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Miniaturized spectrometer with intrinsic
long-term image memory

Gang Wu1, Mohamed Abid1, Mohamed Zerara 2, Jiung Cho3,4, Miri Choi 5,
Cormac Ó Coileáin6, Kuan-Ming Hung 7, Ching-Ray Chang 8,9,
Igor V. Shvets10 & Han-Chun Wu 1

Miniaturized spectrometers have great potential for use in portable optoe-
lectronics and wearable sensors. However, current strategies for miniaturiza-
tion rely on von Neumann architectures, which separate the spectral sensing,
storage, and processing modules spatially, resulting in high energy con-
sumption and limited processing speeds due to the storage-wall problem.
Here, we present aminiaturized spectrometer that utilizes a single SnS2/ReSe2
van der Waals heterostructure, providing photodetection, spectrum recon-
struction, spectral imaging, long-term image memory, and signal processing
capabilities. Interface trap states are found to induce a gate-tunable and
wavelength-dependent photogating effect and a non-volatile optoelectronic
memory effect. Our approach achieves a footprint of 19 μm, a bandwidth from
400 to 800 nm, a spectral resolution of 5 nm, and a > 104s long-term image
memory. Our single-detector computational spectrometer represents a path
beyond von Neumann architectures.

Spectrometers play a crucial role in scientific research and numerous
industrial applications1,2. However, traditional spectrometers typically
comprise bulky mechanical parts such as optical gratings and
Michelson interferometers3. Therefore, the miniaturization of spec-
trometers while retaining high spectral resolution, broad spectrum
sensing, and fast response, at low cost, is a subject of intense research
interest due to potential applications in portable and wearable
optoelectronics4–15. Common spectrometer miniaturization strategies
rely on integrated detector arrays and separate optical elements with
wavelength-dependent optical properties, including compact
interferometers4,12,16, quantum dots5,12, photonic crystals8,10, and
metasurfaces6,13,17. Despite recent advances, miniaturizing these spec-
trometers down to the micrometer scale remains challenging due to
limitations imposed by the optical path length11. Recently, a compu-
tational spectroscopy technology that leverages reconstructive

mathematical algorithms has been established, allowing for the fabri-
cation of detector-only spectrometers without separate optics. These
approaches include various photodetectors and photodetector arrays
such as bandgap engineered nanowire arrays14,18, and two-dimensional
(2D) van derWaals (vdW)materials7 and heterostructures11,15 with gate-
tunable and wavelength-dependent photoresponsivity. However, the
commercialization and practical applications of miniaturized spec-
trometers and imaging systems rely on their integration with silicon
chips19,20, which are often constructed with von Neumann
architectures21 where the spectral sensing, storage, and processing
modules are spatially separated22. This leads to high energy
consumption23 and slow processing speeds due to the storage-wall
problem24.

In this work, we demonstrate the possibility of fabricating a
miniaturized spectrometer using a single SnS2/ReSe2 vdW
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heterostructure with the capabilities of photodetection, spectrum
reconstruction, spectral imaging, and detectivity within the visible
spectral range. By leveraging the gate-tunable photoresponse, recon-
structive algorithms, and compressed sensing methodologies, we
demonstrate a miniaturized spectrometer and spectral imager with a
footprint ofmerely 19μm, abandwidth from400 to800nm, a spectral
resolution of 5 nm, and a 104s long-term image memory. Additionally,
our miniaturized spectrometer not only serves as storage but also has
processing capabilities when alternate laser and gate pulses are
applied. Our approach represents a significant step towards single-
detector computational spectrometers beyond von Neumann
architectures.

Results
Device arrangement and photocurrent mechanism
Figure 1a displays a vertically stacked SnS2/ReSe2 heterostructure,
used in this experiment with an active region of approximately 28-nm-
thick SnS2 and 40-nm-thick ReSe2 (Supplementary Fig. 1). The vdW
flakes were mechanically exfoliated from high quality single crystals,
verified by Raman spectroscopy and high-resolution transmission
electron microscopy (HRTEM) characterization (Fig. 1b–d). The over-
lapped region (green plot) exhibited both materials’ characteristic
Ramanpeaks, indicating thepresenceof twodistinctmaterials25–28. The
contact interface showed a typical type-II band structure (Supple-
mentary Figs. 2 and 3) and the individual SnS2 and ReSe2 both showed

strong light absorption within the visible spectrum range (Supple-
mentary Fig. 4), resulting a strong photoresponse to visible light. Our
vdW heterostructure device achieves a large photocurrent (Iph) of
approximately 0.6 μA (Fig. 1e), with the highest photoresponsivity (R)
calculated to be approximately 200A/W at a gate voltage (Vg) of 50V
and an incident laser power density (Pin) of 0.22mW/cm2 (Supple-
mentary Fig. 5). The device exhibited a high specific detectivity (D*) of
3.4 × 1012 cm Hz1/2 W−1 due to its ultralow dark current in the off state
(Vg < 2 V, Supplementary Fig. 5). The photocurrent of our device
increased linearly with incident light power in the low power density
range (<0.8mW/cm2), and its slope depends on the gate voltage
(Fig. 1g), laying an important foundation for its application in spec-
trometry, as discussed later14.

Interestingly, photocurrent peaks were observed in the spectrum,
which moved from ~580nm to ~670nm when the gate voltage was
increased from −20 V to 20V (Fig. 1f). Scanning photocurrent maps
under 532, 633, and 785 nm laser illuminations for a fixed laser power of
0.5mW (Fig. 2a) showed that the SnS2 and ReSe2 regions’ photocurrent
decreased with λ, while the photocurrent in the junction area exhibited
a peak (Fig. 2b–d). This indicates that the SnS2 and ReSe2 interface
dominates the photon absorption and energy conversion process.
Moreover, thephotocurrentof the junctionarea is evengreater than the
sum of the photocurrent in the SnS2 and ReSe2 regions, pointing to the
junction’s essential role in establishing the photocurrent. TEM analysis
and XPS characterization suggest that our SnS2 possesses ~2% sulfur
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Fig. 1 | Characterization of van der Waals (vdW) spectrometers. a Schematic of
the vertically stacked SnS2/ReSe2 vdW heterostructure device on a gated Si/SiO2

substrate. Vds: drain-source voltage; Vg: gate voltage. In the upper right is an optical
image of the device with a 5μm scale bar. b Raman spectra of a SnS2/ReSe2 het-
erostructure in different regions. The vertical dashed lines highlight the positions
of corresponding Raman peaks. c High-resolution transmission electron micro-
scopy (HRTEM) image of mechanically exfoliated SnS2 and (d) ReSe2 layers, where
red arrows highlight the positions of vacancies. The insets show the corresponding

selected area electron diffraction (SAED) images. Scale bar for HRTEM, 2 nm. Scale
bar for SAED, 2 nm−1. e Transfer curves of the device for 635 nm laser illumination
with different incident power densities (Pin) at Vds = 1 V. f Photocurrent (Iph) as a
function of light wavelength at various gate voltages from −20V to 20V. The Iph are
normalized to the maximum values at each Vg. Solid lines are guides to the eye
(adjacent-averaging smoothing of the data points). g Photocurrent of the device as
a function of laser power density at different gate voltages. Solid lines are linear
fittings to the corresponding data points.
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vacancies, while the ReSe2 has ~2.4 % Re vacancies (Fig. 1c, d and Sup-
plementary Fig. 6). First-principle calculations reveal Re vacancies result
in the appearance of three defect bands, labeled DFR1 (0.26 eV below
bottom of conduction band (CB)), DRR2 (0.49 eV below the bottom of
CB), and DFR3 (0.37 eV above the top of the valence band (VB)). In the
case of SnS2 with sulfur vacancies, a single defect band (DFS) emerges,
positioned 0.7 eV below the bottom of the CB (Supplementary Fig. 7).
Moreover, due to theupwardbendingof the energyband, hole trapping
plays a unique role in the overlapping region as excited holes will move
to the overlapped region and electrons move to the nonoverlapped
region (Fig. 2e and Supplementary Fig. 8f). Thus, under illumination,
holes are excited and move to the overlapping region and some of the
holes will be trapped by DFR3, resulting a photogating effect, which
would have the effect of enhancing the photocurrent. When the light is
switched off, the trapped holes remain and sustain the photocurrent,
resulting in a memory effect. This is also key to the electrically tunable
memory effect, discussed further in the paper.Moreover, the interfacial
trap states, such as neutral traps (NT), are generally observed in 2D
heterostructures during the stacking process, which also result in
photogating and memory effects (Supplementary Fig. 9). Details of the

calculation can be found in Supplementary Note 1. For photodetectors
dominated by a photogating effect29, the photocurrent in the interface
(I interface) canbewritten as I interface =

∂Ids
∂Vg

4Vg, where4Vg is the local gate
voltage generated by photoexcited carrier trapping at the interface30. In
Fig. 2f, the calculated 4Vg is shown to decrease with increasing gate
voltage. We would like to stress that the number of holes trapped
depends on the built-in potential at ReSe2 (VbiR). Increasing Vg, VbiR

decreases, resulting in adecrease in thenumber of trappedholes, which
is consistent with the experimental results. The total photocurrent (Iph)
has threemain contributions: the photocurrents generated in the ReSe2
(IR) and SnS2 regions (IS), and the photocurrent generated in the
overlapping region (I interface) due to the photogating effect. As the Au
electrode has a much greater work function in comparison with both
SnS2 and ReSe2, the built-in potential between Au and ReSe2 (ϕB1) is
greater than VbiR. Thus, IS and IR are in opposite directions. There-
fore, Iph = IS � IR + I interface. Moreover, I interface =

∂Ids
∂Vg

4Vg is almost con-
stant when far from the photocurrent peak (15 V in Fig. 2f). Thus, the
peak of photocurrent can be explained by jIS � IRj. Figure 2c plots the
IR � IS and it does showapeak around600nm,which is consistentwith
the photocurrent of the device. Moreover, the built-in potential of the
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Fig. 2 | Mechanism of photocurrent. a Scanning photocurrent maps of the het-
erostructure under 532, 635, and 785nm (from left to right) laser illumination.
Solid and dashed lines show the outlines of SnS2 and ReSe2, respectively. Colored
circles indicate typicalReSe2 (blue), heterojunction (red), andSnS2 (green) regions,
respectively. Scale bar, 5μm. b–d Photocurrent in the heterostructure extracted
from the regions indicatedby the corresponding colored circles in (a) as a function
of laser wavelength. IR and IS represent the photocurrents generated in the ReSe2
and SnS2 regions, respectively. e Schematic diagram showing the trap states
induced photogating effect.ϕB1 andϕB2 are the built-in potentials between Au and
ReSe2 and SnS2, respectively; Vbi is the built-in potential at the interface of ReSe2

and SnS2; CB andVB represent conductionband and valenceband, respectively;hυ
represents the incident photon energy; EF is the fermi level; DFS is the defect band
with S vacancies in SnS2; DFR1, DFR2, and DFR3 are three defect bands with Re
vacancies in ReSe2. Solid and empty circles represent electrons and holes,
respectively. Black straight arrows indicate the directions of IR and and IS; black
dotted arrows indicate the excitation of electrons (holes); green curved arrows
represent the movement of electrons (holes); double curved arrows indicate the
incident photons. fCalculated local gate voltage generatedbyphotoexcited carrier
trapping at the interface (4Vg) as a function of laser wavelengths at different gate
voltages.
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SnS2 side decreases the most with increasing Vg and that in the ReSe2
side remains quite stable (Supplementary Fig. 8e). In other words, the
photocurrent decreasesmuch faster with increasing Vg (Supplementary
Note 2). Thus, the peak position of the photocurrent moves to longer
wavelength with increasing Vg, which is consistent with the experi-
mental observation (Fig. 2f).

Spectrum reconstruction
The fabricated SnS2/ReSe2 heterostructure exhibits a gate-tunable
spectral response with high responsivity and detectivity across a wide
range of wavelengths, making it suitable for use as a spectrometer1. The
reconstruction process is briefly outlined in Fig. 3 (see Supplementary
Fig. 10 for a detailed workflow diagram). In the non-saturated region
(linear region, as shown in Fig. 1g) at a given gate voltage (denoted as
Gi), the photocurrent (Ii) can be calculated as an integral of the product
of the incident light power density (P(λ)) and the responsivity (Ri(λ))
over the entire spectral range of interest from λ1 to λ2:

Z λ2

λ1

P λð ÞRi λð Þ= Ii i= 1,2,3 . . . ,nð Þ ð1Þ

where λ1 and λ2 define the operational spectral range of the spectro-
meter and index i implies different gate voltage values. Here, the
unknown spectrum to be determined is denoted by P(λ) and is sche-
matically illustrated by an arbitrary narrowband emission spectrum,
represented by the dashed line curve in Fig. 3a. Additionally, three
representative responsivity curves corresponding to the three differ-
ent gate voltages (Gi,Gj andGk) are sketched in Fig. 3a. Using Eq. (1), we

can calculate the photocurrent of the device for a given gate voltage,
determined by the integral of the shaded area in Fig. 3b. Figure 3c
shows the measured photocurrents at all different gate voltages,
where Gi, Gj and Gk are highlighted in different colors. By varying the
gate voltage fromG1 toGn, we obtainn integral equations that consider
small windows of wavelengths in (1). These equations can be dis-
cretized and grouped into a matrix equation:

Pλ1
Pλ2

. . . Pλn

� �
RG1 ,λ1

RG2,λ1
� � � RGn ,λ1

RG1 ,λ2
RG2,λ2

� � � RGn ,λ2

..

. ..
. . .

. ..
.

RG1 ,λn
RG2,λn

� � � RGn ,λn

0
BBBBB@

1
CCCCCA= IG1

IG2
. . . IGn

� �

ð2Þ

or Pλ ×RG,λ = IG in a more compact form. To enable accurate recon-
structionof anunknownspectrumusing theSnS2/ReSe2 heterostructure,
we employed prior robust principal component analysis (RPCA) on the
responsivity matrix RG,λ to stabilize the solution against various types of
noise and errors. Subsequently, we used a regression model with elastic
net regularization to solve the resulting matrix Eq. (2) byminimizing the
sum of the squared errors loss function, with the added penalty term
being a combination of ‘1 and ‘2 (Lasso and Ridge) norms. Details are
provided in Methods and Supplementary Figs. 10 and 11.

To determine the responsivity matrix RG,λ, we utilized a tunable
light source with a wavelength ranging from 400 to 800nm and 81
sampling points, measured at 81 different voltages from −20 V to 20V.
The resulting 81 × 81 RG,λ matrix is shown in Fig. 3e, exhibiting a tunable
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Fig. 3 | Design of vdW spectrometers. a Photoresponsivity (R) curves at three
different gate voltages (Gi, Gj and Gk, left axis) and a schematic of an unspecified
light spectral density (P) curve (gray dashed line, right axis). λ1 and λ2 define the
operational spectral range of the spectrometer. b The photoresponse spectrum
(R×P) of the device under unspecified light illumination source at different gate
voltages, Gi (blue), Gj (green) and Gk (red). c The integrated photocurrent (I) as a
function of gate voltage. Empty circles represent some typical data points in the
photocurrent curve. d Spectral reconstruction process of our spectrometer.

e Photoresponsivity of the device as a function of gate voltage (G) and light
wavelength (λ). f Quasi-monochromatic spectra (FWHM: ~12 nm) reconstructed
with our spectrometer (solid curve) and corresponding reference spectra mea-
sured using a commercial spectrometer (dashed curve). g The reconstructed
635nm laser spectrum (FWHM: ~12 nm) and the reference spectrum (FWHM:
~3.5 nm)measured using a commercial spectrometer. h Reconstructed broadband
spectrum of a white flashlight from a mobile phone and the reference spectrum.
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response within the visible and near-infrared spectrum range, enabling
broadband spectrum reconstruction. To demonstrate the SnS2/ReSe2
heterostructure’s capability for reconstructing different types of spec-
tra, we measured a series of quasi-monochromatic spectra in the range
of 400 ~ 800nm with our single-heterostructure spectrometer, which
agree well with reference spectra acquired using a commercial spec-
trometer, verifying the broad spectral range of our device (Fig. 3f). We
also demonstrate the reconstruction of 532 nm and 635 nm laser
spectra in Supplementary Fig. 12 and Fig. 3g, respectively. Note, while
recording the corresponding current values, we continuously illumi-
nated the device with light for 1min to stabilize the photocurrent, and
then swept the gate voltage from -20 V to 20V (sweep rate 1 V/s). Thus,
the time required to measure a single complete spectrum is approxi-
mately 100 s,which canbe reducedbydecreasing the illuminating time,
increasing the sweep rate, or/and using compressive sensing techni-
ques. The full-width at half-maximum (FWHM) of the reconstructed
laser spectrum’s was about 12 nm, with an optimal resolution of 11.3 nm
according to the Nyquist–Shannon sampling theorem31. Note, although
the Shannon-Nyquist theorem is primarily concernedwith the sampling
and reconstruction of time-dependent signals, in this work, this theo-
rem is extended to the spatial frequency content of the signal and
applied to the wavelength sampling. To further showcase device’s
ability for broadband spectrum reconstruction, we measured the
spectrumof awhite flashlight from amobile phone, as shown in Fig. 3h,
revealing excellent agreement between the reconstructed and mea-
sured reference spectra. We also used the lowest irradiance suppliable
by the apparatus available to us (23μW/cm2) and a faithful recon-
struction was produced with such low power density (Supplementary
Fig. 13). We measured around 10 devices, and all showed essentially
similar capabilities to reconstruct visible light spectra. An imaging
arraywas also fabricated, using chemical vapor deposition (CVD) grown
SnS2 and ReSe2 (Supplementary Fig. 14). Although all the devices
worked properly, further optimization is needed to improve their
performance.

Compressed sensing
Improving the resolution of a spectrometer is a key challenge in
developing advanced spectroscopy techniques. The resolution of a
spectrometer is limited by the number of sampling points, as pre-
viously discussed. However, the number of sampling points cannot be
increased indefinitely due to the numerical properties of the respon-
sivity matrix RG,λ. To overcome this limitation and achieve a higher
resolution32,33, we employ compressed sensing. For this, we utilized the
singular value decomposition (SVD) technique, a well-known com-
pression technique to achieve full spectrum reconstruction from sur-
prisingly few p measurements of IG as described in the Methods
section. In our case, a singular value (σi) represents the contribution of
each feature of RG,λ. To determine the optimal number of sensors p or,
alternatively, distinct gate voltage values for measurements, we fol-
lowed methodology similar to that used by ref. 34. through QR
decomposition and column pivoting. By gradually decreasing the p
value from 81 to 9 and comparing the mean square error

(MSE= 1
n

Pn
i = 1ðIG �eIGÞ2), where eIG represent the reconstructed pho-

tocurrent from thep sensors, IG is the original photocurrent curve, and
n = 81. Figure 4a shows the singular values σr and the optimal modal is
noted to occur for this system at r =9, capturing 99% of the main

features of RG,λ (
Pr

i= 1
σiPn

i= 1
σi

× 100). Figure 4b, c shows measurement

matrices for a random and optimized sampling obtained by QR
decomposition and column pivoting. The reconstructed photo-

currents versus gate voltageeIG froma randomandoptimized sampling
for p=9 are shown in Fig. 4d. Compressed sensing leads to a more
accurate reconstruction of the measured photocurrent than the ran-
domly sampled system. One can also see that the estimated error for

the optimized sampling is much smaller than that for the randomly
selected one (Fig. 4e). Our results demonstrate that compressed sen-
sing enables us to reconstruct the photocurrent versus gate voltage
frommerely 9 selected points (minimum9 sensors) out of a total of 81,
which is around 12% of our original sampling. The optimized sampling
corresponds to gate voltages located where the first derivative dI=dVg

shows the largest variation (Fig. 4b, c). To ensure accurate compressed
sensing, as shown in Fig. 4f, we reconstructed our spectrum using
random and optimized sampling with elastic net regression as
described in the Methods section. We observed that the spectrum
reconstructed from the optimized sampling agrees well with the
measured reference spectrum, whereas the reconstruction from ran-
dom sampling shows an erroneous spectrum. Furthermore, we
demonstrate that we can reconstruct the spectrum of a red LED with
only 9points,with very little difference compared to the reconstructed
spectrum with n=81 and the reference spectrum (Fig. 4g).

We compared our 2D heterostructure spectrometer with other
miniaturized spectrometers in terms of their footprints, spectral
range, and resolution, as shown in Fig. 4h (see Supplementary Table 1
for details). Compared to separate optical elements, 2D materials-
based spectrometers offer distinct advantages in terms of footprint
miniaturization7,11,15. Our device has a small footprint of 19 μm and an
enhanced spectral resolution of 5 nm, making it comparable to state-
of-the-art visible and near-infrared spectrometers. Here, themaximum
length along any axis of the heterostructure is considered to be the
device footprint. The device has an area of ~220 μm2. Furthermore, the
footprint of a 2D materials-based device can be scaled down to sub-
micrometer dimensions, and the resolution can be further improved
by increasing wavelength sampling points. Our device also has an
advantage in processing speed over other computational spectro-
meters due to the compressed sensing techniques employed. While
the spectrum reconstruction capability of our device relies on the
nature of SnS2 and ReSe2 with trap states, this approach can be
extended to other 2D materials by intentionally introducing trap
states34 to expand the spectral range.

Spectral imaging and image memory demonstration
Todemonstrate the potential application of our single heterostructure
spectrometer for spectral imaging, we designed a spatial scanning
system for the device (Fig. 5a). A broadband light source was used to
project an image consisting of red, green, blue, and yellow colors,
which could be scanned across the x-y plane on the centimeter scale.
The reflected light was focused by a lens onto the device, and we
measured the photocurrents of each mapping step. The reflected
spectrum was then reconstructed using the method discussed above.
The reconstructed spectra at two positions indicated in Fig. 5a are
shown in Fig. 5b, which are in good agreement with the corresponding
reference spectra. All the measured photocurrents were grouped into
a three-dimensional Iðx,y,GÞ data cube (Fig. 5c, e), which was then
converted to a spectral data cube Pðx,y,λÞ by the reconstruction
algorithm (Fig. 5d, f). By applying standardized color-matching func-
tions to the spectral cube, we were able to form a pseudocolored
image (Fig. 5h) with an accurately recreated colored “BIT” pattern,
which was consistent with the original image (Fig. 5g). In this config-
uration, the image resolution is defined by the mapping step, which
was set to around 1 cm. By fabricating device arrays, we could produce
large-scale imaging systems with the single-heterostructure device
possessing high spatial resolution at the micrometer or nanometer
scale35. Our results demonstrate the potential of our single hetero-
structure spectrometer in spectral imaging, with the ability to accu-
rately reconstruct the reflected spectrum of a colored image. The
device’s high spatial resolution at themicrometer or nanometer scale15,
when integrated into device arrays, opens up possibilities for large-
scale imaging systems.
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We have demonstrated the light detection, spectrum recon-
struction, and spectral imaging capabilities of our single-
heterostructure device, which can also be achieved in other systems
such as quantum dots5,12, nanowires14,18, black phosphorus7 and MoS2/
WSe2 heterojunctions

15. However, our SnS2/ReSe2 device has a unique
feature in producing a gate-tunable photocurrent via trap states at the
interface, offering a tantalizing route for the design of image
memory36,37. In Fig. 6a, we show the time-dependent variation of cur-
rent in the device when applying laser illumination and gate pulses.
After being illuminated by a 635 nm laser, the current immediately
increases sharply and then gradually approaches a set value, indicating
a long-term positive persistent photoconductivity (PPC) effect in our
device attributed to trap states at the interface38,39(see Supplementary
Note 1 for details). To further investigate the time evolution of the PPC
as well as the switching action, we used laser pulses (pulse-width
~0.1 s), instead of continuous laser illumination, to excite the photo-
current in the device. As expected, after applying the laser pulses, a
large quantity of carriers is produced in the device, leading to a rise in
the current (Fig. 6b). The carriers are easily retained beyond the
timeframe of minutes in dark conditions, completing a program
operation. This state is defined as the ‘optical program state’. These
carriers can be eliminated by applying a positive gate pulse, that is, an

erase operation, setting the current back to its initial value, which is
defined as the ‘electrical erase state’. Figure 6c shows the retention
characteristic of the program and the erase state. It is found that the
programming and erasing current are clearly retained after 104s,
though a slight decline appears to occur for t < 10 s, after which the
current stabilizes (Supplementary Fig. 15). An endurance test of repe-
ated programming and erasing operation was also performed, of
which the results are shown in Fig. 6d. It can be observed that both the
program and the erase states remain stable even after 1000 cycles.
However, sucha strongmemoryeffect indicates a slow response speed
in our detector. This problem can be simply solved by changing the
detectionmode from the ‘memorymode’ to the ‘fast mode’ (Fig. 6e, f).
At Vds = 0, our device shows a remarkable short-circuit current and a
fast response speed (response time ~0.43ms, Supplementary Fig. 16).
This characteristic essentially enables our device to adapt to different
application scenarios. To demonstrate its imaging memory capacity,
we performed a proof-of-concept demonstration using three different
lasers and scanning masks with different patterns in Fig. 6g. We show
that the photocurrent at each mapping position can be used to
reconstruct the incident light spectra and can also be coherently
stored in the device for a long period of time (Fig. 6h), confirming the
imaging memory capacity of our device.
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Neuromorphic computing spectroscopy
Optical memory effects have been reported by ref. 40. We would like
to stress that our device’s memory function is due to interface trap
states, making it promising for applications in artificial synapses41,
neural networks38,42, machine vision42, and imaging processing43. To
demonstrate the multifunctionality of our compact spectrometer,
which not only serves as a storage device but also possesses proces-
sing capabilities. We applied periodic light pulses (Pin ~ 10mW/cm2,
pulse-width ~1 s) to produce an increment in the conductivity, leading
tomultiplememory states for data storage. Subsequently, by applying
periodic gate voltage pulses (amplitude ~5 V, pulse-width ~2 s), we
could decrement the conductivity, thus performing erasure the stored
states (Fig. 7a). In this context, the increase and decrease in device
conductance are termed as potentiation and depression, respectively.
Given that our vdWSnS2/ReSe2 device system changes conductance, it
can thus beutilized in a neural network and serve asboth a neuron and
a synapse. Long-term potentiation (LTP) and depression (LTD) cycles
were observed, suggesting that our device mimics the function of a
synapse with a nonlinear behavior for training the artificial neural
network (ANN) (Fig. 7b and Supplementary Fig. 17). Generally,
achieving high classification accuracy often relies on the use of artifi-
cial synapses that have linear characteristics. However, in our case, we
rely on non-linear LTP inducedbyblue light stimuli and LTDbyvoltage
gate pulses. To attain a high classification accuracy, it is essential to
consider the inherent asymmetric non-linearity of our LTP and LTD as
well as considering the complete plasticity range represented by the
ratio Imax/Imin. To accomplish this, we used an asymmetric nonlinear

relationship to fit the LTP and LTD curves, thereby deriving the non-
linearity (NL) and theweight changeof the LTP and LTD, the details are
further discussed in Supplementary Note 3. Moreover, the long-term
potentiation shape shows a dependency on the incident light, sug-
gesting the possibility of reconstructing the spectrumof incident light
with a defined number of memory cells (Fig. 7c). In this study, we
simulated a two-layer ANN based on the SnS2/ReSe2 vdW hetero-
structures synaptic behavior to classify handwritten data on the
MNISTdata (Fig. 7d).Details of the trainingprocess canbe found in the
Methods section. Figure 7e, f presents the classification accuracies as
function of epoch (which represents a single iteration over the com-
plete training dataset) and varying the numbers of synaptic states
(ranging from 10 to 40 states). As the synaptic states increase from 10
to 40, the classification accuracy exhibits a gradual improvement,
starting at 87% and nearly reaching 90% after just 50 epochs with
40 states. Furthermore, it is noteworthy that employing a greater
number of synaptic states results in shorter training times. In Fig. 7f,
we have represented the confusion matrix that demonstrates the
classification accuracy for each label.

Discussion
In-sensor storage and processing capabilities are important for next-
generation sensing, but alsooptical sensing is becomingmore relianton
computational systems44. For such technological changes to become a
reality, apart fromdevice reconfigurability, advanced algorithms,would
be required to reduce the physical complexity of sensors. Therefore, it
is important to develop device concepts that can do more with less,
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with designs that can enable direct multiplexing of sensing and com-
puting functions45. Here, we showed that a single SnS2/ReSe2 van der
Waals heterostructure, can provide photodetection, spectrum recon-
struction, spectral imaging, and long-term image memory capabilities.
By applying light pulses and gate voltage pulses, our miniaturized
spectrometer can realize image-encoding and -classification functions
based on artificial neural networks. Although, our approach can
potentially overcome the limitations of present single-device systems
and pave the way for the design of single-detector computational
spectrometers beyond von Neumann architectures. This breakthrough
could possibly impact the field of optoelectronics, with applications
ranging from artificial synapses, neural networks, machine vision, and
imaging processing, to spectroscopy and analytical chemistry.

Methods
Device fabrication and characterization
For the fabrication of the vdW heterostructures, a highly n-doped
silicon wafer with a 300-nm-thick SiO2 layer was used as the sub-
strate. Heterostructures were fabricated via a standard dry transfer
method46. Two types of multilayer vdW materials, ReSe2 and
SnS2, were obtained by mechanical exfoliation onto PDMS stamps
with scotch tape. Then, they were released onto the prepared

substrate to form vertically stacked vdW heterostructures. The
heterostructures were annealed in a furnace at 150 °C for 2 h under
an Ar (200 sccm) atmosphere to achieve better contact. For the
patterning of the electrodes, we utilized standard photolithography
and high-vacuum electron-beam evaporation. The thickness of the
deposited Ti/Au electrodes was 10/40 nm, respectively. Raman
spectra were acquired with a Bruker Senterra confocal spectro-
meter with an excitation wavelength of 532 nm to identify the
properties of SnS2 and ReSe2 as well as their heterostructures.
Atomic force microscopy characterization was performed with a
Bruker MM8 system and HRTEM characterization was performed
using a JEOL JEM-2100 F with a probe size of less than 0.5 nm at a
working voltage of 200 kV.

Reconstruction process
Before spectrum reconstruction, the spectral responsivity matrix RG,λ

was decomposed by RPCA (robust principal component analysis) into a
structured low–rank matrix eRG,λ and a sparse matrix SG,λ, thus discard-
ing the outliers and noise as shown in Supplementary Figs. 10 and 11:

RG,λ = eRG,λ + SG,λ ð3Þ
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where the principal components of eRG,λ are robust to the outliers and
the noise in SVG,λ

matrix. We observe that the SVG,λ
sparsematrix is one

to twoorders ofmagnitude lower than the eRG,λ spectralmatrix, and the
original spectral matrix RG, λ. In order to reconstruct the unknown
spectrum, we use the elastic net regression that minimizes the sum of
squared errors by applying a penalty to these coefficients which is a
combination of ‘1 and ‘2 (Lasso and Ridge) approaches. From Eq. (4),
we can see that if α is equal to 1, elastic net regression is the same as
Lasso regression. As α decreases toward 0, it approaches the Ridge
regression. In our reconstruction, weobserve a smallα (0.01),meaning
thatweare close toTikhonov regularization.However, weobserve that
adding a ‘1 penalization term provides us with a slightly better
reconstruction than the Ridge regression alone:

min
���R̂ � φ̂ � β

!� I
���2
2
+ λ

1� α
2

��� β
!���2

2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
‘2 regularization

+ α
��� β
!���

1|fflfflfflffl{zfflfflfflffl}
‘1 regularization

0
BB@

1
CCA, ð4Þ

where λ is the amount of penalization, which is chosen by cross-
validation.

Compressed sensing
The photocurrent values as function of gate voltage IG 2 Rn can be
represented as a sparse vector s 2 Rn in a transform basis Ψ 2 Rn×n:

IG =Ψs ð5Þ

Using compressed sensing, it is possible to effectively achieve full
spectrum reconstruction from surprisingly few p measurements

instead of directly measuring IG 2 Rn (which requires n measure-
ments). These few pmeasurements, denoted as IGp 2 Rp, can then be
used to solve the non-zero elements of the transformed sparse vector
s. The relationship between the measurements IGp 2 Rp and the
compressible signal IGn 2 Rn is given by the Eq. (6):

IGp =CIG ð6Þ

Where, the measurement matrix C 2 Rp×n represents a set of p (sen-
sors) measurements at specific gate voltages.

By combining Eqs. (5) and (6), we obtain the relationship between
the compressed measurement IGp and the sparse vector s:

IGp =CΨs ð7Þ

In this work, a singular value decomposition technique47–49 was
used to achieve a highly transformative basis. To do this, we first
extracted the low-dimensional pattern of the spectral responsivity
matrixRG,λ through singular value decomposition, leading to a tailored
library Ψr 2 Rn× r , containing the first r columns of Ψ (features or
eigenmodes):

RG,λ =ΨΣVT =ΨrΣrV
T
r ð8Þ

The diagonal elements of thematrix Σr are the singular values (σi)
of RG,λ. The rank r is chosen by optimal hard thresholding to capture
the main features and to avoid residual noise in the data50.

Based on the work of ref. 51, in order to find the optimum mea-
surement matrix C, the best possible full reconstruction I

∼

G (n = 81) is
performed by seeking the row of Ψr corresponding to the best
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location in theG rowspaceofΨr that optimally condition the inversion
of CΨr . To select the optimum row in the Ψr tailored basis, we used
reduced matrix QR factorization with column pivoting, enabling the
decomposition ofΨr into a unitarymatrixQ, upper-triangularmatrixR
and a column of permutation matrix C such thatΨT

r C
T =QR, when the

number of p sensors is equal to rank r. In the case of the oversampled
(p > r), where the number of p exceeds the number of features
(eigenmodes) used in the reconstruction52,53, we use the following
relationship ΨrΨ

T
r C

T =QR. After knowing Ψr and the Cmatrix, we are
able to approximate the sparse vector s with the Moore–Penrose
pseudo-inverse s =ΘyIGp = ðCΨr ÞyIGp for p>r or the inverse
s=Θ�1IGp = ðCΨrÞ�1IGp for p= r. Finally, when the sparse vector s is
known, we can reconstruct the photocurrent I

∼

G from the Eq. (5).

Neuromorphic computing
To demonstrate the neuromorphic computing capabilities based on
our vdW SnS2/ReSe2 devices, which function as both memory and
synapses, we employed a simple neural network for a multiclass clas-
sification problem. As depicted in Fig. 7d, the neural network is com-
posed of two layers: an input layer with a dimension of 784
(representing each pixel in the 28 × 28 images), and an output layer
with 10 neurons, each dedicated to recognizing a specific label (f m,n).
We trained and tested our neural network by using theMNIST dataset,
which contains handwritten digits images (0, 1,…,9).

The training dataset consists of 60,000 images, while the testing
dataset contains 10,000 images. During the trainingprocess, each input
neuron in the input layer receives the corresponding pixel value from
the image, assigns it to input vector (Xi), and converts it into 10 outputs

values using the linear relation represented as Σn =
P784

i= 1XiW i,n, where
Wi,n denotes the synaptic weightmatrix. Initially, theweightmatrix was
randomly initialized based on our vdW SnS2/ReSe2 synaptic states. To
determine the direction of weight updates, the output values Σn were

transformed by using a Softmax activation function ðσðΣÞi = eΣi
ΣK
j = 1e

Σj
Þ,

resulting in a probability distribution denoted as (Om,n). When we
compare the label value (f m,n) of each image ‘m’ with the probability
distribution, it allows us to calculate the delta value δm,n =Om,n � f m,n).
If δm,n is greater than 0, the synaptic weight (w) is increased; otherwise,
the synaptic weight is decreased. Themagnitude of the weight changes
(4w) is determined by the fitting formulas (Supplementary Note 3).

Data availability
The data that support the findings of this study are available from the
corresponding author upon request. Source data are provided in this
paper. Source data are provided with this paper.

Code availability
The code for the simulations are available from the corresponding
author upon request. The Code for spectrum reconstruction and
neuromorphic computing is provided with the Source Data.
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