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Revealing the hidden carbon in forested
wetland soils

Anthony J. Stewart 1 , Meghan Halabisky1, Chad Babcock 2,
David E. Butman 1, David V. D’Amore3 & L. Monika Moskal 1

Inlandwetlands are critical carbon reservoirs storing 30%of global soil organic
carbon (SOC)within 6% of the land surface. However, forested regions contain
SOC-rich wetlands that are not included in current maps, which we refer to as
‘cryptic carbon’. Here, to demonstrate the magnitude and distribution of
cryptic carbon, wemeasure andmap SOC stocks as a function of a continuous,
upland-to-wetland gradient across the Hoh River Watershed (HRW) in the
Pacific Northwest of the U.S., comprising 68,145 ha. Total catchment SOC at
30 cm depth (5.0 TgC) is between estimates from global SOCmaps (GSOC: 3.9
TgC; SoilGrids: 7.8 TgC). For wetland SOC, our 1m stock estimates are sub-
stantially higher (Mean: 259 MgC ha−1; Total: 1.7 TgC) compared to current
wetland-specific SOC maps derived from a combination of U.S. national
datasets (Mean: 184MgCha−1; Total: 0.3 TgC).Weshow that total unmappedor
cryptic carbon is 1.5 TgC and when added to current estimates, increases the
estimated wetland SOC stock to 1.8 TgC or by 482%, which highlights the vast
stores of SOC that are not mapped and contained in unprotected and vul-
nerable wetlands.

Conserving Earth’s carbon-rich ecosystems is critical in order to meet
the goals of balancing carbon sources and sinks for the Paris Climate
Agreement1. Among ecosystems with high carbon stocks, inland
freshwater wetlands and peatlands contain greater than 30% of the
global total soil organic carbon (SOC) stock of 1500–2400PgC but
only cover approximately 6% of the land surface2–4. However, below
the global scale, wetland SOCmapping is considerablymore uncertain
due to poor spatial representation. Estimates of wetland SOC stocks
often rely on coarse resolution mapping and broad scale inventories
that omit many wetlands outside of large homogenous wetland com-
plexes such as peatland plateaus in the high latitude northern hemi-
sphere (>60°)5,6. In the more heterogenous, complex terrain of mid-
latitude temperate forested regions (30°–60°), wetlands still dis-
proportionately contribute towards terrestrial carbon storage com-
pared to upland areas, but are difficult to map and can occur subtly
within a forested landscape and remain hiddenunder the canopy7. This
temperate wetland area has been a frequent target of land use

conversion to agriculture and urban land uses contributing to the
recently estimated loss of 21% of the original global wetland area since
1700 AD8. The recent ruling by the U.S. SupremeCourt in Sackett et ux.
v. Environmental Protection Agency et al. potentially enables more
wetland loss. Estimating SOC lost from anthropogenic disturbance
requires comprehensive SOC mapping that accounts for high SOC in
forested wetlands and wet areas which are not contained in con-
temporary inventories. Omitting these high SOC stocks propagates a
potential underestimation of the terrestrial carbon stock in forested
regions which contain SOC stores that have accumulated over cen-
turies making them invaluable but irrecoverable if lost within the
timeframe to reach net-zero emissions9.

Freshwater inland wetlands make up 95% of the wetland area in
the United States and contain a total SOC stock 8–10-fold higher than
the total SOC stock in tidal wetlands10,11. Within the inland wetland
population, forested wetlands cover the largest extent, but represent
the most difficult wetland mapping category to detect, especially in
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satellite and aerial imagery, due to the canopy coverage, small surface
area, and isolation from surface waters12. Despite the limited appear-
ance, forested wetlands have interconnective roles within terrestrial
carbon cycle in addition to SOC storage, including but not limited to:
accumulating carbon in aboveground biomass13; transporting of labile
dissolved organic matter to streams14; supplying dissolved CO2 to
surface waters leading to significant outgassing15; and potentially act-
ing as the highest non-ebullitive CH4 flux from groundwater through
tree stems16. This diverse array of carbon functions highlights forested
wetlands role as a hotspot or ecosystem control point within a
landscape17. Indeed, seemingly isolated wetlands can connect to sur-
face waters through groundwater links throughout a catchment18,19

and integrating previously unidentified ‘cryptic’ forested wetlands can
better explain catchment scale surface water chemistry patterns20.
Cryptic wetlands can also act as the transition between terrestrial and
aquatic environments where rapid biogeochemical cycling can occur
in spaces only a few meters wide21. Mapping SOC along the terrestrial-
aquatic gradient containing forested wetlands can reveal hidden SOC
spatial patterns that help balance carbon budgets in heterogenous
landscapes22. However, mapping the distribution of SOC stocks within
forested landscapes is challenging, especially with small forested wet
areas that do not exhibit conspicuous wetland indicators such as signs
of water saturation affecting the aboveground vegetation23.

Maps of SOC stocks are commonly generated with digital soil
mapping (DSM) using geospatial land cover maps and remote sensing
metrics relating to the spatial variation of soil forming factors24. Wet-
lands integrated into DSM are often inconsistently defined with
insufficiently measured wetland extent that promotes under-
estimation and inaccurate spatial distributions of SOC stocks25. Yet,
generally, wetland mapping continues to improve with machine
learning models utilizing geospatial wetland and peatland soil prop-
erties, but there is still substantial variation and underestimates in
forested wetlands and wet areas26. In areas where forest canopy
obscures wet areas, data drivenmachine learning approaches utilizing
topography focused metrics can identify previously hidden forested
wetlands and wet areas by capturing patterns of surface and ground-
water flow that facilitate water accumulation within a landscape27.
Utilizing continuous probabilities simulated from presence/absence
data28, probabilistic wetland mapping can capture the spatial repre-
sentation of the terrestrial to aquatic gradient, with wetlands as one
end of a water saturation continuum29,30. SOC is expected to increase
with the higher probability of a wetland where soil saturation that
inhibits microbial respiration and facilitates organic matter accumu-
lation and potential wetland extent can be estimated above a chosen
probability threshold31,32.

We have yet to note SOC maps informed by potential wetland
presence which: (1) identifies unmapped SOC in potential wetland
area; (2) compares potential wetland SOC with maps of existing wet-
land SOC estimates; and (3) compares overall SOC distributions with
available SOC mapping products. Here, we conduct a DSM SOC map-
ping approach in the Hoh River Watershed (HRW), a densely forested,
geomorphologically complex watershed using a continuous prob-
abilistic wetland identification metric to reveal significant amounts of

unmapped SOC contained in potential forested wetlands and wet
areas. We adapt the term ‘cryptic wetland’ from ref. 20 as ‘cryptic
carbon’ to distinguish hidden SOC stocks within potential forested
wetlands that have not beenmapped or estimated previously, with the
caveat that we are notmapping jurisdictional wetland boundaries. Our
approach identifies a nearly five-fold increase in the amount of SOC
estimated to be contained in potential wetlands, of which is mostly
hidden under thick forest cover. This approach is adaptable and flex-
ible for natural resource managers and conservationists to identify
potentially immense cryptic carbon stocks that have not been asso-
ciated with potential forested wetlands.

Results
Field collected pedon SOC stocks
We investigated the distribution of SOC stock across thefield collected
pedon sample depth profile where the overall mean pedon depth was
95 ± 4.4 cm (standard error of the mean ( σ̂

2

pn)) with 94 ± 5.4 cm for
uplands and 99 ± 6.5 cm for wetlands. Within wetland pedons, 38% of
the entire SOC stock was in 0–30 cm, 31% in 30–60 cm, 27% in the
60–100 cm, and 4% in 100–120 cm (Table 1). Within upland pedons,
49% of the SOC stock was in 0–30 cm, 32% in 30–60 cm, 16% in
60–100 cm, and 3% in the top 120 cm. Overall, 96% and 97% of the
entire soil carbon stock was contained in the top 1m of the soil profile
for wetlands and uplands, respectively, which we used as a standar-
dized depth for spatial predictions across the HRW. Mean 1m depth
SOC stocks within our field pedon dataset was 221 ± 27.0 MgC ha−1

standard error of the mean ( σ̂
2

pn). Wetlands in our field pedon dataset
contained a higher mean 1m SOC stock of 346± 89.1 MgC ha−1 which
was also much higher compared to 185 ± 20.2 MgC ha−1 in uplands
(Table 1). Within wetlands, we classified riverine and palustrine wet-
lands due to differences in soil parent material leading to significant
differences in SOC. Palustrine wetlands defined here are similar to the
Cowardin classification adapted by the NWI12 of any freshwater (or less
than 0.5 ppt salt concentration), non-tidal, non-riverine, or non-
lacustrine wetland, inclusive of forested and non-forested vegetation.
Palustrine contained a mean 1m SOC stock of 447 ± 81.6 MgC ha−1

compared to a mean of 43.3 ± 11.7 MgC ha−1 in riverine wetlands.
Palustrine wetland SOC stock distribution in the soil profile was 37% in
the top 30 cm, 31% in 30–60 cm, and 28% in the 60–100 cm. Riverine
wetland SOC stock distributionwasmostly contained in the top 30 cm
(96%). We noted in field observations that pedon locations with WIP
probabilities between 25–50% that appeared to maintain a mesic soil
moisture environment between wetland and upland ends of the WIP
probability range. Pedons within themesic zone contained a 1mmean
SOC stock of 241 ± 36.5 MgC ha−1 SOC stock which is elevated above
uplands in our dataset and within the standard error range of the
overall WIP wetland class. Pedons with WIP probabilities below 25%
contained a mean of 149 ± 19.8 MgC ha−1.

Model predictions and mapping of SOC stocks
We used themodel shown in Eq. 2 and graphed in Fig. 1 to predict SOC
stocks across the HRW (Fig. 2). From these predicted maps, we cal-
culated a mean 1m SOC stock of 127 ± 26.0 (87–178) MgC ha−1

Table 1 | Soil organic carbon (SOC) stocks, sample depths, and sample numbers collected in the Hoh River Watershed (HRW)

Landscape Class 30cm SOC Stock 60 cm SOC Stock 1m SOC Stock 120cm SOC Stock Sample Depth n

WIP Wetland 138 ± 22.9 250 ± 53.4 346 ± 89.1 362 ± 96.9 99 ± 6.5 8

Riverine Wetland* 41.7 ± 12 42.8 ± 11.6 43.3 ± 11.7 43.3 ± 11.7 81 ± 4.0 2

Palustrine Wetland* 171 ± 11.8 320 ± 38.7 447 ± 81.6 468 ± 92.3 110 ± 6.9 6

WIP Upland 93.6 ± 7.65 153 ± 15.1 185 ± 20.2 190 ± 21.2 94 ± 5.4 28

All Landscapes 104 ± 8.27 175 ± 17.7 221 ± 27.0 228 ± 28.8 95 ± 4.4 36

The ±indicates standard error. The *indicates landscape class subsets from wetlands determined by the Wetland Intrinsic Potential (WIP) tool.
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(±standard deviation, parentheses contain 95% confidence interval
from the bootstrapped mapped predictions) and a mean 30 cm SOC
stock of 72.9 ± 12.5 (55.1–103) MgC ha−1 (See Methods for model fit
evaluation, Table 2. for tabulated 1m and 30 cm SOC stocks, Supple-
mentary Fig. 4 for mapped 1m SOC stock standard deviation and
Supplementary Figs. 5 and 6 for mappedmean and standard deviation
of 30 cm SOC stocks and Supplementary Fig. 7 for 30 cm model pre-
diction vs. actual scatterplot). The overall total 1m and 30 cm SOC
stocks of the HRWwere 8.6 ± 1.8 (5.9–12.1) TgC and 5.0 ± 0.9 (3.8–7.0)
TgC, respectively. We focus on the 1m SOC stocks for mapped pre-
dictions with wetlands. Comparisons where wetlands defined by the
WIP probability ≥50% covered 6115 ha of the HRW and contained a
mean 1m SOC stock of 277 ± 49.7 (197–383) MgC ha−1 which wasmore
than twice as high as the overall HRW concentration and the mean
upland SOC concentration of 112 ± 23.6 (75.7–157) MgC ha−1. Wetlands
in our study also contained disproportionatelymore SOC for a total of
1.7 ± 0.3 (1.2–2.3) TgC SOC stock or 20% of the overall HRW SOC stock
in 9.0% of the total landscape surface area for an SOC:Extent ratio of
2.2. Comparatively, uplands contained6.9 ± 1.5 (4.7–9.8) TgCor 80%of
the HRW SOC stock in 91% of the HRW surface area for a SOC:Extent
ratio of 0.9. Within overall wetlands, we identified 4935 ha of forested
wetlands with canopy coverage ≥50% that contained highermean SOC
stocks of 292 ± 50.5 (210–399)MgCha−1 for a total of 1.4 ± 0.2 (1.0–2.0)
TgC SOC stock. These forested wetlands composed 81% of the overall
wetland extent and 85% of the overall WIP wetland SOC stock for an
SOC:Extent ratio of 2.3.Of the twowetland types delineatedby surficial
geology, riverine wetlands covered 1726 ha and lower mean SOC
stocks of 101 ± 34.7 (50.4–181) MgC ha−1 and a total SOC stock of
0.2 ± 0.1 (0.1–0.3)TgCand0.8 SOC:Extent ratio. Conversely, palustrine
wetlands contained a significantly higher 347 ± 55.7 (255–463) MgC
ha−1 SOC stock and totaled 1.5 ± 0.2 (1.1–2.0) TgC or 18% of the total
landscape SOC within 6% of the surface area of the HRW for a 2.7
SOC:Extent ratio.

Wetland SOC stocks measured from the National Wetland Con-
dition Assessment (NWCA) and U.S. Department of Agriculture’s
National Cooperative Soil Survey (NCSS) Soil Survey Geographic
Database (SSURGO) datasets were upscaled with wetland extent from

the National Land Cover Database (NLCD) in ref. 11 and termed NWCA-
SSURGO for reference. Wetlands in NWCA-SSURGO contained a mean
stock of 184 ± 108 MgC ha−1 (standard deviation only, ref. 11 did not
report 95% confidence intervals; Fig. 3 inset and Fig. 4c). Using the
1640ha wetland extent measured within the HRW for the NWCA-
SSURGOdataset, we calculated a total of 0.3 ± 0.2 TgC across the HRW
for a SOC:Extent ratio of 1.4 (Table 2). Within the total NWCA-SSURGO
wetlands, forested wetlands, defined by the canopy coverage ≥50%,
comprised 90% of the wetland SOC and 88% of the wetland extent.
Compared to our WIP-derived wetland SOC estimates, the mean con-
centrationNWCA-SSURGOwetland SOC stockwas approximately two-
thirds or 66% of the mean WIP wetland SOC stock. Due to the large
differences in wetland extent, the total wetland SOC of the WIP-
derived estimates (1.7 TgC) was 462% higher than the total wetland
SOC stock in NWCA-SSURGO (0.3 TgC) showing that only 18% of the
total potential wetland SOC stock is currently mapped. By removing
overlapping wetland areas covered by the NWCA-SSURGO datasets
within our WIP dataset we estimated 5308 ha of unmapped potential
wetlands which we designate as cryptic carbon. This cryptic carbon
contained a mean SOC stock of 275 ± 49.2 (196–379) MgC ha−1 and a
total SOC stock of 1.5 ± 0.3 (1.0–2.0) TgC for an SOC:Extent ratio of 2.2
(Table 2). The total SOC stock of cryptic carbon is 382%higher than the
currently mapped total wetland SOC in NWCA-SSURGO estimates and
approximately 17%of the totalHRWSOC stock fromourmodel.Within
cryptic carbon, 80% is considered forested with canopy cover ≥50%
and contains 84% of the total cryptic carbon SOC. Adding the total
cryptic carbon SOC stock of 1.5 ± 0.3TgC to the 0.3 ± 0.2 TgC in the
NWCA-SSURGO increases total wetland SOC stock in theHRWby 482%
to 1.8 ± 0.2 TgC (note, 95% confidence intervals removed from com-
bined total, see Supplementary Table 2 for details) and more than
quadruples the estimated SOC stored in wetlands.

In our analysis of the wetland extent distribution from the WIP
model (Fig. 3b), our minimum wetland extent ranged from 64m2 or
0.0064 ha to the largest wetland with 400ha. In total, we found 31,981
individual wetlands of which approximately 96%were smaller than the
minimum mapping unit of 1 acre (0.40 ha) used by the NWI (Supple-
mentary Table 3). After extracting SOC stocks from our earlier WIP-
based model prediction, the SOC distribution across WIP wetlands
sizes showed that a majority of wetland surface area (86%) and SOC
stock (87%) was contained in wetlands greater than 1 acre (0.40 ha).
Indeed, the extent of each of the largest 5 wetlands were all greater
than 100ha, the largest of which was a 400ha wetland containing
0.15 TgC or 18% of the total wetland SOC stock (1.7 TgC). The rela-
tionship between SOC stock and individual wetland extent was shown
to be linear in a log-log plot indicating that there is a non-linear
increase in total SOC stock with increasing wetland extent (Supple-
mentary Fig. 8). Mean stock SOC density across the size distribution
was consistent around 250± 40.8 (185–335) MgC ha−1 to 252 ± 42.0
(185–340) MgC ha−1 with slight increase with surface area with the
smaller wetlands containing 251 ± 40.5 (187–336) Mg ha−1 compared to
the largest wetlands containing 264 ± 47.8 (188–367) Mg ha−1 (Sup-
plementary Table 3).

Discussion
Our results show continuous representation of potential wetlands and
that wet areas integrated into DSM SOC mapping approach greatly
improves the spatial representation of SOC. The results explicitly show
high SOC stocks in potential wetland areas along with gradients
between wetland and upland areas corresponding to the terrestrial to
aquatic gradient. Overall, the spatially continuous WIP probability
metric was a significant covariate for SOC when combined with surfi-
cial geology corresponding to soil parentmaterial and enabledwall-to-
wall mapping across the large heterogenous and geomorphologically
complex HRW catchment. Probabilistic modeling of wetland presence
has become increasingly relevant in wetlandmapping research instead
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of more discrete land cover classification29 and the WIP probability
model generated with fine resolution topography metrics, identified
cryptic wetland features beneath a forest canopy33.

The statistical model we developed to predict SOC stocks from
the WIP probability is simple and conservative, appearing to under-
estimate large wetland SOC stocks shown by the underprediction of
the upper range of SOC values in Fig. 1. The treatment of surficial
geology as a random effect which shrinks overall estimates towards an
overall mean driven by the WIP. Finer scale surficial geology and other
drivers of SOC, such as primary productivity are present but not
accounted for in the model, but we explain substantial variation with
our prediction (R2 = 0.63). We found that cryptic carbon defined as the
WIP-defined wetland SOC outside of currently mapped areas contains
the majority of the modeled wetland SOC stock with approximately
86% of the wetland SOC. Consequently, cryptic carbon added to cur-
rent NWCA-SSURGO estimates increased the total wetland SOC stock
in the HRW from 0.3 TgC to 1.8 TgC or by 482%. Most of the cryptic
carbon stock is due to the 273% increase in potential wetland extent
from the WIP ≥ 50%. However, identification of previously omitted
wetland extent using the WIP tool contained wetlands with a higher
mean SOC stock of 259± 72 (187–331) MgC ha−1 compared to themean
SOC stock in NWCA-SSURGOwetlands (184 ± 108MgC ha−1) showing a
new inclusion of wetlands with high SOC stocks. The wetland SOC
measured in this study was predominantly contained in the first 1m of
soil depth and within large wetland extents although there are
potentially numerous small wetlands within the HRW. We note,

however, that wetlands identified within our study do not represent
jurisdictional wetlands or delineate wetland boundaries, nor do they
represent the greater population of wetlands outside our study area.
But the framework of our study begins to address the critical gap in
omitting wetlands and wet areas in SOC mapping showing significant
SOC underestimates when upscaling current wetland SOC data
(NWCA) with optical imagery based landcover datasets (NLCD). This
study provides an initial step toward improving wetland carbon
monitoring systems.

While our study focused on potential wetland SOC, upland SOC is
the largest fraction of the total HRW SOC stock. Two global models
that provide readily accessible gridded 30 cm SOCmaps are SoilGrids
2.06 and the Global Soil Organic Carbon (GSOC)34 Map. Our estimates
of mean 30 cm SOC stock are lower than those of SoilGrids 2.0 but
higher than GSOC (Supplementary Table 4) indicating appropriately
estimated SOC stock magnitude at the lower end of the WIP prob-
ability whichmay represent soil moisture regimes and their control on
SOC in non-wetland areas. Compared to GSOC and our results, Soil-
Grids 2.0 potentially overestimates SOC stocks in the HRW but is also
within the range of other studies using data from the National Forest
Inventory35. Soils are typically carbon dense in the Pacific Northwest
region due to the humid temperate climate of the region and tends to
be higher than SOCmeasurements in other systems for both wetlands
and uplands36. The region our study takes place in, is the southern
portion of the North Pacific Coastal Temperate Rainforest, a region
that expands north to central Alaska. For this same region ref. 37

Fig. 2 | Maps of surficial geology and Wetland Intrinsic Potential (WIP) prob-
ability parameters and soil organic carbon (SOC) model output in the Hoh
River Watershed (HRW). a Shows the surficial geology categories of the HRW by
color classes in surficial geology legend, b shows the WIP probability gradient
shown by yellow-blue shading indicated in WIP legend, c shows the predicted 1m
SOC stock across the HRW with purple-to-yellow shading that continues in inset

maps showing fine scale SOC patterns overlain by estimated SOC shown by brown-
teal shading from the harmonizedNationalWetlandCondition Assessment and Soil
Survey Geographic Database (NWCA-SSURGO) dataset in ref. 11 and additional
current wetland extent from the National Wetland Inventory (NWI). We added a
semi-transparent hill shade layer to highlight terrain and removed the river surface
water shown in light blue for the final prediction map.
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measured a median SOC stock of 168.4 MgC ha−1 and mapped mean
SOC stock of 228 ± 111MgC ha−1, much higher than our overallmapped
SOC of 127 ± 26 (87–178) MgC ha−1 in the HRW. This discrepancy is
likely due to the presence of numerous northern peatland SOC stocks
>500 MgC ha−1 in the region. Peat formation is more frequent farther
north in cooler and wetter climates and can accumulate organic
material in deposits as deep as 3–5m26. Our estimates in the HRW are
potentially missing these high SOC stocks due to lack of peat samples
in the sampling scheme and limiting the model prediction to 1m
depth. Similarities to the remote-sensing driven peatland probability
model developed by ref. 29 show our approach could apply towards
landscape areas containing peatlands but additional classificationmay
be needed since peatlands store significantly more SOC than mineral
soil wetlands per unit area38.

For wetland-specific SOC stocks across different climatic zones in
CONUS, ref. 11 measured 114.8–398.5 MgC ha−1 wetland SOC stocks
withhigher SOC stocks in the EasternMountain regiondue topresence
of peatlands and lower SOC stocks in the arid West and Coastal Plains.
Lowerwetland SOC stocks are prevalent inmore arid regions shownby
Tangen and Bansal39 whomeasured 81.97MgC ha−1 wetland SOC in the
semi-arid prairie pothole region. The forested wetlands in our study
canbe compared to findings from ref. 13 whomeasuredmean forested
wetland SOC concentrations across the Eastern-to-Midwest U.S. and
Canada ranging from 165 ± 12MgCha−1 to 264 ± 46MgCha−1 noting the
highest amounts in broad-leaved and shrub/thicket wetland types and
lowest in needle-leaved forests. However, it is not uncommon for SOC
to be higher in needle-leaved forests, which can accumulate significant
amounts of carbon in colder and wetter climates40.

Although SOC stocks vary between wetlands, SOC stocks can also
vary within individual wetlands41. Tangen and Bansal39 showed sig-
nificant differences in SOC stocks between different landscape posi-
tions within individual wetlands and landscape position factored
heavily into restored wetland SOC stock. Stewart et al.42 showed that
although there was considerable variability of SOC stocks within wet-
lands, terrain metrics related to hydrology explained a significant
amount of the variation, and further pointed towards topography
enhancing large-scale analyses. This inference on topography
informing larger scale analysis correspondedwell to our useof theWIP
tool in this current study, which relies on topographic metrics calcu-
lated at different scales33. Because of the continuous gradient pro-
ducedby theWIP,we speculate that some intra-wetland variabilitymay
be accounted for in the SOC stock map. However, more explicit intra-
wetland sampling would be necessary to support this notion.

Applying the framework of SOC modeling based on wetland
probability in and across larger regional and continental scales would
require adjusting the wetland probability with additional covariates
corresponding to climatic controls on SOC in order to accurately
represent changes in SOC accumulation in different wetland types in
different locations. The HRW as a single watershed does not represent
most of the forested watersheds in CONUS, which inhibits extra-
polating SOC stock numbers across larger extents, particularly in non-
temperate regions. However, we have shown that the large increase in
wetland extent corresponds to substantial shift in the landscape spatial
pattern of SOC stocks. Moreover, these results support a critical need
to evaluate thewetland SOC stocks in forested regions, particularly the
large central and eastern temperate hardwood forests, which con-
tained large wetland SOC stocks shown in NWCA data fromNahlik and
Fennessey10 and NWCA-SSURGO data from ref. 11. Additional
improvements to mapping SOC would also include modeling the
probability of different wetland classes, especially peat-forming wet-
lands, by using classification data available from open sources such as
the NWI and NLCD43.

The wetlands we identified with the WIP and not included in the
NLCD maps used to upscale the NWCA-SSURGO wetland SOC esti-
mates contained 1.5 TgC or 86% of the 1.7 TgC total HRWwetland SOC,Ta
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constituting a substantial cryptic carbon stock. The HRW wetlands
estimated by the WIP are dominated by forested wetlands, which we
estimate conservatively with tree cover >50% compared to 30% tree
cover in the Cowardin classification system12. Although the climate,
forest species composition, and landform distribution in the HRW are
not fully representative of forested regions in the rest of CONUS, we
believe cryptic carbon can be a significant proportion of the forested

wetland inventory of CONUS. Forested wetlands are the most exten-
sive wetland type in CONUS according to the inventory of freshwater
forested wetlands in the NLCD11 and in the NWI12 and approaching the
estimation of SOC stocks across CONUS would require a more exten-
sive analysis with additional bioclimatic, physical, and anthropogenic
parameters. For example, the Eastern CONUS features extensive
deciduous forests with contrasting leaf phenology compared to the

Fig. 3 | Maps of wetland surface areas and soil organic carbon (SOC) stocks
compared current national and global map products. a Shows the Wetland
Intrinsic Potential (WIP) tool wetland probability gradient shown by yellow-blue
shading overlain by orange National Wetland Inventory (NWI) wetlands; b shows
size classes of wetland extent colored by size ranges where wetlands are defined
WIP ≥ 50%; c shows the 1m WIP modeled SOC stock distribution with purple-to-
yellow shading overlain by SOC estimates from National Wetland Condition
Assessment and Soil Survey Geographic Database (NWCA-SSURGO) dataset shown

by brown-teal shading; d shows the 30 cm WIP modeled SOC stock distribution
with purple-to-yellow shading; e shows the 30 cm SoilGrids 2.06 modeled SOC
stockdistributionwith purple-to-yellow shading; and f shows the 30 cmSOC stocks
from the United Nations Forest and Agriculture Organization (UN FAO) Global Soil
Organic Carbon (GSOC) Map34 with purple-to-yellow shading. All maps have an
added a semi-transparent hill shade layer to highlight terrain and removed the river
surface water shown in light blue.
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coniferous forests of the HRW, which contributes to differences in
forested wetland SOC stocks for each forest type13. Further, other
CONUS regions may have more subtle landforms and topography
compared to the HRW, which can affect the rate of forested wetland
carbon sequestration44. Notwithstanding, many forested wetlands
remain mis-classified as upland forest due to difficulty in confirming
soil moisture conditions due to dense canopies that obscure surface
features from remote imagery. We suggest that there is significant
potential to improve on the wetland SOC upscaling by replacing the
NLCD wetland mapping from ref. 11 which leveraged the publicly
available SOCdata fromNWCAandNahlik and Fennessey10. TheNWCA
dataset in Nahlik and Fennessey10 was sampled to represent
38.4 × 106 ha total wetlands in CONUS measured as different wetland
types by the U.S. Fish and Wildlife Service Status and Trends of Wet-
lands in the NWI program12. Forested wetlands in Nahlik and
Fennessey10 NWCA SOC data contained mean concentrations of
283 ± 35.4 MgC ha−1 and extrapolation to the 20.1 × 106 ha in forested
wetlands of CONUS inventory resulted in a total forested wetland SOC
stock of 5.92 PgC. Uhran et al.11 updated wetland SOC estimates from
Nahlik and Fennessey10 by revising the NWCA SOC dataset, harmo-
nizing it with the hydric soil data in the Soil Survey Geographic Data-
base (SSURGO), and extrapolated using wetland extent maps from the
NLCD. Uhran et al.11 reported 191 ± 103MgC ha−1 mean SOC stock
density over 33.9 × 106 ha of woody wetland extent for a total stock of
6.49 PgC inwoodywetlands.We emphasize any extrapolation is highly
uncertain but using our example of missing extent in the HRW, amore
than 3-fold increase in wetland extent (1640 ha in NWCA-SSURGO to
6949 ha in WIP +NWCA-SSURGO) could substantially drive a similar
increase in cryptic carbon within forested areas of CONUS which we
estimate to be up to 20 ± 13 PgC or 31 ± 11% (standard deviation) of the
current 65 PgC total CONUS 1m SOC stock45,46 calculated by extra-
polating the mean and uncertainty from Uhran et al.11 and Nahlik and
Fennessey10 by the 324% increase in wetland extent observed in this
study (6949 ha in WIP +NWCA-SSURGO area compared to 1640 ha in
NWCA-SSURGOonly). Theunderestimation ofwetlandSOCstocksdue

to wetland omission has been proposed in previous research using
currently available large scalemaps of land cover47 and is clearly shown
here using products like the NLCD. Publicly available datasets such as
the NWI, NWCA, and SSURGOwill continue to add data and improve in
the future and represent opportunities to improve upscaling wetland
SOC estimates at larger regional scales with more comprehensive and
accurate wetland extent maps. Our analysis supports improving SOC
distribution estimates with new approaches using topography-based
probabilistic models that better reflect the spatial distribution of soil
moisture conditions and provide a continuous, spatially-explicit
upscaling metric.

Due to the forested overstory, cryptic carbon is likely to experi-
ence deforestation as a disturbance but its detection and frequency is
unknown due to its omission from current wetland maps and
inventories12. The SOC stored as cryptic carbon depends on con-
sistently wet soil conditions and forest harvest practices negatively
affect SOC stocks by utilizing intensive site preparation through
draining wet areas for tree extraction48. Cryptic carbon in headwaters
may be especially sensitive to hydrologic disturbance from forestry
activities due to more intimate connections to groundwater49.
Removal of forest canopy in forested wetlands and exposing soil to
warmer temperatures can lead tohigher rates of SOCdecomposition50.
But long periods of recovery post-harvesting can allow SOC and soil
nutrients to return to pre-harvest levels ameliorating impacts on forest
wetland function51. The effects of deforestation on forested wetlands
will also vary by ecosystem type and region. Significant SOC stock
destabilization and export of fluvial organic carbon was found in tro-
pical forested wetlands and peatlands that experience deforestation
and drainage52. More work is needed to improve wetland mapping
under forest canopy in tropical regions, which are one of the largest
sources of uncertainty in the global carbon cycle53.While deforestation
itself may not lead to complete wetland drainage, land use conversion
to agriculture is another persistent threat to wetlands that more
effectively drains wetlands and produces substantial carbon release as
greenhouse gases54.

Fig. 4 | The region of the United States with the location of the Hoh River
Watershed (HRW) with National Wetland Inventory (NWI). The HRW is located
in the Pacific Northwest of the United States on the coast ofWashington State. The
eastern portion of the HRW is mountainous and drains westward to the ocean,
which is highlighted by the shaded elevation and topography. Circle inset maps

show the eastern and western portions of the lower watershed with wetlands from
the NWI colored in orange. We color the river basin area with light blue for the
HRW. Base map image credits are listed below the map figure. Regional base map
imagery provided by OpenStreetMap under the Open Data Commons Open
Database License (ODbL) v1.0 (https://opendatacommons.org/licenses/odbl/1-0/).
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Globally since 1700, the main driver of wetland loss has been
drainage and conversion to agriculture with regional hotspots in the
United States, Europe, Central and Southeast Asia, and Japan8. Land
use conversion is a top contributor to carbon emissions after fossil
fuels and is driven mostly by deforestation55. Carbon emissions and
losses of SOC from disturbed soils are more uncertain than forest
biomass carbon loss in the global carbon budget56 but as much as 133
PgC of SOC has been lost from soils over the course of 12,000 years of
human agriculture57. There is yet to be a consensus estimate of total
global SOC losses due to wetland conversion, but there is consistent
evidence of increased carbon emissions and SOC loss when wetlands,
and in particular peatlands, are drained and converted to
agriculture58–61. Utilizing the newest globalwetlandmaps, whichmodel
inundation frequency could help improve spatial estimates of SOC
with large global soil pedon databases4,6. At the continental or national
scale, researchwithmoderate resolution remote sensing from Landsat
has been used tomapwetland extent with SOC stockdeclines showing
significant reductions in the last half century62. Similar approaches can
be applied at the large catchment scale, such as our current study in
the HRW which could potentially provide contemporary insight to
wetland SOC changes since the lidar acquisition in 2012 and 2013. The
wetland types examinedhere and inother regions alsoexperienceSOC
stock destabilization and emit previously stored carbon as CO2 due to
conversion to cropland10,39. It is uncertain how the inclusion of cryptic
carbon stocks will affect the total estimates of wetland SOC stock
affected by disturbance and themagnitude of potential SOC release as
CO2. But more accurate mapping of forested wetland extent and SOC
stock will improve conservation of a valuable carbon sink that is
underestimated with currently mapped wetland extents.

Our study provides an adaptable approach that is informed by a
continuous wetland identificationmetric whichmaps and reveals high
SOC stocks driven by wetland potential on the landscape. This map-
ping revealed the vast stores of unmapped forested wetland SOC
stocks or cryptic carbon compared to currently available wetland SOC
maps. We show cryptic carbon contained a higher mean SOC stock
than both currentlymappedwetlands and uplands.When added to the
currently available estimates of wetland SOC stock in the HRW, cryptic
carbon increased the total SOC stock from 0.3 TgC to 1.8 TgC or by
482%. The majority of this cryptic carbon was contained in wetlands
greater than 1-acre or0.4 ha, a commonminimummapping unit. There
are still considerable uncertainties in extrapolating SOC increase
results to the greater population of forested wetlands in the U.S., but
the potential magnitude of cryptic carbon supports the need for more
wetland identification in forested regions in ways that can inform SOC
spatial patterns. We provide one approach which integrates potential
wetlands into a SOC prediction model, but future research should
explore variations of this type of modeling. Metrics that represent the
landscape as agradient ofwetlands to uplands canbetter represent the
terrestrial to aquatic gradient that includes potential wetlands and,
therefore, areas of SOC accumulation. Land and natural resource
managers will be able to use this framework to improve future esti-
mates of SOC spatial patterns as well as wetland SOC vulnerability to
land use change.

Methods
Study area
This study takes place in the Hoh River Watershed (HRW) within the
Pacific Northwest of the Conterminous United States (Fig. 4), which
contains some of the highest aboveground carbon and SOC stocks in
the world reaching 375MgC ha−1 and 709MgC ha−1, respectively63. In
the HRW, mean annual air temperature is 7.2 °C and mean annual
precipitation is 274 cm and can exceed 300 cm with most of the pre-
cipitation in winter which mainly falls as rain but snowfall is more
common in the upper elevations64. The mountains of the HRW were
created 17–20million years ago during theMiocene to Eocene periods

with the uplifting of marine sedimentary rock over the denser ocean
crust. The uplifted marine sedimentary rock also formed hills and
terraces in the lower HRW. During the end of the Pleistocene and the
period of deglaciation, large floods from glacial melt deposited
material over the lower elevation so the HRW creating large flood-
plains. Rivers continued to incise this deposited glacial material over
the Holocene and into the present depositing alluvium near the pre-
sent main channel of the Hoh river that bisects the HRW65. Current
topography varies from mountains with steep slopes (>40%) in the
eastern portion of the HRW to rolling hills and flat areas in the lower
floodplain that drains eastward to the Pacific Ocean. Soils of the HRW
reflect this geologic history and topography with dominant soils con-
taining loamy to sandy-clay coarse textures although there is a mod-
erate presence of volcanic ash and which promotes Andisol soil
development66. The HRW has a mix of both private and public for-
estlands dominated by Sitka Spruce (Picea sitchensis) and Western
Hemlock (Tsuga heterophylla) in the lower elevations that is actively
managed for timber harvest although areas along the coast and in the
upper watershed are part of the Olympic National Park with protected
old-growth forest containing trees up to 4m in diameter and 80m in
height67. The mapped wetlands within the HRW are diverse, from
precipitation-driven bogs to riparian wetlands (Fig. 4 insets).

Many of the wetlands are under dense forest overstory but in
some forested areas with high levels of inundation trees are stunted in
size and have a lower overall height and biomass. Themost prominent
Hydrogeomorphic wetland classes are Riverine, Mineral Flats, Organic
Flats, and Depressional68,69. There is a notable difference between
Riverine wetlands and the other wetland classes for SOC and we mark
this distinction with grouping all wetland hydrogeomorphic classes
into two classes for our soil pedon dataset: Riverine and Palustrine
(non-riverine). Palustrine wetlands are similar to the Cowardin classi-
fication as any freshwater (or less than0.5 ppt salt concentration), non-
tidal non-riverine, or non-lacustrine wetland, inclusive of forested and
non-forested vegetation12.

Wetland maps with the Wetland Intrinsic Potential Tool (WIP)
Wemapped wetlands using the Wetland Intrinsic Potential (WIP) tool,
a multi-scale terrain-based wetland identification and mapping tool
developed by ref. 33. The WIP tool models wetland presence in a
spatially explicit, continuous pixel approach using input parameters
related to hydrophytic vegetation, hydrology, and hydric soils. The
topographic and terrain input data layers are derived from discrete
point aerial lidar which was processed to create a digital elevation
model at a 4m cell size resolution of the terrain surface (Lidar source:
2012–2013 Puget Sound LiDAR Consortium (PSLC) Topographic
LiDAR: Hoh River Watershed, Washington (Deliveries 1 and 2), vertical
absolute accuracy RMSE: 0.043m; vertical relative accuracy RMSE:
0.082m). Unlike aerial or satellite imagery, lidar can detect small
topographic features under tree canopy and terrain metrics were
integrated into a random forest model that was trained on wetland
presence/absence point datasets derived from the National Wetland
Inventory (NWI) and validated with additional field collected ground-
truthed datasets. The WIP tool was specifically developed to identify
wet areas missing in most wetland inventories because they do not
have standing water or are hidden under tree or vegetation canopy
making them difficult to detect in satellite or aerial imagery. We refer
the readers to SupplementaryMethods and ref. 33 for the full summary
of how the WIP tool was implemented in the HRW. The output pro-
duces a wetland probability score based on the proportion of classi-
fication trees in the random forest model of how likely a pixel is a
wetland (0–100%), which is the estimated likelihood that the wetland
class label is correct for a given input of terrain, hydrology, and
vegetation parameters. For example, a pixel that has a wetland prob-
ability of 80% will contain a combination of landscape features that
generate a wetland within 80% of the dataset. Wetlands, therefore,
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represent the high end of continuum corresponding to landscape soil
moisture and inundation and the other end is an absence of these
conditions. Because the wetland probability is continuous across the
entire landscape, it enables SOC stock to be modeled continuously
across the entire HRW. However, setting a threshold probability also
allows estimates of wetland extent. In order to determine potential
wetland extent, we chose the threshold value of 50%, above which
classifies a pixel as a wetland and below which classifies pixels as non-
wetland or upland. WIP model accuracy for the HRW in Washington
State using wetland probability ≥50% to create a binary class of wet-
land (>50%) vs. upland (<50%)was 93.0%. Readers should consider that
wetlands defined by theWIP tool do not have jurisdictional boundaries
which require field delineation and verification to determine their
exact extent based on hydrology, hydric soil, and hydrophytic vege-
tation at a much smaller scale.

Field sampling for soil pedons
We developed a stratified random sampling approach across the HRW
WIPprobability distribution.Our strategywas to sample at a consistent
interval in the distribution to evenly obtain samples and address
potential areas of uncertainty. We divided theWIP distribution into 30
probability bins and sampled 1 pedon at a random location per bin
then added 6 additional pedons split between the highest and lowest
probabilities as time allowed. Once sampling locations were selected,
we usedGarminHandheldGlobal Positioning System (GPS) to navigate
to each point. After designating the pedon sampling location, we then
used a JAVADGNSS Triumph-2 formore precise georeferencing. While
we strove to remain unbiased in our selection of sample sites, we faced
difficulty accessing the precise location of randomly selected, 4m
resolution pixels due to limited precision in GPS navigation equipment
which was approximately 4–10m in ideal open sky conditions and
degraded further under canopy. Therefore, the final distribution of
WIP probability values for our sampled pedons was not evenly split
between wetlands and uplands. We note that uplands compose the
majority of the HRWas shown by the histogramof the entire HRWWIP
(Supplementary Fig. 3a). Our sampling results somewhat reflect this
overall distribution (Supplementary Fig. 3b) and help prevent wetland-
bias in our model. In total, we sampled pedons in 8 wetlands and 28
uplands according to the WIP probability ≥50% cutoff for the wetland
class from themappedmodel. Within the wetland class defined by the
WIP ≥ 50%, we classified two distinctive wetland types: riverine (n = 2)
and palustrine (n = 6), which differed in their parent material and
organic matter content. Riverine wetlands consisted of recently
deposited alluvial material and exhibited very little soil development.
We classified these observations in the field and later used a surficial
geology map to delineate riverine areas with lower predicted SOC
described below.

At each pedon site, a pit was excavated to at least 100 cmdepth or
to a restricting layer to characterize soil horizons, color, texture,
structure, and redoximorphic features70. Samples were collected by
each soil horizon for bulk density and total carbon analysis. Bulk
density was carefully extracted from the pedon face for each horizon
using a fixed volume metal cylinder with a volume of 98.175 cm3 for
mineral soils or a beveled polyvinylchloride (PVC) cylinder with a
volume of 132.536 cm3 for organic soils. Bulk soil samples were taken
from each horizon for total carbon analysis. All samples were trans-
ported in coolers and stored in refrigerated spaces between 4–6 °C
until laboratory preparation and analysis. Laboratory sample pre-
paration included drying all soil samples for at least 48 h or to a con-
stant weight in drying ovens at 75 °C. Soil samples were then sieved to
extract the fraction less than 2mmand remove coarse fragments. Bulk
density was calculated as the mass of the less than 2mm fraction
divided by the volume of the fixed volume soil core sampler. SOC was
alsomeasuredwith the <2mm fraction. Sampleswere prepared by ball
milling a subsample for 2min at 1/30 second frequency. Then a 20mg

subsample was run on a Perkin Elmer Co. 2400 model Total Carbon,
Hydrogen, and Nitrogen (CHN) Analyzer. SOC stocks for each horizon
were calculated from the total carbon percentage from the CHN ana-
lyzer (C) multiplied by the bulk density (BD) and the soil horizon
thickness (D) (Eq. 1).

SOC Stock =
X

Ci*BDi*Di*ð1� CFiÞ ð1Þ

Where, C denotes the carbon percentage, BD represents bulk density,
D (g cm−3) represents the horizon thickness (cm), and CF represents
the coarse fragment fraction of the soil sample i. For the purpose of
this analysis, we do not spatially predict SOC deeper than 1m soil
depth although we collected data beyond 1m. Soil pedon landscape
classes were defined as wetlands for pedons with WIP≥ 50%, as
uplands for WIP < 50%, and as riverine wetland or palustrine wetlands
when the sample location was inside or outside the Hoh River flood-
plain defined by the surficial geology, respectively.

SOC stock modeling and covariates
All statistical analyses were conducted with R software (version 4.3.0)
with dplyr for data management. To generate a prediction model for
SOC, we used a linear mixed effects modeling approach using the
‘lme4’71 R package with fixed and random effects to conduct our SOC
carbon stock spatial prediction. Linear mixed effectmodels were used
to specify the fixed effect as theWIPprobabilitymetric for our primary
covariate for SOC. We also investigated multiple remote sensing
metrics such as Normalized Difference Vegetation Index (NDVI),
Enhanced Vegetation Index (EVI), and the Modified Normalized Dif-
ferenceWater Index (MNDWI), as well as single band reflectance from
Landsat imagery as additional fixed effects in the model. We used
surficial geology of the HRW to themap riverine quaternary sediments
which represent river floodplains that are strongly predicted as wet-
land areas in the WIP tool but do not develop soil or accumulate
organic matter due to recent river water scouring. Surficial geology
data were downloaded as 1:100,000 scale polygons from the
Washington State Department of Natural Resources geologic infor-
mation portal. Four broad classes of lithological material and geologic
agewere extracted from the surficial geology data to provide grouping
for SOC samples: Clastic, Glacial Drift, Till/Outwash, and Alluvium.
Surficial geology was designated as a random effect due to the uneven
sample sizes in each surficial geology group and to account for varia-
tion by adjusting the intercept based on surficial geology categories
within the model. Surficial geology could be designated as a fixed
effect due to fewer than 5 levels (4) which is a common cutoff for
random effects, but this has been shown to not affect model perfor-
mance especially when another parameter is of interest. Choosing
between fixed and random effect designation is not straightforward
but designating random effects can be helpful to improve parameter
estimation such as the WIP in this study72.

Stepwise variable selection using Akaike information criterion
(AIC) was used to determine fixed effect covariates in addition to the
WIP tool probability metric and surficial geology random effect.
However, therewereno significant effects fromadding remote sensing
metrics to the WIP and surficial geology. Further, the heterogeneity of
the forested landscape due to forest harvest was prohibitive for using
spectral remote sensing metrics or lidar metrics of forest structure to
predict SOC which could weight clearings or reflective surfaces inap-
propriately in SOC predictive modeling. Additional terrain metrics
were also excluded to avoid intercorrelations with the WIP probability
covariate which already incorporates terrain information and surficial
geology. Overall, the best model according to AIC was also simplest
using just the WIP probability with surficial geology classes (Eq. 2).

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SOC Stockð Þ

p
i j =XβWIPi

+ZαSurf ical Geology j
+ ij ð2Þ
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WhereX is the fixed effects designmatrix for the βWIP i in pedon i, Z is
the random effects design matrix for the random effects
αSurf ical Geologyj

for an geology type j, and ij is ourmodel error described
as i j ∼Nð0,σ2

2Þ. Pedons sampled from the random effect
αSurf ical Geologyj

, described as αSurf ical Geologyj
∼Nð0,σ2

αÞ are considered a
random sample from a separate normal distribution for each surficial
geology type j.

SOC stock prediction
The Eq. 2 model was used to predict SOC stock at a 1m and 30 cm
depth with a R2 of 0.63 and 0.61, respectively, between observed
(Pedon SOC stocks) and predicted SOC stock values. The WIP variable
as a strongly significant predictor with an estimated non-transformed
coefficient for 1m SOC stock of 391 (95% Conf. Interval: 241–516MgC
ha−1, see SupplementaryTable 1 for fullmodel parameter estimates and
details). This wasmuch higher than the surficial geology randomeffect
(Supplementary Table 1) showing that the finer scale WIP parameter
was driving SOC more than the coarser scale patterns of surficial
geology. The Root Mean Square Error (RMSE) for the 1m model was
96.8MgC ha−1 and 31.0MgC ha−1 for the 30 cmmodel. A leave one out
cross validation computed a cross-validation RMSE of 22.8MgC ha−1

for 1m SOC stocks and 11.7MgC ha−1 for 30 cm SOC stocks. Boot-
strappedmodel predictions for the 1mmodel showed 95% confidence
intervals (2.5% to 97.5%) around the mean based on 1000 simulations
were 216–511MgCha−1 for theWIP, 3.67–129MgCha−1 for the intercept,
77.0–131MgC ha−1 for the variance, and 49.5–145MgC ha−1 for the
surficial geology random effect intercept. Bootstrapped model pre-
dictions for the 30 cm model, were 51.8–147MgC ha−1 for the WIP,
36.7–76.1MgC ha−1 for the intercept, 24.4–41.4MgC ha−1 for the var-
iance, and 24.3–55.8MgC ha−1 for the surficial geology random effect
intercept. We note these bootstrapped confidence intervals were
computed on the non-transformed model which potentially widens
the confidence intervals but allows for better interpretation with
results in SOC response variable units of MgC ha−1.

All prediction mapping analyses were conducted with R software
(version 4.3.0) with the ‘terra’73 package and all map figures were
created using Esri ArcGIS Pro (version 3.2.1). Rasters data layers for the
WIP probability and surficial geology were projected to the NAD83
UTM Zone 10 (EPSG:26910) and resampled to match the WIP original
4m pixel resolution of the digital elevation model. SOC stocks at
30 cm and 1m depths were predicted across the HRW using the two
raster data layers and the model from Eq. 2 which resulted a spatially
continuous map of the square root SOC that was then back trans-
formed with squaring to result in SOC stocks in MgC ha−1. We masked
surface water presence by using the median modified normalized
difference water index (MNDWI) across a 5-year period from 2016 to
2021. We examined the riverine classification and classified all MNDWI
values above 0.30 as river surface water to be masked out. The
masking process also removed a small lake located in the mountains
on the eastern portion of the watershed and small gravel pits in the
center of thewatershed. The resulting SOCpredictionmapwasused to
calculate the total HRW SOC stock, wetland SOC stock, forested wet-
land SOC stock, riverine wetland SOC stock, palustrine wetland SOC
stock, and non-wetland/upland SOC stock. Wetland SOC stock was
estimated by classifying pixels as wetlands with WIP probability ≥50%
and we refer back to ref. 33 for the discussion of error with this
threshold. We note that this WIP-based classification reflects potential
wetland extent but is notmeant to confer jurisdictionalwetland extent
which requires ground truth delineations. Surficial geology delineation
of the Hoh River main channel and floodplain was used to classify
riverine wetland and palustrine wetland SOC stocks. Forested wetland
SOC stocks were estimated from a forest/non-forest mask of wetland
SOC stocks derived from tree cover ≥50% in the Global Tree Cover
product in ref. 74. Non-wetlands were delineated as the total area

outside of the WIP probability ≥50% and we classify this area and SOC
stock as uplands.

We quantified uncertainty using several methods. First, we
examined the R2 value of the fit vs. the predicted values in the final
model output to judge the overall fit of the model on the actual SOC
values in the current dataset. Next we calculated confidence intervals
using the ‘confint.merMod’ function in the lme4 R package70. Next, we
generated a prediction interval for the model using the ‘pre-
dictInterval’ function in the ‘merTools’75 R package. This function
computes a simulated distribution for all parameters in themodel. For
the random effect simulation, the distribution is simulated by sam-
pling fromamultivariate normal distribution defined by the best linear
unbiased prediction estimate and the variance-covariance matrix for
each level of the grouping terms. The result is a matrix of simulated
values for the linear mixed effects model and each random effect
grouping term has a matrix for each observation. The 5th and 95th
percentiles of the final simulated distribution were used to define the
uncertainty in the prediction and root mean square error was calcu-
lated from the difference in the fit vs. the predicted values. Finally, we
calculated the mapped SOC prediction uncertainty with a boot-
strapping approach. Bootstrapped datasets were constructed by
sampling the pedon SOC values from the current dataset with repla-
cement, then integrating that dataset into the predictionmodel in Eq. 1
which was used to further predict SOC across the HRW. In total we
used 300 bootstrapped SOC prediction maps where each pixel con-
tained 300 predictions to simulate a distribution from which we
extracted the standard deviation to represent the prediction interval
uncertainty. We then compared the WIP wetland SOC stocks with 1m
SOC stocks derived from ref. 11 which harmonized the National Wet-
land Condition Assessment (NWCA) and U.S. Department of Agri-
culture’s National Cooperative Soil Survey (NCSS) Soil Survey
Geographic Database (SSURGO) datasets then upscaled the harmo-
nized dataset to spatially explicit inland wetland extent measured by
the Landsat-derived National Land Cover Database (NLCD)11. We term
the spatially explicit maps of wetland SOC from ref. 11 as NWCA-
SSURGO which provides the latest mapped wetland SOC stocks at
30 cm and 1m depths for the continental U.S. at a 30m resolution. To
identify differences between our pedon collection upscaled with WIP
and currently mapped estimates, which we term ‘cryptic carbon’,
NWCA-SSURGO SOC stocks were subtracted from the WIP wetland
SOC stocks. Standard deviations are reported from ref. 11 for the
mapped NWCA-SSURGO SOC estimates and we provide those in
Table 2. While NWCA-SSURGO dataset contains NLCD-defined fores-
ted wetlands, we instead relied on the >50% forest cover from the
Global TreeCover in ref. 72 for consistencywith our estimates of dense
canopy forested wetlands within the WIP.

Wetland size distribution
Wetland size and extent were derived defining wetlands from the
WIP tool probability greater than 50%. All wetland pixels greater
than 50%were classified as wetland and converted to polygons using
the ‘terra’72 and ‘sf’76 R packages. The wetland polygons were filtered
to remove all wetlands below 64m2 which is the area equivalent to
2x2 pixels in order to conservatively estimate wetland size classes.
Examination of the wetlands below 64m2 did not reveal significant
cumulative proportions of SOC or extent. Wetlands above 64m2

were used to extract SOC values in MgC ha−1 from the prediction
raster. Size classes were defined as quantiles: 1%, 25%, 50%, 75%,
96.4% and 100%, and cumulative sums for SOC and areal extent were
calculated. The 96.4% quantile marks the 1-acre or 0.40 ha extent
that is theminimummapping unit of the NationalWetland Inventory
(NWI), separate from the NLCD, and is used as a threshold for small
wetlands in this study. The NWI defines 0.40 ha as the minimum
mapping unit due to constraints with manual aerial photo
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interpretation but wetlands can still be mapped at smaller extents
with less consistently12.

Data availability
The soil organic carbon stocks data generated in this study have been
deposited in the ORNL DAAC database available at https://daac.ornl.
gov/cgi-bin/dsviewer.pl?ds_id=2249 and on Github at https://github.
com/ajs0428/CrypticCarbon. The processed mapped data are also
available at https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2249.

Code availability
All codeused in data processing,modeling,mapping, and graphing are
available at: https://github.com/ajs0428/CrypticCarbon and https://
doi.org/10.5281/zenodo.10426214.
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