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Latent representations in hippocampal
network model co-evolve with behavioral
exploration of task structure

Ian Cone 1 & Claudia Clopath 1

To successfully learn real-life behavioral tasks, animals must pair actions or
decisions to the task’s complex structure, which can depend on abstract
combinations of sensory stimuli and internal logic. The hippocampus is known
to develop representations of this complex structure, forming a so-called
“cognitive map”. However, the precise biophysical mechanisms driving the
emergence of task-relevant maps at the population level remain unclear. We
propose a model in which plateau-based learning at the single cell level,
combined with reinforcement learning in an agent, leads to latent repre-
sentational structures codependently evolving with behavior in a task-specific
manner. In agreement with recent experimental data, we show that the model
successfully develops latent structures essential for task-solving (cue-depen-
dent “splitters”) while excluding irrelevant ones. Finally, our model makes
testable predictions concerning the co-dependent interactions between split
representations and split behavioral policy during their evolution.

Reinforcement learning algorithms, both artificial and biologically
inspired, depend critically on the process described beingMarkovian—
that is, actions and values can be assigned to given states (e.g., a place
in the environment), irrespective of history1–3. Usually, the algorithm is
concerned with learning a good policy (i.e., the strategy of the animal
or agent) given an appropriate state space. Typically, in a simple 2D
physical environment, an “appropriate state space” consists simply of
locations within the environment. However, if an animal or an agent is
learning a task which depends on previous history or abstract context
not described by the state space (i.e., non-Markovian), simple tabular
TD-learning (state value) or Q-learning (state-action value) will fail to
find the solution. Therefore, one might also consider the problem of
reinforcement learning in the inverse: what are the “appropriate” state
representations uponwhich the policy can be described asMarkovian,
and how can we learn these representations4,5?

As an example of a non-Markovian task, imagine an agent starts at
the top left of a 2D grid and traverses the space until it reaches a reward
port at the bottom right of the grid. Upon reaching the port, the agent is
only rewarded if it has previously traversed a cue location and is pun-
ished otherwise (Fig. 1a). The optimal policy cannot be accurately
described by single scalar values assigned to states (or state transitions)

if they are defined as locations in this 2D space. This can be seen by
examining the state-action values for a state immediately before the
reward port (state 8 in the example of Fig. 1a)—the transition from state
8 to the terminal state, state 9, is +1 if the agent has visited the cue state,
but −1 if the agent has not. For example, in Q-learning,Q(8,9) (the value
for a transition between states 8 and9), will not converge to the optimal
policy. Themostbasic solution to this problem is to create twocopiesof
that state (8′ and 8″, in this example) before learning, using the external
knowledge that the task depends on two cases; onewhere the agent has
passed through the cue location, and one where the agent has not.
However, this assumptionbreaks causality fromtheagent’sperspective.
We are left with quite a conundrum: the only way to know if two copies
of that state are required is to learn the task, but the only way to learn
the task is to have two copies of that state (what came first, the chicken
or the egg?).

This is one example of a more general problem: real-world tasks
often depend on complex combinations of sensory information,
internal states, context, etc. which themselves are unknown prior to
learning. Agents in these tasks must either pre-assign or learn state
representations to create an actionable map of the environment. Ani-
malsmust similarly represent the state of the environment (or task) via
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patternsofneural activity (a “state representation”),whichcan thenact
as substrates for planning, behavior, memory, etc. This latent neural
structure is often referred to as a “cognitivemap”, the ideaofwhichhas
been very closely tied to the observed activity of hippocampus6–8. Cells
in hippocampus display fields specific to a variety of environment and
task variables, including place, time, lap, evidence accumulation, and
more9–15. These fields can emerge over the course of task-learning and
can be induced artificially at the single-cell level16–18. If activity in hip-
pocampus is indeed consistent with a cognitive map of state repre-
sentations, how might animals perform representation learning in
order to form these maps?

First, one could imagine a network of neurons which has pre-
existing complex representations prior to the task. For example, one
might consider using a “temporal buffer” which tracks history in the
network, or feeding activity into a liquid state machine, so that all pos-
sible sequences create a separate latent state19 (Fig. 1b). However, rein-
forcement learning in these overcomplete state spaces is very slow and
computationally expensive, scaling exponentially with the number of
states (the so-called “curse of dimensionality”)2,3. A second option is to
learn the structure of the environment through prediction and
inference19 (Fig. 1c). Some recent example models of the cognitive map
include the Tolman-Eichenbaum Machine (TEM) and the Clone Struc-
turedCognitiveGraph (CSCG)20,21. TheCSCGfor example, presumes that
each state initially has many copies, and then uses an expectation
maximization (EM) algorithm to modify connections between these
copies. However, the number of copies chosen for each state is still a
parameter chosen a priori by the modeler. Further, plasticity rules

involved in these inference models are generally non-local, rendering
themdifficult tomaponto specificbiologicalprocesses inhippocampus.

To theorize how hippocampus might form cognitive maps in a
biologicallyplausiblemanner,wepropose anetworkmodelwhichuses
local, single-cell plateau-based learning rules to develop population-
level cognitive maps, allowing it to learn complex tasks. Our model
learns these state spaces and tasks simultaneously in an iterative
manner, and cells encoding abstract state variables arise via learning
the abstract logic of a given task, rather than existing a priori. Our
model’s results are compared and validated against recent experi-
mental results, inwhich the induction of splitter cells was only possible
when a representational split was required to solve the task18. Finally,
our model makes testable predictions about the potential codepen-
dence between learned latent hippocampal representations and
learned behavior.

Results
Compartmentalized feedback in model HPC neurons enables
context-sensitive representations
To demonstrate how hippocampus (HPC) might learn task-dependent
representations mechanistically, we create a three-stage closed-loop
model. The first stage consists of the external environment, which is a
Y-maze traversedbyour agent in 2DEuclidean space. The second stage
is a network of model HPC neurons, which receive both external and
recurrent inputs. The activity of theHPCnetwork is projected to a third
stage, a set of “action” neurons which dictate the agent’s decisions
within the external environment. As the agent learns a given task, the

Fig. 1 | Feedback in three-compartmentHPC neurons enables context-sensitive
representations. aA 2Dgrid environment, in which the agentmust visit a cue state
(state 5) to receive a reward when it reaches the end state (state 9). Bottom, state
transition 8–9 can be either rewarding (if preceded by 5) or punishing (if preceded
by 7), leading to ambiguity in the value of the 8–9 transition. b Some models
includea history-dependence a priori aspart of their state representation. Here, the
population activity vector is equivalent to the state vector at that time, so the two
potential “8” states (shown by the dottedovals), are disambiguated. cAlternatively,
inference models compare internal predictions to external sensory observations,

and update their internal models based on errors between their predictions and
observations. Successfully trained inference models learn the latent structure of
the task as part of their internal model. d Schematic of the hippocampal network
model we propose. The network receives external inputs xðtÞ into a basal dendritic
compartment bðtÞ. Somatic activation sðtÞ is a combination of basal activity bðtÞ and
recurrent apical feedback aðtÞ. e Schematic of the full model, including action
neurons, which receive input from the representations in the hippocampal network
and dictate the agent’s decisions in its sensory environment, providing a closed
loop between the environment and the network.
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HPC network develops appropriate latent representations upon which
the agent can develop a successful policy.

Each neuron in ourmodel HPC network has three compartments
—the soma, the apical dendrites, and the basal dendrites (Fig. 1d). The
basal dendrites receive input about external sensory information,
while the apical dendrites contain feedback from other somata, via a
recurrent weight matrix Wij (see “Methods”). The soma receives
input from both dendritic compartments, such that the somatic
activity sðtÞ outputs a combination of external information (basal
activity, bðtÞ), modulated by the recurrent feedback which encodes
the latent structure (apical activity, aðtÞ). The degree to which the
somatic activity is dependent on recurrent, apical feedback is
determined by a modulatory factor which depends on the sum
of the incoming synaptic weights onto the apical dendrites
(see “Methods”). In practice, this modulatory factor β regulates
how much the soma is “listening” to its dendrites. For small β, the
soma is solely a readout of basal activity, while for large β, the
somatic activity is a combination of basal (external) and apical
(recurrent) inputs. This function is crucial, since it allows for the
soma to express either context-agnostic or context-sensitive repre-
sentations, depending on the state of the network. While we do not
directly model a biophysical process for this compartment-specific
modulation, mechanisms of local dendritic inhibition22, branch
strength potentiation23, and intracellular calcium release24 have been
shown to modify the influence of dendrites on the soma (or the co-
tuning between the two).

Learning in the model consists of a plateau-dependent three-fac-
tor rule (see “Methods”), in agreementwith experimental results which
observe the formation of CA1 fields after so-called “plateau
potentials”25–27. This rule depends on an eligibility trace of pre-synaptic
activity epre, post-synaptic activity spost, and reward r above a baseline
rate r0. The two coincident factors (pre- and post-synaptic activity) are
evaluated at the occurrence of a plateau potential, i.e., at time tplateau.
The recurrent weightsWij are updated in batch at the end of the trial.
The recurrent weights Wij determine the modulatory recurrent feed-
back received in the apical compartment aðtÞ. Crucially, this three-
factor rule allows the network to reorganize sequentially activated
pairs of state representations that lead to reward into a new state. In
other words, this allows first-order representation sfirst = xi (e.g., place
only) to be combined into second order representation ssecond = xixj
(e.g., place and cue context). Higher order representations can then be
learned as combinations of first and second order representations, etc.
Simpler learning rules which only consider one state and its connec-
tion to reward (i.e., TD) seem therefore incapable of learning these
higher-order combinations, and more complicated rules which can
learn higher order relations such as backpropagation within a recur-
rent neural network are typically non-local and therefore not typically
biologically plausible28.

Attached toour hippocampalnetwork is a network of two “action”
neurons (representing the two possible turn directions, left or right)
which dictate the agent’s turning decision in the environment. These
action neurons vðtÞ are connected to somatic activity sðtÞ through
weightsQ, which can bebroadly interpreted as state-action values. The
information in the model thereby follows a closed loop: The agent
moves in the environment at a constant velocitydx=dt and observed
external stimuli xðtÞ are fed into our representation layer as basal
activity bðtÞ. The basal activity bðtÞ combines with recurrent feedback
aðtÞ to produce internal representational states sðtÞ, which then acti-
vate action neurons vðtÞ through weight matrix Q. As the agent
approaches the choice point, these action neurons will dictate it to
turn right or left. After turning, the agent reaches one of the end
branches of the track, and reward is either presented or omitted (the
conditions of which depend on the task). Finally, the agent is tele-
ported back to the beginning of the track for a new trial, and the
process repeats (Fig. 1e).

Network learns task-dependent latent representations and does
not integrate task-irrelevant representations
To test our model’s ability to learn task-dependent latent representa-
tions, we place an agent in a Y-maze environment. This is to mimic a
recent experiment which reported the emergence of hippocampal
“splitter” cells, or cells which fire in a given location only in a given
context18. The agent is presented with one of two possible visual cues,
A or B (represented here as red vertical bars or black horizontal bars),
before walking along a track (C). Upon reaching the end of the track,
the agent can turn left or right (to locations D or E) to potentially
receive a reward (Fig. 2a). We train the agent on one of two possible
tasks. In both tasks, we use the same artificial induction protocol,
wherein half of neurons receive location-specific plateaus after pre-
sentation of A, and the other half of neurons receive location-specific
plateaus after presentation of B. The induction protocol is applied for
each trial during learning, so for a single trial, half of the population
(either the “B-type” or “A-type”, depending on which of the cues is
shown) receives a location-specific plateau (Fig. 2b). For the first task,
reward was contingent on the initial cue which was presented to the
agent, such that if the agent saw cue A, the reward would be in port D
with 100% certainty, and if the agent saw cue B, the rewardwould be in
port E with 100% certainty (cue-dependent task, Fig. 2c). In another
task, reward was randomly given, such that D or E had a 50% prob-
ability of containing reward, regardless of the visual cue shown (ran-
dom reward task, Fig. 2d).

We observe that, in the cue-dependent task, neurons in ourmodel
HPC develop “split” representations in agreement with the logic of the
induction protocol. That is, cells which were artificially injected with
current at a given cue-location combination during training develop
fields that are selective to that cue-location combination after training
(Fig. 2e,i). An example cell (Fig. 2e,ii) only fires at position C following
presentation of the A but has no firing field at any location after the
presentation of B. The development of cue-dependent splitter cells
we observe in the cue-dependent task is in agreement with
recent experimental findings of task-dependent hippocampal
representations9,15,18,29–32 (Fig. 2e,iii). However, if we train the agent on
the random reward task, we observe that even when we induce plas-
ticity only for a given cue-location pair, the resulting fields do not
retain this information, instead becoming generic “place” fields
(Fig. 2e,iv). The same example cell which had, in the cue-dependent
task, developed a conjunctive field (location C if preceded by A) in line
with the induction protocol, in this case encodes generally for location
C regardless of the preceding cue (Fig. 2e,v). Experimentally too, a cue-
dependent field could not be induced in a single cell when the animal
was trained on the random task18 (Fig. 2e,vi).

The combination of these results shows that the artificial split
induction protocol (Fig. 2b) is necessary but not sufficient to form
splitters. Instead, the logic of the induction protocol is only integrated
into the network if it leads to an underlying representation which
improves the behavioral acquisition of reward. Further, since the agent
in our simulations starts with a naïve policy (random action selection),
the knowledge of whether a given representationwill lead to increased
rewards is unknown a priori (leading again to our chicken and egg
problem; one needs splitters to learn the policy, but one needs to learn
the policy to know whether to integrate splitters). The combination of
these factors makes learning non-trivial, despite the fact that the split
induction protocol itself ostensibly contains the split logic. Crucially,
in order to match both experimental results (Fig. 2e,iii,vi), our model
must assume thatmemory of the cues is in fact inaccessible later on in
the track, prior to learning (otherwise, we would develop splitters in
both the cue-dependent and random tasks). Instead, in order to form
splitters only in the cue-dependent task, the network simultaneously
must (1) learn to propagate the memory of the cue throughout the
track, and (2) learn that the split state representation of cue memory
and current location is beneficial for behavioral outcomes. Note that
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since splitting the state representation and/or changing the policy
cannot improve average outcomes in the random reward task (average
reward will be 0.5), our representations remain as generic place fields
in that case.

Behavior co-evolves with internal representation
From the simulations shown above, we can infer the state repre-
sentations and behavior before and after learning (Fig. 3a). However,
since both internal state representations and behavior are plastic, we
can also examine their dynamic evolution during learning.Wequantify
learned behavior by measuring a running average of the fraction of
correct turns the agentmakes during training on the cue-dependent or
random task. To quantify the state representation, we introduce a
measure of “splitness” for neurons in our HPC network (firing rate
(neural activity) on A cue trials—firing rate (neural activity) on B cue
trials). Since the task requires split representations to be solved, this
can be understood as a sort of fitness of the state space to the task.

From the perspective of reinforcement learning, learning
of appropriate actions is contingent on an accurate state space, so
one might expect the evolution of behavior in our model to lag the
evolution of state representations (τbehavior > τstate). However, here

representation (Fig. 3b, top) and behavior (Fig. 3b, bottom) evolve
together, (τstate ~= τbehavior) because (1) we cannot learn the split beha-
vior without splitters, and (2) we also cannot learn the splitters without
split behavior. Our model is able to break this loop owing to stochas-
ticity in behavior, which acts as a symmetry-breaker to the underlying
representation. Our three-factor learning rule reinforces breaks along
dimensions useful to the task, while breaks along null dimensions will
relax back to zero. Improper policy (i.e., going to the wrong reward
port) will degrade the state representation, as unrewarded state pairs
are depressed. Meanwhile, proper policy reinforces state pairs which
lead to reward. Therefore, it is key in our model that state representa-
tions iteratively improve behavioral performance, and vice versa, in a
cooperative and codependent (rather thanmerely concurrent)manner.
These results are in agreement with experiments which observe task-
relevant hippocampal representations arising on a similar timescale as
the relevant behavior9,29,30,32,33. This idea acts in stark contrast to reser-
voir type models34,35, where an output has access to a pool of inputs
which form an overcomplete basis set, and few-shot learning can
quickly select any desired representation of the inputs (such as cue
memory and current location), without needing to train beforehand
on any task. Instead, our simulations suggest that both task and
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representationmust be learned simultaneously, as opposed to complex
task representations all existing, or being accessible, a priori.

Examining the evolution of the population activity (Fig. 3c), we see
that for the first ~200–300 trials, the network is comprised mostly of
placefields,with splitters stochastically appearing anddisappearingnear
the start of the track due to spurious asymmetries in the agent’s behavior
(e.g., a few actions in a row which happen to coincide with the optimal
policy). Eventually, these stochastic fluctuations create a bias (in repre-
sentation and behavior) that overcomes the exploration noise in our
action network. Then, over the course of the next couple of hundred
trials (~300–500), the population slowly splits, from the start of the “C”
component of the track (neuron 30) to the end of the “C” component of
the track, in a “zipper-like” fashion. This “zippering” process acts to
create two feed-forward sequences of neural activity—one related to cue
A (C′), andone related tocueB (C″). It is through these learnedsequences
that the memories of cue A and cue B propagate throughout the delay
period, thereby enabling post-synaptic plateaus to select for this con-
textual information even long after the cues have ended (Supplementary
Fig. 1). This evolution of population activity mirrors an evolution in the
recurrent weights (Supplementary Fig. 2), whereby neurons that repre-
sent positions later in the track slowlybecomemore interconnectedwith
same cue-type neurons from earlier in the sequence. Owing to this
phenomenon, our model predicts that the split representation emerges
first in cells which encode locations nearest to the cue.

Representation and behavioral policy are co-dependent
While we have demonstrated that behavior and representation evolve
cooperatively during training, we can also examine their codependence

after training, by perturbing behavior and observing the changes in
representation, and vice versa.

To test behavior’s effect on representation, we performed a per-
turbation simulationwherewereset behavior to chanceonce the agent
has learned the task (Fig. 4a). We find that the state representation in
our model re-merges, since neither C′ nor C″ result in positive reward
above baseline (Fig. 4b, c). Note that this representation is equivalent
to the one learned in the random reward task (again, neither C′ or C″
result in positive reward above baseline). The ability of behavior to
modulate hippocampal representations is supported by recent
experimental results which show that the quality of cognitive maps in
human subjects is experiencedependent36. Notably, the collapse of the
split representation after a behavioral reset is incongruentwithmodels
of representation that rely on a pre-existing, general memory (such as
a reservoir) that exists prior to (or absent of) behavior. Instead,
it suggests that complex representations are dependent on the selec-
tive, learned propagation of specificmemories. In the splitter task, this
means that splitters cannot exist at the end of the track exclusively, as
they are reliant on the contiguous memory of the cue. This memory is
propagated by the network through the previous splitter cells in the
sequence (the existence of which depends on their ability to improve
behavior). Altogether, ourmodel predicts that the split representation
(emerging from training on the cue-dependent task) would collapse
after (1) switching to the random task, or (2) switching to random
behavior (perhaps through artificially randomizingwhether the animal
ends in the left or right “location” in a VR environment).

We also perform the opposite manipulation where we artificially
induce a bias in the network’s latent representation and examine its
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effects on behavior (Fig. 4d). To do so, after initially training on the
cue-dependent task, we selectively prune the weights which project to
the B-dependent splitters. This produces two functional populations:
A-dependent splitters (C′) and generic place cells (C) (Fig. 4e).We then
examine how behavior co-evolves with this biased representation. We
observe that on A trials, the agent learns to always turn to D (correct
policy), while on B trials, the agents on average behave at chance
(Fig. 4f). This occurs even though no restrictions are placed on beha-
vioral learning. Instead, since the latent representation lacks B-specific
splitters, the agent cannot assign unique state-action values in the B
trials, and therefore fails to find the correct policy following the B cue
(i.e., the model displays a feature-specific behavioral deficit). Experi-
ments have also found that task-relevant representations are more
stable than generic fields29,30,33, whichmay underlie their importance in
supporting and maintaining task-performance.

Experimental studies have also shown that errors in single-trial
behavioral performance are correlated with a decrease in task-specific
representations in hippocampus during that trial37–39. To examine this
effect, we test whether we can induce long-lasting biases in the policy
(continued errors of a specific type over many trials) by artificially
modifying the underlying representation. To do so, we ablate splitter
cells after initial training (Fig. 4g). Here we consider two types of
ablations in our network—general and specific. For the general abla-
tion, we inactivate a fraction of splitters in the network after behavior
reaches asymptote, regardless of their corresponding A- or B-type
identity. Once the splitters have been removed, the agent’s perfor-
mance drops in both the A- and B-type trials (Fig. 4h). However, if we
perform an ablation which only targets splitters of a specific identity

(in this case a fraction of B-type splitters are inactivated), the agent
demonstrates a feature-specific behavioral deficit which lasts across
many trials, as it is unable to reachbehavioral asymptote specifically on
the B-type trials (Fig. 4g, h). Notably, ablation of some splitters can also
degrade the surrounding representation, as cellswithin the population
are themselves responsible for the propagation of the cue memory.

Slow, population-level integration of task structure enables fast
single-cell learning
The timescales of learning (hundreds or thousands of trials) which we
have so far shown far exceed the known timescales of the induction of
splitters and place cells in hippocampus. Experimentally, plateau
potentials have been shown to generate place fields or splitters after
only a handful (<10) of trials25–27. However, in ourmodel we are training
the network and the agent’s behavior from scratch. The iterative nat-
ure of the cooperation between behavioral and representation learn-
ing (i.e., rewarded behaviors improve representations, which thereby
increase rewarded behaviors, etc.) is a slowprocess that dominates the
overall timescale of learning in the network. However, this lengthy
process of building the population level “cognitive map” then might
allow the network to quickly integrate new single units. To test this, we
hold out two neurons from the initial phase of learning (one an A-type
splitter and one a B-type splitter), keeping their inputs at zero. After
training, we stimulate the external inputs to induce the cell, allowing
for their weights to undergo plasticity (Neurons 80 and 81 in Fig. 5a).
During the initial training, as we have previously shown, cells take
hundreds of trials to form splitters, with the majority of cells reaching
the split criterion during the “zipper” phase occurring from trial
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~300–500. However, upon being induced, the holdout neurons initi-
ally form generic place fields, before quickly integrating themselves
into the latent A- and B-cue sequential structure (neuron 80 shown in
Fig. 5b). This integration into the split representation now only takes
~10 trials (six in the case of neuron 80), in agreement with the time-
scales of single-cell plasticity observed experimentally (Fig. 5c)25–27.
Since the initial evolution of splitters is slow and codependent with
behavior, our model predicts that the few-shot nature of learning
splitters (in particular, as opposed to generic place fields) via artificial
induction of BTSP is only applicable after, or during the late stages of
behavioral learning.

The integration of the task also allows for the network to gen-
eralize across environmentswhichmaponto the same latent structure.
To demonstrate this, we allow plasticity in the input (alongside
recurrent and behavioral learning) in the cue-dependent task and
introduce a novel cue and novel reward port after initial training. We
find that the network tracks changes in the input by relabeling or
remapping the existing internal representations onto the new external
stimuli. Though the inclusion of plasticity in the input increases var-
iance in the representation, it does so without loss of behavioral
function, and both the representation and behavior are unaffected by
the switch to the novel components of the environment (Supple-
mentary Fig. 3).

Discussion
The hippocampus has long been thought to operate as a “cognitive
map”, but the process bywhich it forms thesemaps is still unknown6–8.
A principal difficulty in building cognitive maps is learning the
appropriate state representation for tasks or environments which are
described by complex, higher-order relations. Various models have
been introduced to learn artificial state spaces (state discovery/
representation learning)40–42, but our model attempts to directly link
the emergence of population-wide cognitive maps to observed single-
cell, plateau-based plasticity mechanisms in hippocampus. Further,

ourmodel replicates recent experimental results which show CA1 cells
forming complex fields only when they are relevant to a behavioral
task18. We observe in our model that behavior and representation
iteratively improve each other, and that controlled modifications to
either can lead to changes in the other. This lockstep evolution of
behavior and representation leads to a characteristic “zippering”
phenomenon observable in the representation during learning. Our
model predicts that (1) the split representation will emerge in cells
which encode locations nearest to the cue, (2) artificially randomizing
the behavior of the animal (e.g., via manipulating a VR environment)
should “merge” a learned split representation, and (3) few-shot learn-
ing of individual splitter cells via BTSP inductionwill only be successful
after (or during the late stages of) behavioral learning of a split task.

Our model network learns to behave by learning the task struc-
ture, rather than by building a generalmapof an environment.While it
is true that hippocampal representations emerge in environments
without an explicit task structure12,13, and common representations
(such as physical space) are reasonable for an agent to generalize and
learn in an unsupervised manner, unsupervised learning of higher-
order state environments quickly becomes untenable, as the number
of potential higher-order states grows exponentially with the size of
the first-order state space (curse of dimensionality)2,3. As such, it is
likely useful to learn only those higher-order, complex representations
which are necessary to maximize reinforced or self-supervised objec-
tives. Regardless, evidence shows that complex representations in
hippocampus are either (1) more likely to, or (2) exclusively emerge in
tasks which require them9,15,18,29,31. While in this work we interpret the
modulated learning term (r) as explicit reward, this term could
represent intrinsic reward or some variables related to an internal
statistical model.

Our model considers fixed plasticity protocols, i.e., we as an
outside observer choose to induce splitters in this task. While we do
show that induction protocols unnecessary for the task are not inte-
grated into thenetwork, ournetworkdoes not spontaneously generate
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plateaus or meta-learn the induction protocol. In natural formation of
fields in hippocampus, of course, this loop would also be closed, and
likely depends on other areas such as the entorhinal cortex43. Though
random induction alone is insufficient (Supplementary Fig. 4), one can
imagine that through a noisy process, the network might sample
potential latent states via one-shot learning to create quick combina-
tions of external inputs/recurrent feedback. If these latent states are
useful, perhaps they are reinforced and remain in the state space,
remapping otherwise. It remains to be seen how a biophysically plau-
sible model network could learn appropriate plateau induction pro-
tocols, task-relevant representations, and policies simultaneously.
Additionally, our model does not consider other forms of plasticity
aside from BTSP which likely play an important role during field for-
mation in hippocampus16. Likely, the few-shot plasticity of BTSP is
combinedwithmore conventional, slower formsof plasticity (Hebbian
learning, homeostatic mechanisms, etc.) in the formation and main-
tenance of these cognitive maps.

Our model hippocampal network presented here demonstrates
that single-cell plateau-based learning can interact with behavioral
learning to generate a population level cognitive map via cooperative
improvement of behavior and representation. This method avoids
problematic a priori assumptions of the structure of a given state space
and presents a potential pathway for further research into the online,
in vivo formation of task-relevant hippocampal cognitive maps.

Methods
External input
All parameters for the following methods are included in Table 1. The
external sensory environment is modeled in the form of stereotypical

1-D positional tuning curves of the following form:

uk xð Þ= e�
x�xk
σ

� �2 ð1Þ

where k indexes over K total inputs, and xk are the locations of the
tuning curve centers,whichhave standarddeviationσ. For simplicity,we
model the animal as running at constant unit velocity through the track,
such that x = t. HPCneuron i receives inputMikukðtÞ.Mik is equivalent to
the identity matrix in this work, though in general, one might consider
these weights to be plastic, as we do in Supplementary Fig. 3.

HPC network
The rate activity, si tð Þ, of each HPC neuron i is described by the fol-
lowing three-compartment model:

si tð Þ= 1� βi

� �
bi tð Þ+βibi tð Þγa ai tð Þ

� � ð2Þ

βi = γβ
X
j

W ij

" #
ð3Þ

γf ðxÞ=
1
2

tanh mf x � cf
� �� �

+ 1
h i

ð4Þ

where f =a for the apical non-linearity and f =β for the non-linearity on
the incoming weights. mf and cf are constants.

bi tð Þ=Mikuk tð Þ ð5Þ

Table 1 | Model parameters

Parameter Value Units Description

Ninp 120 – Number of neurons in external network

N 120 – Number of neurons in hippocampal network

Nact 2 – Number of neurons in action network

dx=dt 1 dv (arb.) Velocity of agent in maze

L 100 dx (arb.) Length of maze

σ 5 dx (arb.) Standard deviation of input Gaussians

τe, τea 10, 20 dt (arb.) Time constants of eligibility traces

τa,τv 40, 10 dt (arb.) Time constants of apical compartment, action neurons

σv N(0,0.75) – Noise, action neuron activity

σp N(0,5) – Noise, policy selection

ma, mβ 1, 5 – Stretch coefficient, activation function

ca, cβ 5, 1.4 – Offset, activation function

tchoice 60 dt (arb.) Time of turn choice

prand 10 % Chance of random turn

ntrials 4000 – Number of trials

r0,rq 0.5,0.6 – Reward expectation

tiplateau i dt (arb.) Time of induced plateau for neuron i

Mik δik, U(0,1e
�4) (S2 only) – Weight matrix, input layer to representation layer. Identity matrix (fixed) for all but Supplementary Fig. 2)

Wij U(0,1e�4) – Initial values, recurrent weight matrix, representation layer (before learning). Uniform distribution between 0
and 1e�4

Qli U(0,1e�4) – Initial values, weight matrix, representation layer to action layer (before learning). All initial values the same

Iml 0 �0:125
�0:125 0

� 	
– Recurrent weight matrix, action layer (fixed)

Mmax 0.75 – Upper bound for input weight (Supplementary Fig. 2 only)

Wmax 0.15 – Upper bound, recurrent weights

Qmin,Qmax −0.15, 0.15 – Lower and upper bounds, action weights

ηW , ηQ, ηM 0.0006, 0.0003, 0.15 – Learning rates, recurrent weights, state-action weights and input weights (input learning for Supplementary
Fig. 2 only)

λw 0.025 – Decay constant, recurrent weights
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τa
dai

dt
= � ai +Wijsj tð Þ ð6Þ

The neuron receives external input uk tð Þ into its basal compart-
ment via weights Mik , and receives recurrent feedback into its apical
compartment via weights Wij with a time constant τa. The somatic
activity is comprised of two components: basal activity biðtÞ and basal-
apical product biðtÞγa ai tð Þ

� �
. The degree to which the somatic activity is

influenced by each component is modulated via a non-linear sum of
weights βi. In short, when the incoming weights to the apical compart-
ments is large, the somatic activity is approximated by biðtÞγa ai tð Þ

� �
,

while when the incoming apical weights are small, the somatic activity is
essentially biðtÞ. While we do not directly model a biophysical process
for this compartment-specific modulation, mechanisms of local den-
dritic inhibition22, branch strength potentiation23, and intracellular cal-
cium release24 have been shown tomodify the influence of dendrites on
the soma (or the co-tuning between the two). Recurrent weightsWij are
modeled here as a single matrix connecting HPC somata to apical
dendrites. While we do not directly map our model onto a particular
area of HPC, recurrent loops CA1-EC-CA1 or CA3-CA3 could be con-
sidered as candidates, as context-sensitive cells have been reported in
both CA1 and CA317,18. Apical activity and incoming weights are passed
through a non-linear activation function γ in (2) and (3).

Somatic activity si tð Þ produces eligibility traces ei tð Þ:

dei
dt

=
�ei tð Þ
τe

+ si tð Þ ð7Þ

A history of activity for each neuron, ei is calculated as an expo-
nential filter of the activity, with a time constant τe.

Recurrent weights Wij are learned via a three-factor rule which
depends on post-synaptic plateau φ½si tð Þ�, pre-synaptic eligibility trace
ej tð Þ, and reward r above baseline r0:

ΔWij =η
W r � r0
� �Z T

0
φ si tð Þ
� �

ej tð Þdt � λwWij ð8Þ

The total time of the single trial is T. Weights are updated in batch
at the end of each trial. ηW is the learning rate for the recurrent weights,
and recurrent weights are bounded at Wmax. The plateau occurs upon
manual induction and acts as a pass-filter to the learning rule:

φ si tð Þ
� �

=
si tð Þ, i= iplateau
0, i≠iplateau

(
ð9Þ

On unrewarded trials, weights of visited state pairs {i,j} will decay
asφ½si tð Þ�ej tð Þr0. However, for unvisited state pairs this term is zero, so
weight decay�λwWij is also included in the rule. Weights are updated
in batch at the end of a given trial. The integral in (8) can be considered
as the accumulation of “proto-weights”, which are updated once
reward is either delivered or omitted. For main results, the network is
trained for 4000 trials.

Action network
Themainnetwork is connected to anactionnetworkwhich determines
the real space policy of the agent at the choice point. The activity vl of
units in the action network are described by the following:

τv
dvl
dt

= � vl +Qlisi tð Þ � Ilmvm tð Þ+σv ð10Þ

Where l indexes over the two possible choices for turn direction,
left (L) and right (R).Qli are the weights connecting the representation
network to the action network, and Ilm provides mutual inhibition so
that the action network has winner-take-all dynamics. Gaussian noise
σv is introduced into the network, and the neurons operate with time

constant τv. The action network is queried at tchoice for the agent’s turn
selection, which is decided by max ~v+ σp

� �
(where σp is policy noise),

which results in the agent taking a turn either left or right into one of
the reward ports. For a fraction of trials prand, the animal makes a
random turn and does not query the action network. After action
selection, the selected neuron is fixed at 1 for the next ten timesteps.

Action weights Qli are learned via a three-factor rule, similar to
that for Wij :

ΔQli =η
Q r � rq
h iZ T

0
vl tð Þeaction,i tð Þdt ð11Þ

The three factors are the eligibility trace of pre-synaptic activity
for action neurons eaction,i tð Þ, post-synaptic activity vl tð Þ, and reward r
above baseline rq. eaction,i tð Þ follows the dynamics of (7), but with time
constant τea.The total time of the single trial is T. Weights are updated
in batch at the end of each trial. Though they do not explicitly match
the definition of Q-values, they are effectively state-action values and
thus can be interpreted similarly. Action weights are bounded at Qmin

and Qmax. For Supplementary Fig. 3, input weights are learned via the
coactivation of pre-synaptic input activity uk tð Þ and post-synaptic
plateaus φ½si tð Þ�:

ΔMik =η
M
Z T

0
uk tð Þφ si tð Þ

� �
dt ð12Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
paper and its accompanying custom MATLAB code (version 2021a).

Code availability
All simulations were run via custom code in MATLAB 2021a. The code
is available at https://github.com/ianconehed/latent_reps_hpc44.
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