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Trial-historybiases in evidence accumulation
can give rise to apparent lapses in decision-
making

Diksha Gupta 1,3 , Brian DePasquale1,4, Charles D. Kopec1 &
Carlos D. Brody 1,2

Trial history biases and lapses are two of the most common suboptimalities
observed during perceptual decision-making. These suboptimalities are rou-
tinely assumed to arise from distinct processes. However, previous work has
suggested that they covary in their prevalence and that their proposed neural
substrates overlap. Here we demonstrate that during decision-making, history
biases and apparent lapses can both arise from a common cognitive process
that is optimal under mistaken beliefs that the world is changing i.e. nonsta-
tionary. This corresponds to an accumulation-to-bound model with history-
dependent updates to the initial state of the accumulator. We test ourmodel’s
predictions about the relative prevalence of history biases and lapses, and
show that they are robustly borne out in two distinct decision-making datasets
of male rats, including data from a novel reaction time task. Our model
improves the ability to precisely predict decision-making dynamics within and
across trials, by positing a process through which agents can generate quasi-
stochastic choices.

It has long been known that experienced perceptual decision makers
deviate from the predictions of optimal decision-theory, displaying
several suboptimalities in their decision-making. Among the most
pervasive of these is the dependence of behavior on the recent history
of observed stimuli, performed actions, or experienced outcomes,
despite it being disadvantageous and leading to worse performance1–18

(schematized in Fig. 1a top). History biases may arise due to a strategy
that is optimized for naturalistic settings, where continual learning of
priors, action-values, or other decision variables helps agents adapt to
changing environments, but is maladaptive in experimental settings
where the statistics of the environment are stationary19,20. To date,
decision-theoretic models have accommodated history biases by
modeling them as a biasing factor on the perceptual evidence that
drives choices3,12,13,21–26. In the predominant conceptualization of these
models, history biases can be overcome with sufficient perceptual
evidence.

A second widely-recognized but less studied suboptimality is the
tendency to “lapse", or make (asymptotic) errors that are immune to
strong evidence3,4,11,27–33 (schematized in Fig. 1a bottom). Because lap-
ses appear to be evidence-independent, they are assumed to arise
from nuisance mechanisms that are separate from the perceptual
decision-making process and are often imputed to ad-hoc noise
sources such as inattention, motor errors etc.

However, several recent results suggest that these two sub-
optimalitiesmaybe linked in their origin. In primates, learning reduces
dependence on recent trial history2 as well as lapse probabilities28.
Intriguingly, mice trained on a visual detection task showed higher
levels of history dependence on sessions with higher lapse
probabilities3. Moreover, lapses occur in runs (i.e. display Markov
dependencies), rather than occurring with the traditionally assumed
independent probabilities across trials34. Furthermore, lapses have
been proposed to reflect forms of exploration32 that are sensitive to
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trial-by-trial updates of variables such as action value. Likewise, neural
perturbations of secondarymotor cortex and striatum in rodents have
been shown to substantially impact both lapses32,35–39 and trial-history
influences on decisions39,40. Together, these observations challenge
the assumption that historybiases and lapses have independent causes
and raise the possibility that some of the variance ascribed to lapses
emerges from history dependence.

In this work, we explore the idea that history biases reflect a
misbelief about non-stationarity in the world, and demonstrate that
normative decision-making under such beliefs gives rise to choices
that are both history-dependent and appear to be evidence-
independent (i.e. akin to lapses). This corresponds to an accumula-
tion to bound process with a history dependent initial state. We fit this
model to a large dataset of choices made by 152 rats trained on an
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auditory decision-making task. Despite heterogeneity in history biases
and lapse rates in this population, we show that a substantial fraction
of lapses can be explained by the presence of history dependence
during evidence accumulation. Further, our model predicts the time it
takes to make decisions. We test these predictions in a novel task in
rats with reaction time reports, and show that it captures patterns of
choices, reaction times, and their history dependence. This model
significantly improves our ability to predict the temporal dynamics of
decision variables within and across trials in perceptual decision-
making tasks, rendering choices that were previously thought to be
stochastic, predictable.

Results
A common mechanism produces history biases and
apparent lapses
It is often assumed that well-trained subjects in two-alternative
forced choice (2AFC) tasks have faithfully learnt the likelihood
function and priors that determine the structure of the task23,41.
Under this assumption, the optimal decision-making strategy entails
combining any knowledge about prior prevalence of available
options with the stream of incoming evidence until a desired
threshold of confidence is reached in favor of one of the options41–43

(Fig. 1b top). This strategy converges to a drift-diffusion model
(DDM) when evidence is sampled continuously23. In a DDM, one’s
belief about the correct option maps onto a diffusing particle
that drifts between two boundaries, where the first boundary the
particle crosses determines the decision (Fig. 1b). Correspondingly,
the initial state of this particle encodes the prior belief, and the drift
rate is set by the likelihoodof incoming evidence (Fig. 1b).We refer to
the evolving state of the particle in this model as ‘accumulated
evidence’.

However, in general, subjects may not know that the task struc-
ture is stationary, and might incorrectly assume that it is constantly
changing19. In this case, even experienced subjectswouldnot converge
to a static estimate of prior probabilities and likelihood functions, but
would instead continually update them from trial to trial. Here we
consider choice behavior that results from non-stationary beliefs
about priors, which result in trial-to-trial updates to the initial accu-
mulator states. Although initial state updating is common to non-
stationary beliefs in priors, likelihoods and reward functions, updates
to the latter two additionally require drift rate updates (for a treatment
of non-stationary likelihood functions which yield variability in drift
rate, see14,44).

We assume that the initial state of the accumulator (I) is set based
on the exponentially filtered history of choices and outcomes on past
trials. Each unique choice-outcome pair (denoted by h; Fig. 1c) is
tracked by its own exponential filter (ih). On each trial n, each filter ih

decays by a factor of βh and is incremented by a factor of ηh depending

on the choice-outcome pair on the previous trial:

ihðnÞ=βhihðn� 1Þ+ηh1hðon�1Þ where h= fRw, Lw,Rl, Llg ð1Þ

{Rw, Lw, Rl, Ll} represent the possible choice-outcome pairs: right-win,
left-win, right-loss, and left-loss respectively. on−1 is the choice-
outcome pair observed on trial (n−1) and 1h(on−1) is an indicator
function that is 1 when on−1 = h and is 0 otherwise. The initial state of
accumulation, I on trial n is given by the sum of these individual
exponential filters:

IðnÞ= iRwðnÞ+ iLwðnÞ+ iRlðnÞ+ iLlðnÞ ð2Þ

Such a filter can approximate optimal updating strategies under a
variety of non-stationary beliefs. As an example, we show that this
exponential filter can successfully approximate initial state updates
during Bayesian learning of priors under the belief that the prior
probabilities of the two hypotheses can undergo unsignaled jumps5,19

(Supplementary Fig. 1). Nevertheless, we use this more flexible
parameterization to allow for asymmetric learning from different
choices and outcomes, which could be beneficial under generative
models where one believes that one category persists for longer than
another (requiring different decay rates), or correct and incorrect
outcomes are not equally informative (requiring different update
magnitudes). For instance, in a prior-tracking experiment where
previous correct choices had a cumulative effect, but errors had a
resetting effect13, this could be captured in the exponential filter by
faster decay rates for errors.

What are the consequences of such trial-by-trial updating of initial
accumulator states for choice behavior? In a DDM, for a given initial
state I and drift rate μ, the probability of choosing the option corre-
sponding to bound B + is given by:

PðB+ Þ= 1� e�2μðB+ IÞ=σ2

1� e�4μB=σ2
ð3Þ

where B is the magnitude of the bound and σ2 is the squared diffusion
coefficient (derived from Palmer et al.45). The resultant psychometric
curves for different values of initial accumulator states are plotted in
Fig. 1d. This expression reduces to a logistic function of μB/σ2 only
when I = 0. Small deviations in the initial state largely resemble additive
biases to the total evidence, shifting psychometric curves horizontally
towards the option favored by the initial state. This corresponds to a
change in the psychometric threshold i.e. the x-axis value at its
inflection point (Fig. 1d lighter colors). Note that our use of the word
“threshold” follows from Wichmann & Hill27, referring to the x-axis
value at the inflection point, whereas we refer to the slope at this
inflection point as “sensitivity”. Interestingly, large deviations in the

Fig. 1 | Trial history-dependent initial states give rise to apparent lapses.
a Schematic of two common suboptimalities: history biases (top) and lapses
(bottom). (Left): Ratmakingoneof twodecisions (left, right) basedonaccumulated
sensory evidence (clicks on either side). (Top left): History biases i.e. an inap-
propriate influence of the previous trial (n-1) on the current decision (n) in addition
to sensory evidence. (Top right): Typically assumed effect of history bias on the
psychometric curve, shifting it horizontally around the inflection point. (Bottom
left): Lapses i.e. a tendency to make seemingly random choices irrespective of
sensory evidence. (Bottom right): Typically assumed effect of lapses on the psy-
chometric curve, vertically scaling its asymptotes (Figure adapted with permission
from Bingni W. Brunton et al., Rats and Humans Can Optimally Accumulate Evi-
dence for Decision Making. Science 340,95-98(2013). DOI:10.1126/science.1233912)
b Normative model of within-trial processing. (Top) Optimal decision rule that
chooses when the summed log-ratios of priors and likelihoods exceeds one of two
decision bounds, corresponding to a drift-diffusion process. (Bottom left): Gen-
erative model, where one of two hypotheses (H1, H2) produce noisy evidence over

time (ϵt). (Bottom right): A sample trajectory based on noisy evidence (bold line),
and alternate trajectories (thin lines) based on noisy instantiations of the same drift
rate (black arrow). c Model of across-trial processing that accommodates prior
updates. Past choices and outcomes can affect the initial state with different
magnitudes (η) and timescales (β) depending on whether they were wins/losses
(top left/right). (Bottom): Example trial sequence ans corresponding initial states
following previous wins (triangles) or losses (circles) on right (R) or left (L) choices.
Colors denote initial state biases, towards positive (blue) or negative (pink) bounds.
d Effect of initial state values on psychometric curves. Colors same as c. Small
deviations in initial state (grey) lead to largely horizontal biases whereas larger
deviations (saturated colors) additionally reduce its effective slope (dotted black
lines) or “sensitivity" to stimulus. e Pooling psychometric function (black) across
trials with different initial state biases gives rise to apparent lapses (purple arrow).
Conditioning the curve onprevious rightward (blue) or leftward (pink) wins reveals
a modulation of apparent lapses by trial history.
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initial state produce qualitatively different effects on choices (Fig. 1d
darker colors). They not only bias the choices towards the option
consistent with the initial state but additionally reduce the effective
sensitivity to evidence. This can be seen as reduction in slope at the
inflection point of the psychometric curve (Fig. 1d dashed lines) in
addition to a change in threshold. Therefore, trial to trial deviations in
the initial state produce history-biased choices which have differently
diminished dependence on the evidence.

The average choice behavior obtained by pooling choices with
different history-biased initial states is a mixture of psychometric
curves with varying thresholds and sensitivity to perceptual evidence.
Such a psychometric curve is heavy-tailed46,47 and appears to have
asymptotic errors or “lapse rates” (Fig. 1e, black curve). These
asymptotic errors are not truly evidence-independent, random deci-
sions or true lapses, rather they are “apparent lapses” arising from
evidence accumulation with deterministic history-based updates to
the initial accumulator state. Importantly, these apparent lapses con-
tribute to lapse rates when heavy-tailed psychometric curves are
approximated by a logistic function. However, this approximation is
bound to be inadequate if measurements were made for even higher
stimulus strengths, making the heaviness of the tails even more evi-
dent. In such a setting, the psychometric curves obtained by con-
ditioning on past trials’ choice and outcome, or history-conditioned
psychometric curves, are both horizontally and vertically shifted, i.e.
they showhistory-dependentmodulations in both threshold and lapse
rate parameters (Fig. 1e, Supplementary Fig. 2b). Furthermore, trial-
historymodulated lapse rates areuniquely produced by history-biased
initial accumulator states (and therefore reflect apparent lapses), in
contrast to lapse rates observed in the unconditioned psychometric
curve which might have additional extraneous causes27,32,34, and
therefore reflect both apparent and true lapses.

In this model, because history modulations of psychometric
thresholds and lapse rates arise from one unified process, they are
not allowed to vary independently of the decision-making process, or
of each other. Rather their relative magnitudes are intimately cou-
pled with and constrained by accumulation variables. For instance,
increased magnitudes or timescales of initial state updating produce
large fluctuations in the initial accumulator state across trials. This in
turn reduces the effective sensitivity of the accumulation process
to evidence, giving rise to more apparent lapses and history
biases (Supplementary Fig. 2a). Similarly, changes in within-trial
parameters of accumulation can dramatically influence these history
modulations (Supplementary Fig. 2c). Decisions made with smaller
accumulator bounds are more sensitive to initial state modulations,
and therefore give rise to more apparent lapses and higher mod-
ulations of lapse rates and thresholds. Higher levels of sensory noise
have a similar effect, yielding more apparent lapses, consistent with
recent reports of lapse rates being modulated by sensory
uncertainty32. Finally, impulsive integration strategies that overweigh
early evidence rather than accumulating uniformly23 exaggerate the
influence of initial states, producing more apparent lapses and his-
tory biases.

Some definitions:
• Lapse rate: Lapse rates capture the difference between perfect

performance and observed performance at the asymptotes,
measured through sigmoidal fits to the psychometric curves.

• True lapse: A true lapse is a stochastic, evidence-independent
choice that arises from cognitive processes entirely separate
from the decision process, such as inattention or motor error.

• Apparent lapses: Apparent lapses are deterministic evidence-
dependent choices, that nonetheless contribute to lapse rates
when performance is averaged across trials.

Rats display varying degrees of history-dependent threshold
and lapse rate modulation
We sought to test if the comodulations posited by our model are
present in rat decision-makingdatasets, inorder to ascertainwhether a
unifiedexplanation couldunderlie the links betweenhistory biases and
lapses.

We first examined whether and how rat decision-making strate-
gies were affected by trial history. We analyzed choice data from 152
rats (37522 ± 22090 trials per rat, mean ± SD; Supplementary Fig. 3a)
trained on a previously developed task that requires accumulation of
pulsatile auditory evidence over time (‘Poisson Clicks’ task30). In this
task, the subject is presented with two simultaneous streams of
randomly-timed discrete pulses of evidence, one from a speaker to
their left and the other to their right (Fig. 2a). The subject must
maintain fixation throughout the stimulus, and subsequently orient
towards the sidewhich played the greater number of clicks to receive a
water reward. The trial difficulty, stimulus duration, and correct
answer were set independently on each trial. Because this task delivers
sensory evidence through randomly but precisely timed pulses, it
provides high statistical power to characterize decision variables that
give rise to the choice behavior.

Rats performed this task accurately (0.79 ±0.04, mean accu-
racy ± SD, Supplementary Fig. 3b). Performance was stable with little to
nochange in accuracy across trials (meanslope ± SDacross ratsof linear
fit to hit rate over trials: 1.13 × 10−7 ± 8.90 × 10−7; Supplementary Fig. 3c)
reflecting asymptotic behavior rather than task acquisition. Rats
showed history dependence in their choices, largely tending towards a
“win-stay, lose-switch” dependence (Supplementary Fig. 3e). We found
substantial individual variability in the dependence of rats’ choices on
history in the dataset. Some rats were weakly influenced by history
(Fig. 2b left) while others showed a history-dependent modulation of
the psychometric threshold parameter (Fig. 2b middle) or a history-
dependent modulation of both threshold and lapse rate parameters
(Fig. 2b right). The population as a whole most closely resembles
Example rat 3, with both threshold and lapse rate parameters being
significantlydifferent following left and rightwinswhile sensitivity is not
affected (p=0.8 for sensitivity, 3 × 10−17 for bias, 8 × 10−8 for left lapse,
6 × 10−7 for right lapse, two-sided Mann-Whitney U-test, n = 152 Fig. 2c).
Using simulations, we confirmed that the logistic fits to psychometric
curves can reliably recover performance asymptotes i.e lapse rates
particularly in the parameter regimes of this dataset (Supplementary
Fig. 4). As predicted by our model (Fig. 1e), trial-history biased both
threshold and lapse rate parameters in the same direction (e.g. both
biased toward rightward choices following right rewards). Moreover,
the vast majority of rats show comodulations of both parameters by
history (Pearson’s correlation coefficient: r =−0.35, p = 7.28 × 10−6;
Fig. 2d). Across rats, on average 17 ± 12% of lapses aremodulatedby trial
history and therefore could potentially reflect apparent rather than true
lapses (Supplementary Fig. 3d). These findings support the conclusion
that rat decision-making strategies, while idiosyncratic, largely show
history-dependent effects consistent with our model. Next, we tested
the model more directly using trial-by-trial model fitting.

History-dependent initial states capture comodulations in
thresholds and lapse rates in the data
To test whether the observed history modulations in thresholds and
lapse rates arise from trial-by-trial updates to the initial accumulator
state, we extended an accumulator model previously adapted to this
pulsatile task30 to incorporate History-dependent Initial States
(abbreviated as HISt, Fig. 3a). As before, we model this history-
dependence using an exponential filter over past trials’ choices and
outcomes (Fig. 1c). Hence, across trials the accumulator model with
HISt produces apparent lapses, as well as coupled historymodulations
in psychometric threshold and lapse rate parameters.

Article https://doi.org/10.1038/s41467-024-44880-5

Nature Communications



Within a trial, our accumulator model leverages knowledge of the
timingof eachevidencepulse tomodel the sensory adaptationprocess
as well as to estimate the noise and drift of the accumulator variable
(Fig. 3a top bubble, Methods). The model includes a feedback para-
meter that controls whether integration is leaky, perfect, or impulsive.
Following Brunton et al.30, this model also includes (biased) random
choices independent of the accumulator value on a small fraction of
trials (κ) - we consider decisions arising from this process to be “true
lapses”because they are evidence-independent, unlike apparent lapses
which still retain some evidence-dependence (Fig. 3a bottom bubble).

We performed trial-by-trial fitting of the accumulator model with
and without History-dependent Initial States (HISt) to choices from
each rat usingmaximum likelihood estimation (Methods).We find that
the accumulator model with HISt captures both psychometric curve
threshold and lapse rate modulations well across different regimes of

rat behavior, as evident from fits to example rats (Fig. 3b). Moreover,
conditioning rats’ psychometric curves on model-inferred initial state
values reveals that the initial state captures a large amount of variance
in choice probabilities (Fig. 3c), resembling theoretical predictions
(Fig. 1c). This shows that the initial state is a key explanatory variable
underlying choice variability both across and within individuals, that
jointly modulates multiple features of the empirical psychometric
curves in a parametric fashion. We used Bayes Information Criterion
(BIC) to determinewhether adding HISt to the accumulatormodel was
warranted (Fig. 3d, e). Individual BIC scores recommended that adding
HISt was warranted in 147/152 rats (Fig. 3d). This model also best
captured choices across the population as a whole, with significantly
lower mean BIC scores across rats (Mean per trial BIC score for HISt:
0.91 ± 0.01 vs. no HISt: 0.93 ± 0.01, p = 9.85 × 10−18, paired t-test;
Fig. 3e). Next, we compared the psychometric threshold and lapse rate

Fig. 2 |History-dependent thresholdand lapse ratemodulations in a large-scale
rat dataset. a Schematic of evidence accumulation task in rats: (Top): Phases of
the ‘Poisson clicks’ task, including trial initiation in center port (left), evidence
accumulation based on two streams of Poisson-distributed auditory clicks (mid-
dle) and choice report in one of two side ports followed by water reward for
correct choices (right). (Bottom): Time-course of trial events in a typical trial.
(Figure adapted with permission from Bingni W. Brunton et al., Rats and Humans
Can Optimally Accumulate Evidence for Decision Making. Science 340,95-
98(2013). DOI:10.1126/science.1233912) b Individual differences in history-
dependence: Psychometric functions of three example rats from a large-scale
dataset, displaying different kinds of history modulation. Choices are plotted
conditioned on previous left (blue), right (pink) or all wins (black). (Left): Example
rat with no history-dependence in choices, resembling the ideal observer. (Mid-
dle): Example rat with modulations of the threshold parameter alone, resembling
the dominant conceptualization of history bias. (Right): Example rat with history-
dependent modulation of both threshold and lapse rate parameter, similar to the
majority of the population. Errorbars represent 95% binomial confidence intervals

around the mean (n = [16946, 20577, 37523] trials for example 1, [8568, 9549,
18117] trials for example 2, [29358, 30821, 60179] trials for example 3 for psy-
chometric curves conditioned on [right, left or all wins]) c Dataset displays sig-
nificant modulations of both threshold and lapse rate parameters: Scatters
showing parameters of psychometric functions following leftward wins (post left,
blue) or rightward wins (post right, pink). Each pair of connected gray points
represents an individual animal, solid colored dots represent average parameter
values across animals. Trial history does not significantly affect the sensitivity
parameter (top left) but significantly affects left, right lapse rate and threshold
parameters (top right and bottom panels). (p = 0.8 for sensitivity, 3 × 10−17 for bias,
8 × 10−8 for left lapse, 6 × 10−7 for right lapse, two-sided Mann-Whitney U-test, n =
152) d Scatter comparing threshold and lapse rate modulations in the entire
population (n = 152). Each dot is an individual animal, best-fit parameter values ±
95% bootstrap CIs. Black points represent example rats. The majority of the
population lies in the top left quadrant, showing comodulations of both threshold
and lapse rate parameters by history.
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modulations producedby thismodel to themodulations in the data, as
determined by conditioning the psychometric functions on trial-
history (Fig. 3b). As predicted, the model successfully accounted for
modulations in both these distinct psychometric features via the sin-
gular process of trial-by-trial history-dependent updates to the
initial accumulator state. Next, we examined the extent to which
these modulations were captured across individual rats (Fig 3f, g). We

quantified these history modulations as follows: “threshold modula-
tions" are defined as the horizontal distance between themidpoints of
psychometric curves conditioned on previous wins and losses, and
“lapse rate modulation" as the vertical distance between the asymp-
totes of these curves (Methods: History modulation of psychometric
parameters, also see Supplementary Fig. 2b). This was done separately
for model-predicted and rat choices and then compared. Across

Fig. 3 | History-dependent initial states capture comodulations in thresholds
and lapse rates in the data. a Schematic of the model used to fit rat data in the
Poisson Clicks task. (Top): The model consists of trial history-dependent initial
states (HISt) that can produce history-dependent apparent lapses and threshold
modulations. Additionally, the model consists of sensory noise (σ2

s ) in click mag-
nitudes, adaptationof successive clickmagnitudes basedon anadaptation scale (ϕ)
and timescale (τϕ), accumulator noise (σ2

a), leak in the accumulator (λ), anddecision
bounds +/–B30. (Bottom): On κ fraction of trials, the model chooses a random
actionwith somebias (ρ) reflectingmotor errors or randomexploration. These true
lapses are not modulated by history, such that any history modulations arise from
the initial states alone. (Figure adapted with permission from Bingni W. Brunton et
al., Rats and Humans Can Optimally Accumulate Evidence for Decision Making.
Science 340,95-98(2013). DOI:10.1126/science.1233912) b Model fits to individual
rats: Psychometric data (mean accuracy ± 95% binomial confidence intervals) from
3 example rats conditioned on previous rightward (blue) or leftward (wins),

overlaid on model-predicted psychometric curves (solid line) from the accumula-
tion with HIStmodel. (n = [16946, 20577] trials for example 1, [8568, 9549] trials for
example 2, [29358, 30821] trials for example 3 for psychometric curves conditioned
on [right, left wins]) c: Psychometric curves (solid line) from the same example rats
conditioned on model-inferred initial states (colors from pink to blue).
d Distribution of best fitting models for individual rats: eModel comparison using
BIC by pooling per trial BIC score across rats and computing mean (n = 152). Mean
of per trial BIC scores across rats were significantly lower for model with HISt (p =
9.85 × 10−18, one-sided paired t-test) indicating better fits. Error bars are SEM. For
individual data points see Supplementary Fig. 6f Individual variations in history
modulations captured by the accumulatormodel withHISt: Historymodulations of
threshold parameters measured from psychometric fits to the raw data (x-axis) v.s.
model predictions (y-axis). Individual points represent individual rats (n = 152),
point sizes indicate number of trials. g same as (f) but for history-dependent lapse
rate modulations.
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individuals, the model with HISt captured a substantial amount of
variance [R2 = 0.72 (threshold parameter), R2 = 0.69 (lapse rate para-
meter)] and showed good correspondence to the empirical modula-
tions in data [slope = 1.02 (threshold parameter), slope =0.70 (lapse
rate parameter)].

In our model, apparent lapses show history modulations since
they are produced by history-dependent initial accumulator states,
while true lapses do not since they result from an occasional flip in the
final choice and are independent of the accumulator value (following
Brunton et al.30). Such kinds of true lapses could reflect errors inmotor
execution or random exploratory choices made despite successful
accumulation (Supplementary Fig. 5b). However true lapses could also
occur due to inattention, i.e. an occasional failure to attend to the
stimulus. In such cases, the optimal strategy devoid of sensory evi-
dence is to deterministically choose the side favored by the initial
accumulator state (Supplementary Fig. 5c). Therefore, inattentional
true lapses, while remaining evidence independent, may nevertheless
bemodulated by history due to their initial state dependence. In order
to account for this possibility, we fit an additional “inattentional” var-
iant of the accumulator model with HISt (Supplementary Fig. 5a, c),
and found that it was closely matched on BIC scores with the previous
model which we label as the “motor error” variant (Supplementary
Fig. 5e, f). Moreover, the inattentional variant, which additionally
allows true lapses to depend on history, only captured slightly more
variance in historymodulations of lapse rates, at the expenseofhistory
modulations of thresholds (Supplementary Fig. 5d) while a variant of
the model with inattentional true lapses but without HISt failed com-
pletely to capture the comodulation and performed much worse
overall (Supplementary Fig. 6). Together these two findings support
the hypothesis that apparent lapses produced by history-dependent
initial states (rather than true lapses due tomotor error or inattention)
are the major driver of history-dependent comodulations in psycho-
metric thresholds and lapse rates in the dataset.

To gain further insight into the initial state updating dynamics, we
examined thefit parameters controlling themagnitude and timescale of
updates (Supplementary Fig. 7).We found that across the population of
rats, updates following wins and losses had similar magnitudes, but
opposite signs, suggesting a tendency to repeat after wins and switch
after losses.Wecompared thesefits to those froma restrictedversionof
the model whose initial state dynamics correspond to optimal updates
in aDynamicBeliefModel48 (Supplementary Fig. 1) and found that about
a third of the population (47/152 rats) were consistent with this form of
statistical inference (Supplementary Fig. 7b). The remainder of the
population did not show a significant correlation between post-win and
post-loss parameters, consistentwith a statisticalmodel that treats wins
and losses differentially13,49 (Supplementary Fig. 7c).

To summarize, our model predicted that the initial accumulator
state should be the underlying variable that jointly drives history-
dependence in thresholds and lapse rates – implying that our accumu-
lator model with HISt should be able to simultaneously capture varia-
bility in both these parameters across rats. Our rat dataset strongly
supports this prediction, lending evidence to the hypothesis that
history-dependent initial states give rise to apparent lapses, and are the
common cognitive process that underlie links between these two sub-
optimalities thatwere previously thought to bedistinct fromeachother.

Reaction times support history-dependent initial state updating
In our model with history-dependent initial accumulator states, the
time it takes for the accumulation variable to hit the bounddetermines
the duration that the subject deliberates for, before committing to a
choice. Therefore in addition to choices the model makes clear pre-
dictions about subjects’ reaction times (RTs).We sought to test if these
predictions are borne out in subject RTs.

To this end, we trained rats (n = 6) on a new variant of the auditory
evidence accumulation task, with two key modifications that allowed

us to collect reaction time reports (Fig. 4a). First, in this new task the
stimulus is played as long as the rat maintains their nose in the center
port (or “fixates”) and stops immediately when this fixation is broken.
Second, in this task the rat has to correctly report which speaker’s
auditory click train is sampled from a higher Poisson rate to receive a
water reward (unlike the non-reaction time task where the subject has
to report the side which played the greater number of clicks). Rats
perform this task with high accuracy (Fig. 4b left panel, average
accuracy: 0.75 ± 0.02, number of trials 37205 ± 14247, mean± SD).
Similar to the previously analyzed data, their choices are impacted
by recent trial history (Fig. 4b right panel). Moreover, trial-history
dependent modulation of psychometric function parameters (Fig. 4c)
resembles that of the non-reaction time task (Fig. 2c; p =0.69 for
sensitivity, 0.004 for threshold, 0.02 for left lapse rate, 0.02 for right
lapse rate, Mann-Whitney U-test). Once again, this history modulation
of both psychometric threshold and lapse rate parameters in tandem
is consistent with our singular accumulator model with history-
dependent initial states.

Moreover, RTs of these rats display several signatures predicted
by ourmodel (Fig. 4d–f). First, trial-to-trial variability in the initial state
of the accumulator is expected togive rise to shorter RTsonerror trials
compared to correct trials22 (Fig. 4e, left). This is because trials inwhich
the initial state is closer to the incorrect bound are more likely to be
errors, but because of the closer bound they are also likely to hit it
faster. This is unlike a standard DDM with no trial-to-trial variability in
parameters, where RTs for correct and error trials are of similar mag-
nitudes (Fig. 4d, left). Indeed in the rat dataset, error RTs are con-
sistently shorter than correct RTs across rats (Fig. 4f, left). Second,
initial state updates towards previously rewarded choices (such as in a
win-stay agent) are expected to produce shorter RTs when the current
stimulus favors the previously rewarded choice19,24 (Fig. 4e, middle).
We find that this signature is also present in the dataset across rats
(Fig. 4f, middle). Finally, variability in the initial state ismost influential
early in the decision process, predicting that the majority of history
dependence in choices occurs on trials with fast RTs12 (Fig. 4e, right).
Indeed, the data displays this pattern as well, with repetition bias being
most prominent for short RTs, disappearing and turning into a weak
alternationbias for longRTs (Fig. 4f, right). Taken together, these three
signatures offer strong, complementary evidence from RTs for the
prevalence of history-dependent initial states in rats performing this
evidence accumulation task.

We directly test if our model can simultaneously capture reaction
time patterns and history-modulation of psychometric threshold and
lapse parameters by jointly fitting choices and RTs of individual sub-
jects in a trial-by-trial fashion (see Methods). We find that the history-
dependent initial state model jointly captures patterns of choices,
reaction times, and their history modulations in the data (Fig. 4g - fits
from example rat, Supplementary Fig. 8 - fits from all rats). Thismodel
accounts for substantial variance in history-dependent threshold and
lapse rate modulations (Fig. 4h). We also fit a hybrid variant of the
accumulator model with HISt that flexibly allows true lapses to be
motor-error like and unaffected by history, or inattention-like and
additionally bemodulated by history (Supplementary Fig. 9a, b).While
this model has a better BIC and leads to a slight improvement in cor-
respondence to the history modulation of psychometric lapse rates, it
does so at the cost of correspondence tomodulations in psychometric
thresholds (Supplementary Fig. 9c–e). This equivocal improvement
over the HISt model in capturing the threshold and lapse rate mod-
ulations support the conclusion that HISt and its resultant apparent
lapses (rather than true lapses) are amajor contributor to the observed
comodulation of both parameters.

Overall, these results show that the history-dependent initial state
updates that we invoked to explain apparent lapses in rodent data are
corroborated by their reaction times, and accounting for them can
help render a sizable fraction of decisions — that would have been
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otherwise attributed to noise — more predictable both within and
across trials.

Discussion
History biases and lapses have both long been known to impact per-
ceptual decision-making across species. However, they have largely
been assumed to be distinct from each other, despite their frequent

co-occurrence and comodulation. Here, we propose that normative
accumulation under misbeliefs of non-stationarity can produce both
history biases and apparent lapses, offering an explanatory link
between the two suboptimalities. This corresponds to history-
dependent trial-to-trial updates to the initial state of an evidence
accumulator.We show that suchupdates produce choiceswith varying
biases in psychometric thresholds as well as varying sensitivities to
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evidence, yielding apparent, history-modulated lapse rates when
choices are averaged across trials (Fig. 1). Our model postulates that
the initial state of the accumulator is a key underlying variable that
jointly modulates psychometric thresholds and lapse rate parameters,
with the exact nature of this comodulation determined by the within
and across trial parameters governing evidence accumulation. We
tested this model in a large rat dataset consisting of choices from 152
rats (Fig. 2) and confirmed its predictions using detailed model-fitting.
We found that the singular process of history-dependent initial states
successfully captured a substantial amount of variance in history
modulations of both thresholds and lapse rates in the dataset (Fig. 3).
Finally, we tested the reaction time predictions of themodel in a novel
task in rats, and confirmed that the data showed signatures of initial
state updating. Themodel could successfully capture choices, reaction
times, and history modulations in psychometric thresholds and lapse
rates (Fig. 4). Altogether, our results suggest that history biases and a
substantial amount of variance attributed to lapses may reflect a
common mechanistic process, whose evolution can be precisely
tracked both within and across trials.

History biases in perceptual decision making tasks have been
modeled using initial state updates to DDMs in humans and non-
human primates2,5,24. These studies tended to have relatively small
magnitudes of history bias, andminiscule lapse rates, hence being well
captured by small deviations in the initial state of a DDM,which largely
yield horizontal shifts in the psychometric function. This regime of
initial state updates is well approximated by a logistic function with
additive biases, which is the dominant descriptive model used to
characterize history-dependent psychometric curves3,4,6,8,9,11–13,17,26,34,50.
However, as we demonstrate, when deviations in the initial state are
large, this logistic approximation breaks down. This fact has been
overlooked in much of the literature. Consequently, even in datasets
with large history biases and lapses, the logistic formulation continues
to be favored9,17,18,34, albeit requiring additional components. Such
effects tend to be prevalent in rodents but not human or non-human
primate behavior. Our demonstration predicts that the full range of
initial state effects should resemble concurrent, trial-by-trial changes
in both threshold and sensitivity parameters of the logistic function.
Indeed, Ashwood et al.34 found that apparent lapses in several rodent
datasets can be better captured by runs of trials with such concurrent
modulations, yielding biased “disengaged" states. Our model captures
both these behavioral regimes simply using different magnitudes of
initial state updates, rendering it capable of accounting for individual
differences across animals, and potentially even species with very
different behavioral signatures, as long as the constraints between
initial state updating, history biases and lapses are obeyed.

A number of previous studies have hinted at the performance-
limiting effect of sequential biases, variability in initial points and/or
sensitivity across trials23,46,47. Nguyen et al.47 examined the optimal

decision making strategy under a non-stationary generative model,
and arrived at psychometric curves similar to the heavy-tailed curves
produced by our model. Similarly, Shen et al.46 examined decision-
making under variable “precision" across trials, which also yields
heavy-tailed psychometrics, trading off against lapse parameters.
However, to our knowledge, ours is the first study to directly examine
the effect of sequential biases on lapse rates, and link the two relatively
separate literatures. Ourmodel formulation shares some features with
previous work on sequential biases, albeit with some distinct features -
our model is a Drift Diffusion Model with history-dependent initial
states (similar to Nguyen et al.47, but unlike Kim et al.25, who use an
adaptive LATER model) adapted to discrete stimuli for the purpose of
trial-by-trial modeling. Our model’s initial states are a continuous
variable, unlike Urai et al.12, whose initial states take on one of two
possible discrete values. Also, our model’s initial states are set by a
flexible exponentialfilter on several past choices and outcomes, unlike
Nguyen et al.47, Kimet al.25, Yu et al.48 and other variants of theDynamic
Belief Model, albeit reducing to them for certain restricted parameter
regimes.

In our treatment, we only considered history-dependent updates
to the initial state of a DDM. Such a mechanism is normative under
non-stationary beliefs about the prior (note that this is the case if the
agent assumes that a shift in the prior over stimulus categories maps
onto an overall shift in the prior over stimulus difficulties — see Dru-
gowitsch et al.44 for a detailed treatment), which is our favored inter-
pretation as it aligns with other studies of history biases2,8,19,20,24,25,51,52.
Nevertheless, these updates may also reflect other heuristic
strategies53 which we accommodate using our flexible parameteriza-
tion of initial state updates. Animals may entertain non-stationary
beliefs about other elements of the decision process, such as the
rewards or likelihoods14,15,32,42. Normative updating in such situations
still reduces to initial state updates in simple settings (for e.g. non-
stationary rewards for a single difficulty54,55), but inmore complex ones
it affects drift rates or bounds in addition to initial states12,14,44,45,56–58.
This commonality of initial state updating to many different non-
stationary beliefs motivated us to probe its role in producing apparent
lapses, and indeed this mechanism was able to explain an impressive
amount of variance in our dataset, leading us to conclude that initial
state updating is at least a major factor driving animal behavior.
Another crucial possibility is trial-to-trial variability in drift rates, which
is known to give rise to longer error RTs than correct RTs43,59–61 and is a
signature often reported in monkeys and humans62,63. We did not
observe the reaction time signatures of drift rate variability in our
dataset, instead we identified signatures of initial state variability,
where error RTs were shorter than correct RTs, rather than longer.
However, drift rate updates may represent an alternative mechanism
through which history-modulated apparent lapses could occur in
other datasets. It is worth noting that certain task designs include

Fig. 4 | Model predictions about reaction times are borne out in data.
a Schematic of reaction time task in rats (Figure adapted with permission from
Bingni W. Brunton et al., Rats and Humans Can Optimally Accumulate Evidence for
DecisionMaking. Science 340,95-98(2013). DOI:10.1126/science.1233912)bAverage
choice behavior on all trials (left; n = 223231 trials) and following previous right (n =
86109 trials) or leftwins (n= 82678 trials; right) across 6 rats (solid line), overlaid on
individual rat behavior (translucent lines). Errorbars represent 95% binomial con-
fidence intervals around the mean. c Average parameters (solid points) of history-
conditioned psychometric curves, overlaid on individual parameters (translucent
points) showing significant history modulations in threshold and lapse rate para-
meters (p =0.69 for sensitivity, 0.004 for threshold, 0.02 for left lapse rate, 0.02 for
right lapse rate, two-sided Mann-Whitney U-test; n = 6). d–f Reaction time sig-
natures (d) expected from accumulator models with no history dependence in
initial states, (e) expected from accumulator models with history-dependent initial
states and (f) observed in data (n = 223,231 trials across all stimulus strengths and
rats). (Leftmost column) error reaction times are expected to be shorter if initial

states are history-dependent. Red (green) represents RTs on errors (wins). (Middle
column) reaction times on trials following right wins (blue) are expected to be
lower on rightward stimuli (positive half of x-axis), and similarly following left wins
(pink). (Rightmost columns) repetition biases in choices are expected to occur
more frequently for short reaction times, when the effect of initial states is strong.
Error bars represent SEM. g Joint fits of the accumulator model with history-
dependent initial states to choices (left) and reaction times (right) of anexample rat
(n = 24413 trials). Data representedbypoints (circles: choices,mean accuracy ± 95%
binomial confidence intervals; squares: reaction times, mean RT ± SEM) and model
fits represented by lines (choices) or shaded bars (reaction times, thickness
represents 95% bootstrap prediction intervals). Reaction times (right) are split by
wins (green) or errors (red). h Scatter plot showing correspondence between his-
tory modulations in threshold (left) or lapse rate (right) parameters derived from
data (x-axis) and model fits (y-axis). Individual points represent individual rats (n =
6), best-fit parameter values ± 95% bootstrap CIs.
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efforts to actively measure and counter trial history biases. In such
cases, lapsesmay still occur, likely due to exploration or inattention. In
this manuscript, we refer to lapses caused by these factors as “true
lapses”, since they cannot be explained by fluctuations in DDM-related
parameters.

Lapse rates are often considered to be a mixed bag comprising
several different noise processes separate from the decision process,
yet most studies so far have focused on one or more of these com-
ponent processes in isolation32,34. In this work, we have attempted a
more expansive approach of considering multiple processes at once,
in an attempt to partition lapse rate variance into mixtures of deter-
ministic and stochastic components.Wedistinguished apparent lapses
that interact with sensory evidence from two models of “true" lapses
that are both evidence independent — motor error or exploration,
which does not interact with the accumulator, and inattention, which
may still depend on its initial state. While we find that the behavior of
our rats is best described by a mixture of apparent lapses and the two
true lapse variants, it is primarily the apparent lapses (rather than
either true lapse variant) that capture the links between the sub-
optimalities i.e. the history-dependent comodulations in psychometric
thresholds and lapse rates. A previous study proposed an evidence-
dependent model of true lapses, uncertainty-guided exploration32, in
order to account for the scaling of lapse rates with sensory noise.
Although we don’t explicitly consider this model, our model of
apparent lapses already displays this property, with higher levels of
sensory noise leading to more frequent apparent lapses.

Our model predicts that an increased reliance on history (i.e.,
larger shifts of the initial states) should producemore apparent lapses.
Indeed, this could provide an explanation that links disparate sets of
observations from previous studies: while some studies have reported
that perturbations of secondarymotor cortex and striatum give rise to
higher lapse rates32,36–39, others have shown that the effects of per-
turbing these regions seems to resemble an increased history-
dependence39,64. Interpreting these results through the lens of our
model, we would conclude that these regions play a crucial role in the
interaction of history-dependent initial states with sensory evidence,
making them a potential common neural substrate that could con-
tribute to both kinds of suboptimalities. Indeed, increased history
dependence uponM2 perturbation has been shown to bemediated by
increased bias in the initial value of the neurally derived accumulator
variable64. Similarly, DMSperturbations had large effects on lapse rates
in moderately engaged behavioral states that were influenced by both
sensory evidence and history50. Ourmodel could also help explain why
Busse et al.3 found that mice with higher lapse probabilities showed
higher history dependence, or results from IBL18 who observed a
modulation in lapse rates in addition to horizontal biases upon explicit
manipulation of category priors. Nonetheless, these observations do
not preclude the possibility that there are indeed independent neural
mechanisms and/or areas through which trial-history effects and lap-
ses (particularly true lapses) arise. Consistent with this, studies have
implicated different brain areas in producing deterministic vs sto-
chastic biases in action timing65, and even different sub-circuits within
the same area in giving rise to distinct behavioral strategies66. Detailed
manipulations of brain regions with prior information such as in stu-
dies like IBL (2023)67 could help pinpoint the neural mechanisms
through which these suboptimalities arise.

One interesting future line of investigation is to probe the precise
nature of the model of non-stationarity over priors assumed by ani-
mals in such tasks. The range of parameter values inferred using our
flexible formulation could offer a useful starting point for this line of
investigation. For instance, Dynamic Belief Models19,68, a popular class
of generative models over priors, correspond to a narrowly con-
strained set of parameter values in our model. Such an understanding
would not only afford more reliable control of behavior and more
accurate interpretation of neural correlates in stationary tasks, but

could also yield insight into the inductive biases that allow animals to
learn quickly and efficiently in non-stationary, naturalistic settings.

Methods
Subjects
Animal use procedures were approved by the Princeton University
Institutional Animal Care and Use Committee (IACUC #1853). All sub-
jects (n = 152) were adult male Long Evans rats, typically housed in
pairs. Housing bothmale and female rats in our rodent system resulted
in a significant rise in aggression especially in certain transgenic rat
lines to the point ofmaking these rats unsafe to handle. This prevented
us from studying both sexes and including sex as a factor in our study
design. Rats that trained during the day were housed in a reverse light
cycle room. Rats were typically aged between 6-24 months. Rats had
free access to food but in order to to motivate them to work for water
reward, they were placed on a controlled water schedule: 2-4 hours
per day during task training, usually 7 days a week and between 0 and
1-hour ad lib following training.

Drift diffusion model of decision-making
We use a standard formulation of sequential decision-making23,43, in
which an agent is faced with a stream of noisy sensory evidence ϵ1:t
coming fromoneof twohypothesesH1 andH2. The agent has to decide
between sampling for longer or choosing one of two actions L,R
(reaction time regime) or has to choose one of two actions after a fixed
amount of evidence (fixed duration regime). Such a problem can be
formulated as one of finding an optimal policy πt in a partially-
observablemarkovdecision process43,69, whose solution canbewritten
as a pair of thresholds on the log-posterior ratio log gðtÞ

1�gðtÞ

� �
, where

g(t) = p(H1∣ϵ1:t):

πt =

choose L, � B≥ log gðtÞ
1�gðtÞ

� �
sample, � B< log gðtÞ

1�gðtÞ

� �
<B

choose R, log gðtÞ
1�gðtÞ

� �
≥B

8>>>><
>>>>:

ð4Þ

The log posterior ratio can be further broken down into a sum of
log prior ratios and log-likelihood ratios, using Bayes rule:

log
pðH1jϵ1:tÞ
pðH2jϵ1:tÞ

= log
pðH1Þ
pðH2Þ

+ log
pðϵ1:t jH1Þ
pðϵ1:t jH2Þ

ð5Þ

The optimal policy can equivalently be expressed in terms of the prior
and sum of momentary sensory evidence x(t) =∑t ϵt, which are suffi-
cient statistics of the posterior43,70. In the continuous time limit, when
the average rate of evidence increments or drift rate is μ, and the
standard deviation of sensory noise is σ, this corresponds to a drift-
diffusion model that terminates when it reaches one of two bounds23

and whose initial state I is proportional to the log prior ratio:

dx =μdt + σdW , xð0Þ= I = k � log pðH1Þ
pðH2Þ

ð6Þ

In this case, the probability of choosing rightward actions, i.e. hitting
the upper bound can be written analytically as follows (derived from
ref. 45):

PðB+ Þ= 1� e�2μðB+ IÞ=σ2

1� e�4μB=σ2
ð7Þ

In cases where trial difficulties (and hence drift rates) vary from
trial to trial the optimal policy includes time-dependent, collapsing
bounds on the posterior. However, under certain circumstances,
constant bounds on Xt =∑t ϵt implement close-to-optimal collapsing
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bounds on the posterior43,71, which is the regime we assume for our
analysis.

Models of initial state updating
Wemodel initial state updating as a sumofexponentialfilters over past
choice-outcome pairs (Rw: right-wins, Lw: left-wins, Rl: right-loss, Ll:
left-loss). So the initial state I at trial n + 1 is given by:

Iðn + 1Þ= iRwðn+ 1Þ+ iLwðn + 1Þ+ iRlðn+ 1Þ+ iLlðn + 1Þ ð8Þ

where each filter ih decays by a factor of βh, and is incremented by a
factor of ηh following the observation of that particular choice-
outcome pair, i.e

ihðn + 1Þ=ηh1hðonÞ+βhihðnÞ where h= fRw, Lw,Rl, Llg ð9Þ

on is the choice-outcome pair observed on trial n and 1h(on) is an
indicator function that is 1 when on = h and is 0 otherwise.

For non-reaction time datasets, in order to ensure good iden-
tifiability we constrained the update parameters to be the same fol-
lowing both left and right losses i.e. βh and ηh to be the same for
h = {Rl, Ll}. Additionally, following correct trials, we enforce the time-
scale of update i.e. βh to be the same for left and right trials h = {Lw,Rw}
while allowing the increment parameters ηh to be different. When, βh

and ηh are the same∀ h, this rule reduces to an approximation of the
Bayesian update for the Dynamic Belief Model19, which tracks a prior
that undergoes discrete unsignaled switches at a fixed rate. We com-
pared this reduced (DBM) model to the exponetial filter as described
above (Supplementary Fig. 6a, b). While model comparison revealed
that not every rat required all parameters to be different, the uncon-
strained model is the most general form that best captures behavior
across rats.

Psychometric curves
Psychometric curves model the probability of a subject choosing one
of the options (e.g. right) as a function of stimulus strength. We
parametrize the psychometric curve as a 4-parameter logistic function:

Pðchoose Right Þ= κ0 +
κ1

1 + e�bðx�x0Þ
ð10Þ

where x0 is the threshold parameter that additively biases the sti-
mulus x, b measures sensitivity to the stimulus, κ0 is the left asymp-
tote or left lapse rate and κ1 scales the logistic function. Therefore,
the right asymptote is given by κ0 + κ1 and the right lapse rate itself is
given by 1−(κ0 + κ1). We fit all four of these parameters {κ0, κ1, x0, b} to
choices generated by either the DDM (Fig. 1), rats (Figs. 2–4), or
accumulatormodels adapted to the tasks (Figs. 3, 4) using a gradient-
descent algorithm (interior-point) to maximize the (Binomial) log
likelihood of choices using MATLAB’s constrained optimization
function fmincon. κ0 and κ1 were both constrained to lie within the
interval [0, 1]. 95% confidence intervals on these parameters were
generated using bootstrapping. Throughout this manuscript, we
follow the convention from Wichmann and Hill (2001) and use
“threshold" to denote the x-axis value at the inflection point of the
psychometric curve, and “slope" to denote the sensitivity or slope of
the curve at this inflection point. Also all lapse rates reported, were
measured through the fits of such 4-parameter logistic functions to
animal’s choices following previous definitions of lapse rates
(Brunton et al.30, Prins72) and never through the error rates at
extreme stimulus strengths.

History modulation of psychometric parameters. To summarize the
effects of trial history on psychometric parameters we fit independent
psychometric curves to choices conditioned on 1-trial back choice-

outcome history i.e. following rightward wins (Rw) and leftward wins
(Lw). Modulation of the threshold parameter by history was then
computed as xRw

0 � xLw0 . To quantify the modulation of lapse rate
parameter by history we first computed the difference in the left and
right asymptotes following rightward and leftwardwins: κRw

0 � κLw
0 and

ðκRw
0 + κRw

1 Þ � ðκLw
0 + κLw

1 Þ respectively. The net modulation of lapse
rates with trial history is given by the sum of these differ-
ences: 2ðκRw

0 � κLw
0 Þ+ ðκRw

1 � κLw
1 Þ.

Behavioral tasks
Auditory evidence accumulation task. Rats were trained with pre-
viously established protocol30,36,37,73 using the BControl system.
Briefly, rats were put in an operant chamber with three nose ports.
They were trained to begin a trial by poking their nose into the
middle port. This initiated two simultaneous streams of randomly-
timed discrete auditory clicks for a predetermined duration after a
variable delay (0.5–1.3s), one from a speaker to their left and
the other to their right. Rats were required to maintain “fixation"
throughout the entire stimulus (1.5s), failure to do so led to a
violation trial. At the end of the stimulus, rats had to poke towards
the side which played the greater number of clicks to obtain a water
reward. Stimulus difficulty was varied from trial-to-trial by changing
the ratio of the generative Poisson rates of the two click streams. Trial
difficulty and rewarded side were independently sampled on
each trial.

We analyzed rats which performed greater than 30,000 trials, at
70% or more accuracy. Sessions with less than 300 trials or less than
60% accuracy for either of the choices were excluded. Since rats
typically perform this task for many months after having passed the
final training stage, to minimize nonstationarities in the data (due to
break in training because of holiday closures etc.) and ensure that we
are analyzing asymptotic performance, we identified temporally con-
tiguous sessions with stable accuracy by performing change-point
detection on smoothed trial hit rate using MATLAB’s findchangepts
function. The partition with most number of trials was included in the
analysis. Since the animals neither made a choice nor received an
outcome on violation trials, we ignore them while computing trial-
history effects. In addition, data from 19 rats analyzed in Brunton
et al.30 was also included in this analysis.

Auditory evidence accumulation task with reaction time reports.
To measure rats’ reaction times in addition to choices we modified
the auditory evidence accumulation task in two ways. First, we
relaxed the “fixation" requirement and instead allowed rats to sample
the stimulus for as long as theywant. As soon as rats broke fixation by
removing their nose from the center port, the stimulus stopped
and the rats were required to report their decision by poking into one
of the side ports. For any given trial, the time that the rat spent
sampling the stimulus was its reaction time. Second, we rewarded
rats if they correctly reported the side which had greater underlying
Poisson rate rather than the side which played the greater number of
clicks. This helped eliminate the trivial strategy of culminating
a decision after the first click and having perfect accuracy by simply
reporting the side of that click without any need for evidence
accumulation.

In practice, we followed the same training protocol as the inter-
rogation task30 but with the modified reward rule. Once the rats were
fully trained on the interrogation protocol we gradually reduced the
duration of delay between stimulus onset and trial initiation as well as
the fixation period. Most rats maintained high accuracy (>70%) upon
this manipulation, if rats performance did not meet this criterion even
after aweek of training, theywere excluded. Rats tended to haveworse
accuracy early in the session, so we omitted the first 50 trials from our
analysis. After the first 50 trials, we confirmed that the accuracy in the
first and second halves of the session was comparable.
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Data modeling methods
Accumulator model. Tomodel subjects choices and RTs, we used the
accumulation to bound model modified to take into account the dis-
crete nature of evidence in our behavioral tasks30. In the model, the
evolution of accumulated evidence x(t) in response to the left (ϵL) and
right (ϵR) click trains on trial n is given by:

dx =
0, if jxj≥B
λxdt + ðϵR,tCRðtÞξR � ϵL,TCLðtÞξLÞdt + σxdW otherwise

(

ð11Þ

where
dC
dt

=
1� C
τϕ

+ ðϕ� 1ÞCðϵR,t + ϵL,tÞ and ð12Þ

xðt =0Þ= IðnÞ ð13Þ

where λ is the inverse time constant of the consistent drift in memory
of x(t). CR(t) and CL(t) are the magnitudes of each right and left click
respectively after undergoing sensory adaptation (with adaptation
strength ϕ and adaptation time constant τϕ). The sensory noise that
accompanies each click is represented by ξR, ξL which are Gaussian
random variables with mean 1 and variance σ2

s . The accumulation
variable x also undergoes Brownian diffusion through the addition of a
Wiener process (W) with variance σ2

x . B represents the absorbing
decisionbound that prevents x(t) fromevolving further, if crossed. The
initial value of the accumulator variable a varies from trial-to-trial and
is set based on exponentially filtered history of previous choices and
outcomes (see Methods section onModels of initial state updating). A
choice is made by comparing the final value of the accumulator x(T) to
a side bias. A rightward choice is made if x(T) > bias.

Since the model quantifies noise sources on each trial, it requires
estimating the evolution of a noise-induced probability distribution
P(x(t)).We computeP(x(t)) by solving the Fokker-Planck equations that
correspond to model dynamics (see refs. 30,74 for numerical meth-
ods). The probability of making a rightward choice at the end time-
point T of a trial, given accumulation model parameters θacc is:

PðchooseRjϵR, ϵL, θaccÞ=
Z 1

x =bias
dxPðxðTÞjϵR, ϵL,θaccÞ ð14Þ

Models of true lapses. We assume that some fraction of choices κ
arise from processes extraneous to evidence accumulation such as
motor error/exploration or inattention. We parameterize these pro-
cesses with θlapse and refer to them as “true lapses":

• In themotor error/exploration variant, the probability ofmaking
a choice towards the right - when lapsing - is given by ρ.

PðchooseRjθlapseÞ=ρ ð15Þ

• In the inattention variant (Supplementary Fig. 5c), the subject
lapses towards the side favored by the initial state relative to a
biasρ. So theprobability of a rightward choicedue to inattention
on trial n is:

PðchooseRjθlapseÞ=
1 if iðnÞ � ρ>0

0:5 if iðnÞ � ρ = 0

0 if iðnÞ � ρ<0

8><
>: ð16Þ

• In the hybrid variant (with motor error and inattention; Sup-
plementary Fig. 9), the probability of lapsing towards right
depends on the initial state through a sigmoidal function whose

slope m (or matching constant) as well as bias ρ is a free para-
meter:

PðchooseRjθlapseÞ= 1
1 + e�mðiðnÞ�ρÞ ð17Þ

Hence the total probability of making a rightward choice due to
accumulation and true lapses is:

PðchooseRjΘÞ= ð1� κÞPðchooseRjϵR, ϵL, θaccÞ+ κPðchooseRjθlapseÞ
ð18Þ

where Θ = {θacc, θlapse, κ}.

Model fitting. The model parameters were fit to individual rats by
maximizing the log likelihood of the observed choices of the rat cobs,
i.e. by maximizing

lnLðcobsjϵR, ϵL,ΘÞ=Σn ln Pðcobs,njϵR,n, ϵL,n,ΘÞ ð19Þ

where n indexes trials. Throughout this manuscript, we assumed that
for each rat, the parameters remain fixed across all sessions. So one set
of parameters were fit to each rat for each model variant. Constrained
optimization was performed in Julia using Optim package. We com-
puted gradients for parameter optimization using a forward-mode
automatic differentiation package. The reported maximum likelihood
parameters and likelihood values (used for model comparison) are
frommodel fits to the entire dataset. We fit a random subset of 10 rats
using 5-fold cross-validation (85% trainingdataset, 15% test dataset) but
this yielded very similar maximum likelihood parameters and virtually
identical test and training log-likelihoods. Hence, to save on comput-
ing time we fit the different model variants to each rat’s entire dataset.
This agreement between test and training likelihoods is likely due to
the large number of trials in our dataset and the modest number of
parameters in our model.

Simultaneous modeling of choices and RTs. In decision-making
tasks, observed reaction times (RTs) are often thought of as comprised
of stimulus sampling or decision times (DTs, the time it takes for the
subject’s accumulated evidence to hit the bound) and non-decision
related processing times (NDTs). In our datasets we observed that
reaction times tended to be slower following incorrect trials and that
they grew longer over the course of a session. These effects could be
isolated just to RTs and were not observed in choice behavior. To
model these trends we conceptualize non-decision times as arising
from a separate drift diffusion process whose drift ν is additionally
modulated by current trial number n and previous trial’s outcome.
These non-decision time drift-diffusion processes terminate when the
boundω is hit. We assume that the non-decision times for each choice
k∈ {L, R} have independent bounds (ωk) and drifts (νk). So the non-
decision times for a trial n are samples from the following Wald or
Inverse Gaussian (IG) distribution:

τNDTn ∼ IG
ωk

νk � αn+ γo1
�
ðn�1Þ

,ω2
k

 !
ð20Þ

where k∈ {L, R} and 1�ðn�1Þ is an indicator function which is 1 if the
previous trial was incorrect and is 0 otherwise. α parameterizes the
impact of trial number on NDTs and γo parameterizes the impact of
previous trial’s outcome on current trial’s NDT.

We fit the model by maximizing the joint log likelihood of the
observed choices and RTs. For any given trial, we can compute the
likelihood of observing a particular reaction time RTobs and choice cobs
due to accumulation bymarginalizing over possible decision or bound
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hitting times τcobs for the observed choice:

Pðcobs,RTobsjϵR, ϵL,θacc,θNDT Þ=
Z RTobs

0
Pðτcobs jϵR, ϵL, θ

accÞ

Pðcobs,RTobsjθNDT , τcobs Þdτcobs
ð21Þ

On true lapse trials, RTs were assumed to arise from NDTs alone and
therefore the joint likelihood due to accumulation and true lapses is
given by:

Lðcobs,RTobsjϵR, ϵL,ΘÞ= ð1� κÞPðcobs,RTobsjϵR, ϵL,θacc,θNDT Þ
+ κPðcobs,RTobsjθlapse,θNDT Þ

ð22Þ

where Θ = {θacc, θNDT, θlapse, κ}.
We followed previously established methods to compute the

probability distribution of x(t) for computing the likelihood30,74. This
involves expressing the temporal dynamics of the probability dis-
tribution as a Fokker-Planck equation and then computing the solution
numerically, by dividing P(x(t)) into a set of n discrete spatial bins and
determining how probability mass moves after a discrete temporal
interval Δt. The transition matrix for discrete time dynamics and a full
description of the methods can be found in these studies.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rodent behavioral data generated in this study from the Poisson
Clicks and the reaction time task have been deposited in the figshare
database under accession code CC BY 4.0 at the following https://doi.
org/10.6084/m9.figshare.24113793. Source data are provided with
this paper.

Code availability
Analysis codes is available here: https://github.com/Brody-Lab/
trialhistory_lapses_EA.git with https://doi.org/10.5281/zenodo.10161051.
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