halides (31 and 33) were submitted to the
one-pot selenation sequence using N-phenylacrylamide as electro-
phile. Previous studies have suggested that external heating can
improve themixing efficiency and promote chemical reactions in solid
state83–85. To further enhance reactivity, we employed a commercially

available, temperature-controllable heat gun, positioned it directly
above the ball-milling jar, with the temperature set at 110 °C (For
detailed screening of reaction parameters, see the Supplementary
Information, Supplementary Fig. 4.). While solution-based condition
failed, our strategy performed effectively under the optimized condi-
tion, yielding selenation product 32 and 34 in good yields. In the case
of diiodoarene (35), monoselective selenation in solid state afforded
36 in good yield and excellent selectivity, while solution-based con-
dition provided complex crudemixturewith only 10%yieldof product.
Furthermore, this reaction offers the advantage of yielding mono-
chalcogenides with good yields and selectivity (37 and 38). The robust
nature of the current process was further highlighted by scaled-up
experiment using bench THF as LAG in air (Fig. 4c) with slightly
modified procedure, which successfully produced desired product
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Information Condition I. c3a (0.5mmol), Mg (5.0 equiv), Se (2.0 equiv), 31/33 (2.0
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tion Methods’ synthesis of unsymmetrical monochalcogenides with gram-scale
reaction.
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without using anhydrous solvent as well as tedious schlenk technique.
Moreover, our method could also be applied to the facile synthesis of
bioactive compounds. Starting from 4,7-dichloroquinoline (39), 40
with potential antioxidant and anticholinesterase activities could be
efficiently synthesized regioselectively in one-pot with 75% yield86.

Preliminary mechanistic experiments were carried out to shed
light on the ball-milling-enabled one-pot selenation process. Substrate
with radical cyclization potential (41) was evaluated and only linear
symmetrical diselenide intermediate (42) and unsymmetrical mono-
selenide (45) was obtained exclusively without observation of any
cyclized byproduct (43 or 44), which indicated the reaction may
proceed via two electron 1,4- nucleophilic addition pathway while not
radical pathway initiated by one electron reduction of diselenide from
magnesium under ball-milling condition87 (Fig. 5a). Conducting stan-
dard reaction under argon protection and subsequently performing
the work-up via short column filtration in a glove box resulted in the
exclusive formation of benzeneselenol (as depicted in Fig. 5b, 47a). In
contrast, in previous experiments depicted in Fig. 2, when the work-up
wasconducted in thepresenceof air, it exclusively led to the formation
of the symmetrical diselenide. This outcome strongly indicates that
the Se-Se bond forming process occurs via air oxidation. Moreover, in
the presence of magnesium, diphenyl diselenide (2a) could be con-
verted to corresponding product 4a efficiently within 30min (Fig. 5c).
It is worth noting that the cleavage of Se–Se bond using magnesium
alonewaspreviously regarded as a challenging task88. This observation
indicates that symmetrical diselenides, which are generated in situ
upon exposure to air, can be efficiently converted to selenium
nucleophiles in the presence of magnesium under ball-milling condi-
tion. Subsequent exposure to electrophiles led to the formation of
unsymmetrical monoselenide in good yields.

To confirm the generation of magnesium-based selenium
nucleophiles under ball-milling conditions,we utilizedNear-edgeX-ray
absorption fine structure (NEXAFS) spectroscopy. NEXAFS measure-
ments were conducted at BL08U1A beamline of Shanghai Synchrotron
Radiation Facility (SSRF in China) using magnesium-based selenium
nucleophiles 47a which were prepared through ball milling and then
transferred into the soft X-ray optics under an argon atmosphere. The
formation of the divalent cationic Mg2+ species was unequivocally
confirmed through the high-energy shift of the Mg K-absorption edge
(1317.0 eV) in comparison to the Mg0edge (1315.0 eV) of a standard
magnesium flake89.

(Figure 6a). The high resemblance of the NEXAFS spectra atMg-K,
C-K Se-L3 edges between the mechanochemically-prepared 47a and
PhSeMgBr prepared in solution 47b90 (Fig. 5b) supports the formation
of similar magnesium-based organoselenium species with carbon-
seleniumbonds under both ball-milling and solution conditions inTHF
(Fig. 6a–c) The presence of carbon-selenium bond, arising from the
transformation of the C-Br bond in the starting bromobenzene, was
supported by the intense 1s–π* transition peaks at approximately
284.0 and 286.2 eV in the C-K NEXAFS spectra (Fig. 6b)91. Additionally,
the formation of the monovalent anionic Se- species was conclusively
confirmed through the low-energy shift of the Se L3-edge absorption
peak (1445.3 eV) in 47a relative to the Se0 peak (1446.0 eV) in standard
selenium powder (Fig. 6c)92. The remarkable similarity of Se L3-edge,
Mg K-edge and C K-edge NEXAFS spectra of mechanochemically-
prepared47a to thoseof PhSeMgBr (47b) prepared in solution (Fig. 6a-
c) further supports the formation of similar organoselenium species
with carbon-selenium bonds under both ball-milling and solution
conditions in THF60.

Discussion
In summary, we developed the ball-milling-enabled C-Se bond forma-
tion from readily accessible organic halides, magnesium metal and
elemental selenium. The reaction features a wide substrate scope,
tolerating protonic, steric and electronic different functionalities. The
simple and efficient one-pot operation afforded a wide range of sym-
metrical diselenides and unsymmetrical monoselenides, respectively,
whose formation would otherwise require transition metal catalysts,
large excess of hazardous organic solvents and extensive heating. The
synthetic potential of the solid-state selenation protocols was show-
cased through the facile access to a selenium-containing biologically
important molecule (40). We envisage that our solid-state one-pot
selenation strategy will serve as a launchpad for the invention of
chalcogenation processes and related projects are ongoing in our
laboratory.

Methods
General procedure for the synthesis of symmetrical
dichalcogenides
Mg turnings (0.2mmol, 1.0 equiv, 4.8mg) and Se powder (0.2mmol,
1.0 equiv, 16.0mg) were placed in a jar (stainless-steel; 1.5mL) with a
ball stainless-steel; 6mm, diameter) in argon. An organic halide 1
(0.2mmol, 1.0 equiv), LiCl (0.3mmol, 1.5 equiv, 12.7mg) and THF (1.1-
1.6 µL/mg) were added to the jar using a syringe. After the jar was
closed, the jar was placed in a ball mill (Retsch MM 400, 15–30min,
30Hz). After grinding for 15–30min, themixturewas eluted from silica
gel with EA (ethyl acetate), the solvent was removed by vacuum dis-
tillation, and the pure product was obtained by rapid column chro-
matography (SiO2, Hexane).

General procedure for the synthesis of unsymmetrical
monochalcogenides
Mg turnings (0.3mmol, 1.5 equiv, 7.2mg) andSepowder (0.3mmol, 1.5
equiv, 24.0mg) were placed in a jar (stainless-steel; 1.5mL) with a ball
(stainless-steel; 6mm, diameter) in argon. An organic halide 1
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Fig. 5 | Mechanistic Insights. a Radical cyclization experiment. b NMR of inter-
mediate. c Cleavage of Se-Se bond using magnesium.
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(0.4mmol, 2.0 equiv) and THF (0.8-1.4 µL/mg) were added to the jar
using a syringe. After the jar was closed, the jar was placed in a ball mill
(RetschMM400, 60min, 30Hz). After grinding for 60min, the jarwas
opened in air and chargedwith an electrophile 3 (0.20mmol, 29.4mg).
The jar was then closed without purging with inert gas, and was placed
in the ball mill (Retsch MM 400, 30-60min, 30Hz). After grinding for
30-60min, the mixture was eluted from silica gel with EA (ethyl acet-
ate), the solvent was removed by vacuum distillation, and the pure
product was obtained by rapid column chromatography (SiO2, pet-
roleum ether/ethyl acetate, 10:1-5:1).

Data availability
For full characterization data including NMR/IR/HR-MS spectra of the
new compounds and experimental details, see the Supplementary
Material. All relevant data underlying the results of this study are
available from the corresponding authors upon request.
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