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Noise learning of instruments for high-
contrast, high-resolution and fast
hyperspectral microscopy and nanoscopy

Hao He 1,2,3, Maofeng Cao2, Yun Gao1, Peng Zheng1, Sen Yan2,
Jin-Hui Zhong 4 , Lei Wang 1 , Dayong Jin 3,5 & Bin Ren 2,6

The low scattering efficiency of Raman scattering makes it challenging to
simultaneously achieve good signal-to-noise ratio (SNR), high imaging speed,
and adequate spatial and spectral resolutions. Here, we report a noise learning
(NL) approach that estimates the intrinsic noise distribution of each instru-
ment by statistically learning the noise in the pixel-spatial frequency domain.
The estimatednoise is then removed from thenoisy spectra. This enhances the
SNRby ca. 10 folds, and suppresses themean-square error by almost 150 folds.
NL allows us to improve the positioning accuracy and spatial resolution and
largely eliminates the impact of thermal drift on tip-enhanced Raman spec-
troscopic nanoimaging. NL is also applicable to enhance SNR in fluorescence
and photoluminescence imaging. Our method manages the ground truth
spectra and the instrumental noise simultaneously within the training dataset,
which bypasses the tedious labelling of huge dataset required in conventional
deep learning, potentially shifting deep learning from sample-dependent to
instrument-dependent.

Raman spectroscopy is a label-free molecular fingerprint detection
approach with high spectral resolution, allowing dynamics of multiple
species during the biological or chemical processes to be simulta-
neously recorded1,2. These unique advantages make it possible to
uncover the mechanisms of the biological or chemical events, and in
some specially system even at single molecule level3, which leads to its
increasingly important role in life sciences4–7, nanotechnology8–11,
material sciences12, etc. However, the quality of the measured Raman
spectra is generally hampered by the intrinsic low Raman scattering
efficiency. Specifically, far less than 1 of 106∼10 incident photons will
experience Raman scattering for mostmolecules13. Even with plasmon
enhancement, Raman signal remains vulnerable to the noise,

especially in nanoscopic hyperspectral Raman imaging when the
number of molecules contributing to the signal is small and drift
becomes the determining factor of the spatial resolution with the
decrease of the imaging area to several nanometers, as well as live-cell
imaging where weak light illumination or fast data acquisition is
required. Therefore, trade-offs must be made among the signal-to-
noise ratio (SNR), data acquisition or imaging speed, and spectral and
spatial resolution.

Computational methods provide a promising way to improve the
data quality in microscopic imaging14,15. Typical examples include fast
Raman imaging assisted by low-rank matrix approximation
algorithms16,17, and fluorescence imaging assisted by deconvolution

Received: 20 December 2022

Accepted: 5 January 2024

Check for updates

1Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China. 2State Key Laboratory of Physical Chemistry of
Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), The MOE Key Laboratory of Spectrochemical Analysis and
Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. 3Department of Biomedical Engineering,
College of Engineering, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China. 4Department of Materials Science and
Engineering, Southern University of Science and Technology, Shenzhen 518055, China. 5Institute for Biomedical Materials & Devices (IBMD), University of
Technology Sydney, Sydney, NSW 2007, Australia. 6Tan Kah Kee Innovation Laboratory, Xiamen 361104, China. e-mail: zhongjh@sustech.edu.cn;
wanglei33@xmu.edu.cn; bren@xmu.edu.cn

Nature Communications |          (2024) 15:754 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-9825-2681
http://orcid.org/0000-0002-9825-2681
http://orcid.org/0000-0002-9825-2681
http://orcid.org/0000-0002-9825-2681
http://orcid.org/0000-0002-9825-2681
http://orcid.org/0000-0002-2134-3235
http://orcid.org/0000-0002-2134-3235
http://orcid.org/0000-0002-2134-3235
http://orcid.org/0000-0002-2134-3235
http://orcid.org/0000-0002-2134-3235
http://orcid.org/0000-0001-7276-0832
http://orcid.org/0000-0001-7276-0832
http://orcid.org/0000-0001-7276-0832
http://orcid.org/0000-0001-7276-0832
http://orcid.org/0000-0001-7276-0832
http://orcid.org/0000-0003-1046-2666
http://orcid.org/0000-0003-1046-2666
http://orcid.org/0000-0003-1046-2666
http://orcid.org/0000-0003-1046-2666
http://orcid.org/0000-0003-1046-2666
http://orcid.org/0000-0002-9821-5864
http://orcid.org/0000-0002-9821-5864
http://orcid.org/0000-0002-9821-5864
http://orcid.org/0000-0002-9821-5864
http://orcid.org/0000-0002-9821-5864
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44864-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44864-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44864-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-44864-5&domain=pdf
mailto:zhongjh@sustech.edu.cn
mailto:wanglei33@xmu.edu.cn
mailto:bren@xmu.edu.cn


algorithms18–20. However, these methods heavily rely on the ideal
presumption of the ground truth (GT) data. For instance, the signals
are usually assumed to be low frequency in the conventional digital
filters. Besides, parameter tuning introduces bias that impairs the
robustness. Deep learning can statistically learn the task-specific
knowledge from a huge dataset by training a multilayer neural net-
work, and once the neural network is well-trained it does not need
parameter tuning, which thus circumvents the above limitations of the
traditional methods21. Therefore, deep learning has emerged as the
mainstreammethod inabroad rangeof areas, suchas classification22,23,
subcellular segmentation24–26, and digital staining27,28. Deep learning
has enhanced the spatial resolution of wide-field fluorescence images
beyond the diffraction limit29, and improved the SNR of
fluorescence15,30–32 and coherent Raman microscopy14 images at
extreme low light level.

Nonetheless, the most widely used supervised deep learning
requires a huge labelled dataset with high SNR, which cannot be easily
obtained in most of the microscopy applications. This is particularly
true for hyperspectral Raman microscopy and nanoscopy imaging
where the signal is extremely weak. Simulated data must be used to
mitigate this GT deficiency problem, but it is tedious and requires
experienced professionals to produce the large labelled dataset. As a
result, most of current deep learning models in Raman imaging
applications are trained on a limited dataset33,34. Therefore, such
sample-dependent deep learning is limited in enhancing Raman ima-
ging towards high SNR, resolution, and speed.

In this article, we present a noise learning (NL) method that can
largely expand the generalizability of deep learning, allowing a good
estimation of the instrumental noise, and improve the sensitivity,
spatial and temporal resolution of hyperspectral Raman microscopy
and nanoscopy (Fig. 1a). Unlike the conventional supervised learning
(CSL), we leverage a physics-based spectra generator to produce high
SNR spectra using the prior knowledge of the line profile of Raman
signal (Fig. 1b). Concurrently, we proposed a data generation method,
which allows us to produce matched low SNR data with the estimated
instrumental noise. In this way, NL is solely trained on the generated
high and low SNR spectra dataset without the need of acquaring large
amounts of spectra from real samples. Since the NL learns the intru-
mental noise, its performance is instrument-dependent. Amodified 1-D
deep convolutional neural network, called attention U-net (AUnet)35, is
used to fit the mapping function from the noisy spectra to the
instrumental noise. We demonstrate on commerial confocal Raman
microscopy that NL can dramatically improve the SNR of the totally
‘unseen’ Raman spectra derived from real samples, such as 2D mate-
rials (graphene, MoS2) and live-cells. The SNR of the synthetic Raman
spectra can be improved by up to 22.3 dB (approximately 10-fold), and
themean square error (MSE) error can be reduced by 149-fold with the
NL method.

NL was further applied in hyperspectral tip-enhanced Raman
spectroscopy (TERS, an important nanospectroscopy) imaging of a
catalytic bimetallic Pd/Au(111) surface. While preserving the ability to
reveal atomic structure dependent electronic properties of metal
surfaces via the Raman peak shift of the probe molecule, NL improves
the imaging speed that efficiently reduces the thermal drift problemof
TERS imaging under the ambient and room temperature conditions.
Together with simulation, we show that NL can improve the posi-
tioning accuracy, allowing a much accurate structure-spectra correla-
tion. Last but not least, we show the versatility of NL on a commercial
line-scan microscope from a different company with multi-modality
imaging (Raman, fluorescence and photoluminescence). Thanks to the
high SNR offered by the NL, the laser fluence for fluorescene imaging
of live-cells can be significantly reduced by more than 43-fold, over-
coming the detrimental photobleaching and phototoxity effects at
high laser powers. This computation-aided ultra-low power fluores-
cence imaging allows stable, long-term monitoring of living biological

systems. Therefore, the NL approach introduced here utilizes both the
physical knowledge36–38 of the GTdata and the property ofmicroscopy
instruments to overcome the limitations in conventional deep learning
and microscopy imaging, thus shifting the field from being sample-
dependent to instrument-dependent39.

Results
Noise learning with physics-based dataset
In a typical denoising scenarioof CSL, the low- andhigh- SNRdata pairs
are acquired on interested samples. The performance of the deep
learning model trained on such a dataset is, therefore, sample-
dependent. As an alternative, NL introduces a physics-based spectra
generator and an instrumental noise estimation method to produce
the dataset. The instrumental noise (including photon shot noise,
electronic readout noise, and dark current noise40) of the Raman
instrument is measured using a Raman-inactive sample (flat Au film is
used here), and then estimated from the measured spectra by a sin-
gular value decomposition (SVD) based method (See Supplementary
Fig. S1 for more details). By doing so, the instrumental noise is
approximately considered as additive. This is reasonable since the
additive noise sources are the major contribution of the instrumental
shot noise especially in the low SNR condition. Specifically, the shot
noise arising from the detector and background of the instrument is
the main source of the instrumental noise. The proposed method,
thus, is dedicated to estimate this noise contribution and expected
Raman (photoluminescence) signal from the measured spectra. More
analysis of these noise sources can be found in the part of “Supple-
mentary discussion-noise type analysis”. Although one expects noise
to be random, we find that each Raman instrument exhibits a unique,
instrument-specific, statistically stable noise pattern in the pixel-
spatial frequency domain (Supplementary Fig. S1f, g, and Fig. S2). This
forms the basis to use deep learning to fit the instrumental noise in the
frequency domain.

In our NL approach, a pseudo Voigt function is first used for
generating the GT Raman spectra as well as the baseline function (see
Methods for more details). The corresponding low SNR spectra are
simulated by adding the experimentally measured instrumental noise
to the GT data. These high and low SNR datasets are now used for NL,
inwhichwe train the deep learningmodel to explicitly fit the pattern of
the instrumental noise (Fig. 1b). For that we first perform discrete
cosine transform (DCT) to transform the low SNR spectrum (x) to the
pixel-spatial frequency domain, theDCT coefficient is then input to the
pretrained AUnet model. Next, the predicted instrumental noise (n) is
obtained by performing the inverse DCT (IDCT) with the predicted
DCT coefficient. The high SNR spectrum can thus be obtained by
subtracting the predicted instrumental noise from the low SNRdata. In
this way, the DCT coefficients of the low SNR spectra and its corre-
sponding instrumental noise form thematched dataset to perform the
supervised training.

The AUnetmodel is established based on a backbone of 1-DU-net,
which has been intensively applied in a variety of applications because
of its excellent performance41. On top of that, we further leverage the
channel and spatial attention module, which have been proved effi-
cient in improving the networks learning capability, to refine the
model. In short, each feature is refined through the attention module
before being input to the next layer (Fig. 1c).

Restoration of simulated low SNR Raman spectra with noise
learning
Awell-trainedmodel byNL approach is supposed to have the potential
to fit the noise distribution of raw Raman spectra measured by a spe-
cific Raman instrument with different noise level. To verify this, we
acquire the noise spectra of a commercial Raman microscope (Lab-
RAM HR-Evolution, Horiba) with different integration time (0.1~0.5 s)
on a flat Au film, while keeping other conditions unchanged. We train

Article https://doi.org/10.1038/s41467-024-44864-5

Nature Communications |          (2024) 15:754 2



Fig. 1 | Principle of noise learning. a Pipeline of the denoisingmethod proposed in
this work. The raw spectrum is first processed by the discrete cosine transform
(DCT) to produce coefficient as input to a pretrained 1-D attention U-net (AUnet)
neural network to output the noise DCT coefficient. The predicted instrumental
noise is obtained by the inverse discrete cosine transform (IDCT). The high SNR
spectrum is finally obtained by subtracting the predicted instrumental noise from
the noisy raw spectra. b Conventional supervised learning methods are sample-
dependent, which require thematched low/high SNR experimental spectra to train
the DL model to denoise the raw spectra, and work well for “seen” data but poorly
for “unseen” data. Whereas, the NL method is instrument-dependent, which pro-
duces the low SNR spectra by combining the high SNR spectra through a physics-

based spectra generator with the measured instrumental noise (Supplementary
Fig. S1). It learns the instrumental noise distribution of a specific instrument and
therefore it can perform well on the ‘unseen’ data. c The neural network archi-
tecture used throughout this work. 1-D U-net is used as the backbone, and the
channel and spatial attentionmodule are used to refine the features to improve the
learning capability of the model. The color arrow indicates operation, and the
number denotes the feature size. d (i) Representative denoising results of AUnet,
SG and Wavelet methods on the spectra of three 2D materials acquired on a
commercial Ramanmicroscope. (ii) The quantitativemetrics of the threemethods.
The data are presented asmean values ± standard deviation, and the sample size is
n = 7500 for each group. More results can be found in the Supplementary Fig. S4.

Article https://doi.org/10.1038/s41467-024-44864-5

Nature Communications |          (2024) 15:754 3



the AUnetmodel by NL approachwith only 12,500 noise spectra (2500
spectra for each integration time), and the GT Raman spectra are
randomly generated using the proposed physics-basedmethodduring
each training step. To investigate the power of NL, we first calculate its
performance on simulated Raman spectra, and compare the result
with conventional noise reduction algorithms, such as Savitzky–Golay
(SG) and wavelet transform (Methods). Since the deep learning model
is trained using the randomly generated data, the quantified perfor-
mance on theRaman spectra from real samples is unknown. Therefore,
we further use a more realistic method (see Supplementary Fig. S3 for
more detail) to generate the matched low- and high-SNR Raman
spectra, using the rawdata obtained from the real 2Dmaterial samples
with the sameRaman instrument. Representative results for thin layers
of graphene, MoSe2, and WS2 are presented in Fig. 1d-i (first three
columns). The SG and Wavelet methods provide spectra with
improved SNR. In contrast, the AUnet leads to spectra with sig-
nificantly improvedSNR,whichwell restores theGT spectra, even if the
SNR of the raw spectra was very low or negative (the signal power is
smaller than that of the noise (Eq. 10)). To statistically quantify this
observation, we calculate the MSE and SNR on a large testing dataset
derived from the three 2D material samples (37,500 spectra in total,
12,500 spectra for each sample). As shown in Fig. 1d-ii (right panel),
both MSE and SNR can be improved substantially with AUnet com-
pared with the traditional denoising methods. Impressively, the aver-
aged SNR can be improved up to 22.3 dB (about 10 folds) on the
simulated grapheneRaman spectra, and themeanMSE canbe reduced
by more than 149-fold compared with the raw data. Additional results
of the restoration of raw spectra with different noise levels are shown
in Supplementary Fig. S4. In all cases, AUnet-processed spectra
reproduce well the raw spectra with much enhanced SNR. This indi-
cates the good applicability of NL even though the same AUnetmodel,
without retraining, is used for different samples. We note that such a
strong noise reduction ability is difficult to be achieved using the
conventional algorithms as indicated by the SNR and MSE bar chart in
Fig. 1d-ii and Supplementary Fig. S4.

Noise learning vs conventional supervised learning
Having shown the power of NL on the restoration of simulated Raman
spectra and its advantages over the traditional denoising algorithms,
we further ask whether it works well for the spectra acquired on real
samples, and if it canbe a superior alternative to theCSL approach. For
that we train a 1-D U-net by the CSLmethod (Fig. 1b, left) with a dataset
produced by the same confocal Raman microscope. The training
dataset contains 12,500 low- and high- SNR spectra pairs obtained by
the method described in Supplementary Fig. S3 with a silicon sample
coveredbyCrgrating (Fig. 2a). Thewell-trainedCSLmodel is thenused
to restore the raw spectra derived from different samples, both for
‘seen’ and ‘unseen’ ones, while the NL model used here is the same as
that used in Fig. 1d without further retraining.

Expectedly, the CSL model performs well on the data it ‘saw’
during the training stage as shown in Fig. 2a, b. Three Raman images of
the characteristic peakof Si at 520.6 cm−1 is shown in Fig. 2a. Compared
with the raw spectra image (Fig. 2a-ii), the restored images after pixel-
wise denoising either from the CSL (Fig. 2a-iii) or NL (Fig. 2a-iv)
methods show much improved contrast, and match well with the
bright field image (Fig. 2a-i). Figure 2b shows representative raw, CSL,
andNL restored spectra for the locationof Cr and Si points (marked by
stars in Fig. 2a), indicating that both CSL and NL work well for this
specific sample. This is verifiedby comparing the restored spectrawith
the local mean spectra averaged over the small area marked by white
rectangle in Fig. 2a.

We further apply the CSL model trained on the Cr/Si grating
sample to the ‘unseen’ samples such as graphene (placed on a Si/SiO2

substrate) and HeLa cell, and find that its performance deteriorates
seriously. Specifically, the Raman image of the G-band (1581 cm−1)

processedby theCSL (Fig. 2c-iii) can hardly distinguish the 4-layer (4 L)
graphene region from the substrate (the layer number is confirmed by
the height profile acquired with atomic force microscopy, AFM).
Impressively, this slight difference can be easily resolved in the NL
processed Raman image (Fig. 2c-iv). Moreover, the Raman spectra in
Fig. 2d show that NL can faithfully restore the intrinsic peak feature by
comparing to the local mean spectra, for both 8 L and 4 L graphene
regions. In contrast, the CSL-spectra show obvious artefacts and over-
smoothening when being applied to this “unseen” sample. Similar
experiment is then carried out on a HeLa cell sample. In this case, the
NL processed Raman images (Fig. 2e-iv) shows superior SNR and
contrast over the CSL one (Fig. 2e-iii). Particularly, CSL-spectra present
more artefacts and under-smoothening problems in dealing with the
Raman spectra acquired both outside (Fig. 2f, left) and inside (Fig. 2f,
right) the cell. Instead, the NL-spectra agree well with the local mean
spectra (averaged over 11×11 pixels marked by the white rectangle in
Fig. 2e), as clearly seen for the CH abundant band around 2800-
3000 cm−1. These results convincedly demonstrate that the NL
approach allows a single deep learning model to be applied in the
restoration of a variety of Raman spectra acquired by the same Raman
microscope, which cannot be accomplished via the CSL method.

The high SNR provided by NL endow it with the potential to
perform low-laser-power measurements that can largely avoid laser
damage effects. To test this hypothesis, we design a series of imaging
experiments using the Cr/Si grating sample. The laser power is
sequentially decreased from 0.2mW to 0.02mW with the pixel-dwell
time fixed as the instrument-limit minimal value of 0.1 s/pixel. The
same AUnet model trained by the NL approach used above, without
any retraining, is then used to restore the imaging. The results shown
in Supplementary Fig. S5 suggest that the AUnet substantially reduces
the laser power limit down to 0.05mW, at which the Cr and Si regions
are distinguishable. The image contrast is even better than the raw
imageobtained at a power of 0.2mW,demonstrating that the power of
AUnet in Raman microscopy.

AUnet assisted fast nanometer-resolution hyperspectral Raman
imaging with TERS
Encouraged by the powerful noise suppression ability of NL, we next
investigatewhether this technique canbe applied in differentmodality
of Raman spectroscopy. TERS combines Raman spectroscopy and
scanning probe microscopy to simultaneously acquire the topo-
graphic and chemical information of a sample (see Supplementary Fig.
S6 for the TERS setup). The ultra-high sub-nanometer spatial resolu-
tion of TERS allows singlemolecular chemical imaging with fingerprint
information under ultrahigh vacuum and ultralow temperature
conditions8,42. The imaging quality of TERS is, unfortunately, limited by
the SNR as the number of molecules contributing to the signal is
extremely low, and affected by system stability as the imaging area is
small. Despite being enhanced by the localized surface plasmon
resonance and the lightning-rod effect43, the TERS signal is still too
weak to allow fast imaging. While increasing the integration time can
improve the SNR, it will significantly increase the accumulated sample-
tip drift particularly under ambient and room temperature conditions,
wheremany important applications, such as nanoscale catalysis study,
are relevant. The drift can result in serious distortion of the Raman
image, hampering the extraction of meaningful information asso-
ciated with nanoscale structural features. There has to be a trade-off
between imaging quality and image distortion. Here we conduct the
hyperspectral TERS imaging with the same Raman instrument used
above, but now integrated with scanning tunneling microscope (STM)
for TERS. This allows us to use the same AUnet model to improve the
SNR of the TERS spectra and shorten the imaging time, mitigating the
distortion problem.

We characterize the surface properties of bimetallic catalysts that
have attracted tremendous attention in recent years44,45. Identifying
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Fig. 2 | Comparison of conventional supervised learning (CSL) with noise
learning (NL). The CSL model based on 1-D U-net is pretrained with a dataset that
contains 12,500 Raman spectra acquired on Si sample patterned with Cr grating.
The NL model used here is the same as that in Fig. 1d, which is trained solely with
12,500 instrumental noise spectra of the Raman instrument. a, b Raman imaging of
Cr/Si grating sample. a (i) Bright field image. The white stripes are Cr and the grey
substrate is Si; (ii) raw Raman image of the 520.6 cm−1 peak of Si; Raman image
denoised by the CSL (iii); and NL (iv) methods. b Left and right panels are Raman
spectra at the position marked by the white and red stars on the bright field image

in (a-i), corresponding to the location of Cr and Si, respectively. Raw spectra,
spectra processed by CSL and the NL methods, and the local mean spectra aver-
agedover thewhite rectanglesmarked in (a) are shown for comparison. c,dRaman
imaging of graphene sample with four- and eight-layer regions. e, f Raman imaging
of HeLa cell sample. The results indicate that CSL only works well for the “seen”
sample ofCr/Si grating, but fails whenapplied to “unseen” samplesof graphene and
HeLa cell, whereas the performance of NL works well for all samplesmeasured with
the same instrument. The spectra were acquired on LabRAM HR-Evolution.
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the atomic scale catalytically active sites is central to catalysis but
remains challenging for conventional micro-spectroscopy with
diffraction-limited spatial resolution. The catalysts are produced by
electrochemical underpotential deposition of a submonolayer Pd on
the surface of Au(111) single crystal. The nanoscale region (120nm×
120 nm) below the tip (Fig. 3a) is imaged using the STM to obtain a
surface height topography of the Pd/Au(111) surface. The STM image in
Fig. 3b shows that the deposited Pd and the Au substrate can be clearly
resolved46. To reveal the catalytic activity at different surface sites, we
use phenyl isocyanide (PIC) as the Raman probe molecule. We have
shown that PIC can be oxidized at the Au surface but remains
unreacted at the Pd terrace sites46. Thus, distinct Raman spectra canbe
observed at different surface sites, allowing a nanoscale imaging of the
catalytic activity on the surface. To obtain high-fidelity TERS imaging
result, the pixel-dwell time must be as short as possible to reduce the
drift effect. Here we set it as 100ms/pixel (24min in total for imaging
the 120nm× 120 nm region with 2 nm/pixel), which is the lower read-
out limit of the EMCCD in low readout noisemode. As expected, such a
short integration time leads to an low SNR of the raw spectra shown in
Fig. 3e, even though slight difference can be seen for the spectra
acquired on Au and Pd surfaces. As a result, the TERS imaging of the
C =C stretching band (νCC, 1587 cm

−1) appears very blurry (Fig. 3c-i).
Strikingly, the AUnet processed image (Fig. 3c-ii) presents sharp con-
trast between the Au and Pd regions that well correlates with the
topographic image (Fig. 3b). Moreover, the difference of the TERS

spectra at the Pd and Au surface sites along the white dashed line
marked on the STM image can be easily distinguished after restoration
by AUnet (Fig. 3e-ii), but not with the raw data (Fig. 3e-i).

Another important spectral feature of PIC is that the N ≡C
stretching frequency (νNC, ∼1995 cm−1) is sensitive to the electronic
structure of the catalyst surface46,47. Specifically, the peak position of
the νNC bandwill red-shift at the interface of Pd and Au(111). Due to the
weak signal of this band, the peak position is difficult to analyze in the
raw spectra (Fig. 3e-i). Remarkably, it can be well resolved after the
restoration of AUnet (Fig. 3e-ii). Such a subtle peak shift at different
surface sites can be more clearly observed in the AUnet processed
image of the frequency of νNC band (Fig. 3d-ii). Here, the green color
indicates lower νNC frequency at Pd step edge sites compared with the
red color (higher νNC frequency) at Pd terrace sites, nicelymapping the
interface of Pd and Au(111), revealing the distinct electronic properties
of the step edge Pd atoms at the interface. Such meaningful informa-
tion is hardly analyzed with the raw data (see image in Fig. 3d-i, and
spectra in Fig. 3e-i). The νNC frequency along the white dashed line
marked on Fig. 3d-ii is presented in Fig. 3f. A red shift of about 70 cm−1

is seen when the tip moves from Pd terrace to step edge, consistent
with previous report46.

The spatial resolution andpositioning accuracy of a TERS image is
crucial for obtaining a clear local structure-property correlation. The
zoom-in TERS intensity images of the νCC band (marked by the white
rectangles in Fig. 3c) are shown in Fig. 3g. In this zoom-in region, the

Fig. 3 | AUnet assisted fast nanometer-resolution hyperspectral TERS imaging
of a Pd/Au(111) catalyst adsorbed with PIC molecule. a Bright field image of the
sample and the gold tip. The region for TERS imaging (120nm× 120 nm) is localized
underneath the nanoscale-region below the tip. b STM topographic image of sub-
monolayer Pd deposited on a Au(111) surface obtained by the gold tip. Scanning
direction: from bottom to top. c, d TERS imaging of vCC band intensity (c) and vNC
peak position (d). (i): raw data of fast imaging with an integration time of 100ms/
pixel. (ii): the denoised image byAUnet. (iii): the long-integration-time imagingwith
1 s/pixel. e TERS spectra along the white dashed line in (b). (i): raw data. (ii): the

denoised data by AUnet. Inset: the molecular structure of PIC and the vibrational
mode of vCC and vNC . f The profile of vNC frequency along the white dashed line in
(d-ii). g panels i, ii: Zoom-in images of the white rectangles in (c). The spatial
resolution of the TERS measurement is estimated to be 6 nm from the AUnet-
denoised image (panel iii, see details in supplementary Fig. S12). h Red and blue
balls are the pixel intensities along the black dotted lines in (c-ii) and (c-iii),
respectively. The dash lines are the fits by a first-order polynomials ðy=Kx +bÞ, in
which K denotes the slope of the fitted line.
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left part is the Au(111) surface and right part is Au(111) covered by
monoatomic layer Pd with an edge structure in-between as seen in the
STM image (Fig. 3b). The TERS intensity in the raw data (Fig. 3g-i)
spreads rather randomly, which does not match well with the STM
image. In contrast, the transition from Au(111) to Pd regions (left to
right) can be clearly resolved in the AUnet-denoised image (Fig. 3g-ii),
implying that the positioning accuracy has been improved by
denoising. We have simulated noisy and AUnet-processed Raman
images containing an edge structure (supplementary Fig. S10), which
reproduces the experimental result well. Further analysis reveals that
AUnet denoising substantially improves the positioning accuracy of
the TERS imaging result (supplementary Fig. S11 and supplementary
discussion). The spatial resolution hasbeen improved from7.4 to 6 nm
(Fig. 3g-iii) for the data presented in Fig. 3g (see “Evaluation of spatial
resolutionof TERS”of theMethodspart and supplementary Fig. S12 for
details). Analysis ofmore regions indicates that the spatial resolution is
improved by 1.2–2 times after denoising (Supplementary Fig. 13).

The spatial resolution enhancementmay benefit from an increase
of spectral resolution since our denoising method reduces the noise
for the spectra in each pixel of the TERS image. We have analyzed the
spectral resolution before and after denoising by simulation, and the
statistic result suggests that denoised spectra can give better spectral
resolution than the noisy counterpart, if a large number of spectra are
analyzed (Supplementary discussion and Figs. S16 and 17). This may
potentially increase the spatial resolution. A more detailed study is,
however, needed to address the interplay between spectral and spatial
resolution enhancement.

To fully illustrate the advantage of AUnet assisted fast TERS
imaging, we also imaged the same area with a long integration time of
1 s/pixel (Fig. 3c-iii). Although the SNR is improved, the overall data
acquisition time is also greatly extended to 80min, magnifying the
instrument drift, and thus leading to two detrimental effects. First, the
structure in the image is distorted due to the drift that shifts the
imaging area even out of the set region. For instance, the Au hole at the
upper-right corner of the STM imagemarked by the red curve (Fig. 3b)
is totally outside of the image obtained with long integration time
(Fig. 3c-iii), while it is faithfully recordedon theAUnetprocessed image
(Fig. 3c-ii). Similar distortion can be seen in the center Au hole region.
The second effect is the signal weakening due to the drift of the
plasmon nanocavity (formed between the tip and the sample) with
respect to the focus of the objective lens, thus reducing the signal
collection efficiency48. This is reflectedby the gradualweakeningof the
peak intensity of the νCC band along the black dashed line (Fig. 3c-iii,
the arrow indicates the scanning sequence). Such a signal weakening
effect is considerably reduced in the fast imaging assistedbyAUnet. To
quantify this observation, we plot the TERS intensity profiles along the
black dashed lines in Fig. 3c-ii and Fig. 3c-iii as red and bluefilled circles
in Fig. 3h, respectively. The data are then fitted using a first order
polynomial (Fig. 3h, black dotted line). The slope is −0.16 for the
AUnet-processed image and −0.54 for the long integration one. This
confirms the larger signaldegradation at a longer total acquisition time
(24min vs 80min). Conclusively, the AUnet-denoising is highly bene-
ficial to allow fast imaging with significantly improved SNR and
enhanced positioning accuracy, making it ideal for nanoscale imaging
such as in TERS, where the signal is extremely weak and a clear local
structure-property correlation is desired.

AUnet assisted multi-modality line-scan imaging
To demonstrate the generalizability of the NL on different
instruments, we train a second AUnet model on another com-
mercial line-scan Raman microscope (Raman-11, Nanophoton Inc).
The AUnet model is trained by the NL approach with 400,000
instrumental noise spectra (see Methods for more detail about
the dataset) of the target microscope by the method presented in
Supplementary Fig. S1. The well-trained AUnet model is then used

for restoring the line-scan fluorescence and Raman imaging of
HeLa cells and photoluminescence imaging of 2D materials
acquired with the same instrument.

A key issue in fluorescence imaging of live-cell is the possible
photobleaching of the fluorophore during the long-term imaging due
to limited photon budget. Concurrently, the laser illumination will
introduce phototoxicity to the fragile biological samples. Therefore,
low laser power is preferred, but with a compromise of decreased SNR.
Here we demonstrated that such limitations can be substantially
eliminated by the noise reduction technique based on AUnet. We
continuously imaged the HeLa cells that were labelled with mito-
chondria dye using low (8.8 µW, Fig. 4a, b) and high (381 µW, Fig. 4c)
laser power. The photobleaching effect is negligible in the low power
excitation condition, and the raw images (Fig. 4a) with weak SNR are
successfully restored after pixel-wise denoise with AUnet (Fig. 4b). For
the high laser power case, serious photobleaching occurred after 20
frames, and the fluorescence signal becomes unobservable at the 64th

frame (Fig. 4c). This can bemore clearly seen in Supplementary Fig. S7
and SupplementaryMovies 1-3 for the image of a continuous sequence
of the frames of low and high laser power cases. For quantifying these
observations, we use the first frame as the GT data for each image
sequence, and calculate the peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM). As shown in Fig. 4d, despite being stable,
the two indicators of the raw images acquired with low laser power are
too poor to be analyzed (yellow curves). The AUnet substantially
improves both indicators, facilitating high-quality continuous imaging
of the live-cells and downstream analysis (red curves). In contrast, the
two indicators dramatically decrease in the high-power case (blue
curves) and become even lower than that of the low power case after
the 10th frame in terms of the PSNR performance. To demonstrate the
robustness of this method, the AUnet-assisted fast continuous fluor-
escence imaging of HeLa cells that are labelled with membrane and
lysosome dyes are also provided (Supplementary Fig. S8). Moreover,
additional results of the successful application of the AUnet on
restoration of the photoluminescence imaging of four different 2D
materials are also given in Supplementary Fig. S9. Importantly, AUnet
shows superior noise reduction capability for a wide range of wave-
length, as shown in Supplementary Movie 4 for a comparison of the
photoluminescence imaging of WS2 from 600 to 630nm.

We emphasize that our AUnet model trained by the NL
approach can be directly applied for different kinds of spectro-
scopy acquired by the same instrument. To confirm this, we have
applied the same model to denoise the label-free Raman imaging
of HeLa cells (Fig. 4e, the experimental parameters can be found
in the figure caption). Raman images of two bands at the finger-
print region (1445 and 1612 cm−1: CH2 and CH3 deformation of
lipids and proteins, 1656 cm−1: C = C stretching of lipids), and two
bands at the CH abundant region (2867 cm−1: CH2 symmetrical
stretching of lipids, 2915 cm−1: CH band of lipids and proteins)49,50

are presented. The raw images (Fig. 4e, left) of these bands are
noisy and unanalyzable, albeit high laser power (c.a. 50mW/line)
and long integration time (5 s/line) is used during the data
acquisition process. After pixel-wise noise removal with AUnet,
the contrasts of these Raman images are much improved and the
droplet-like distribution of intracellular lipids and proteins can be
clearly observed. This indicates the potential application of NL
approach for the downstream biological analysis, even possibly
for real time analysis. The successful denoise of both fluorescence
and Raman images obtained on the same instrument with the
same AUnet model indicates that NL is indeed instrument-
dependent rather than sample-dependent.

Discussion
We report a NL approach to learn the characteristic noise distribution
of Raman instruments from different companies, so that the deep
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learning model is trained using only the estimated instrumental noise
together with a generated GT data without the need of laborious
manual labelling. This allowsa singleAUnetmodel to beapplicable to a
variety of Raman spectra of different samples acquired by the instru-
ments with different experimental conditions. This bypass the limita-
tions of the conventional supervised machine learning techniques,
whose performance heavily relies on the existing annotated dataset
and only work well for “seen” samples. We have shown on multiple
examples, from bulk silicon to 2D materials, and live-cells, that the
AUnet trained by the NL approach can substantially improve the SNR
of Raman spectra. Specifically, the SNR can be improved up to 10 folds
and the MSE error can be reduced by 149 folds on dataset containing
12,500 Raman spectra of graphene.

Thanks to the enhanced SNR, the imaging speed of the
Raman micro/nanoscopy has been significantly increased, and
the required laser power has been decreased to ameliorate the
potential photodamage to the sample. For instance, this techni-
que allows the pixel-dwell time of TERS imaging to be reduced by
at least 10 folds compared with the conventional setting46. All
these improvements are achieved while the TERS signal still
presents high SNR that faithfully reveal the atomic-scale electro-
nic and catalytic properties of a bimetallic catalyst. Our method
can also be extended to line-scan microscopy, for both the
fluorescence and Raman imaging of live-cells using a single AUnet
model trained by NL. This reduces the laser power by 43 folds
for the fluorescence imaging, thereby facilitating long-term

Fig. 4 | AUnet assisted fast live-cell fluorescence and Raman imaging using a
different line-scanmicroscope.AsameAUnetmodel is used for bothfluorescence
and Raman spectra denoising without retraining. a Raw fluorescence images
obtained by continuously multi-frames line-scan imaging of HeLa cell with mito-
chondria label and a low laser power of 8.8 µW. b Corresponding high SNR images
processed by AUnet. c Fluorescence images obtained with a high laser power of
381 µW, and the other experimental conditions are the same as (a). The SNR

dramatically decreases after 20 frames continuous imaging, indicating the photo-
bleaching of the fluorophores under high-power laser illumination. The frame
numbersduring imaging are indicated in (a) and (c).dThePSNRand SSIMcurves of
images in (a–c). For each image sequence, the first image frame is used as the
ground truth to compute the PSNR and SSIM of the following image frames. e The
line-scan Raman images of a HeLa cell using five characteristic Raman peaks of
lipids and proteins.
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monitoring of the fragile biological samples with negligible pho-
toinduced damage. Additionally, this method is also capable of
denoising the photoluminescence imaging of 2D materials.

To conclude, NL has enhanced SNR in a wide range of spec-
troscopic scenarios, including nanoscopic imaging by TERS, and
microscopic imaging by confocal Raman, fluorescence, and pho-
toluminescence. Our proposed NL approach shifts the perfor-
mance of deep learning from being sample-dependent to
instrument-dependent. This holds potential for improving the
performance of all the optical microscopy/spectroscopy mod-
alities without requiring the hardware modifications via efficient
computational approaches.

Methods
Optical measurements
Two optical microscope instruments were used in this work.
LabRAM HR-Evolution (Horiba) were used for Raman measure-
ments in Figs. 1–3 and Supplementary Figs. S4-5. Raman imaging
of Cr/Si grating and graphene samples were acquired with air dry
objective (100×, NA = 0.9) under 633 nm excitation, with laser
power of 0.2 mW and 6mW, respectively. An oil-immersion
objective (60×, NA = 1.49) was used for the Raman mapping of
HeLa cell, with 532 nm laser of 1.7 mW. An integration time of
100ms/pixel was used for all those imaging experiments. TERS
imaging were obtained with integrated SPM system under 633 nm
excitation with a power of 0.25mW and air-dry objective (100×,
NA = 0.7). The pixel size is 2 nm in TERS imaging. A second
instrument, Raman-11 (Nanophoton) line-scan microscope, were
used to obtain the results in Fig. 4 and Supplementary Fig. S7-8.
Fluorescence imaging of live-cells were obtained with 488 nm
laser excitation and an integration time of 0.05 s/line (41 s/frame,
air dry objective 50×, NA = 0.5). Raman images were acquired
under 532 nm excitation with a laser power of 50mW and inte-
gration time of 5 s/line (oil-immersion objective 60×, NA = 1.49).
In our experiment of Raman measurement, the sampling density
is 1.2 cm−1/pixel for LabRAM HR-Evolution (Horiba) and 4 cm−1/
pixel for Raman-11 (Nanophoton) instruments.

Physics-based GT Raman spectra
Due to interaction ofmoleculeswith its neighboringmolecules and the
various factors leading to the broadening of the peak, it is common
knowledge that the line profile of Raman peak cannot be simply fitted
with pure Gaussian or Lorentzian function. Instead, it is more appro-
priate tofit using aVoigt function,which is the convolutionofGaussian
and Lorentz function. For simplicity, we used a pseudo version of the
Voigt function to generate the Raman peaks:

V x,μ,wð Þ= ρ×G x,μ,wð Þ+ ð1� ρÞ× Lðx,μ ,wÞ ð1Þ

G x,μ,wð Þ= 1

σ
ffiffiffiffiffiffi
2π

p e�
ðx�μÞ2
2σ2 ,σ =

w

2
ffiffiffiffiffiffiffiffiffiffi
2ln2

p ð2Þ

L x,μ,wð Þ= 1
π
� w=2

ðx � μÞ2 + ðw=2Þ2 ð3Þ

whereμ is thepeakposition,w is the full width athalfmaxima (FWHM),
G is the Gaussian part, L is the Lorentz part, ρ represents the con-
tribution of Gaussian function to the total Voigt function with
ρ=0:6785 in this work. A Raman spectrumwithmulti-peak thus can be
generated as follow:

R=
XN
i= 1

SðiÞ=
XN
i = 1

AðiÞ×V ðx,U ið Þ,W ðiÞÞ ð4Þ

where A denotes the amplitude of the signal, U denotes the peak
position,W denotes the FWHM,N denotes the total number of Raman
peaks. Likewise, the baseline is also generated using the samemethod.
These parameters are randomly extracted in a given range, which
should be optimized on a specific Raman instrument. For example, the
number of Ramanpeakswas set in 1-10 range, the FWHMswas set from
5 to 200 cm−1, and the peak position was set in the range of 1-1600 cm−1

when training the AUnet model for the Horiba instrument.

Instrumental noise measurement
The instrumental noise in Raman microscopy is indirectly estimated
from the spectra obtained from a smooth Au film, which does not
exhibit observable Raman peaks (Fig. S1). Note, the Au film can still
emit photoluminescence (PL) signals and reflect light, which need to
be eliminated from the Au spectra. To this end, we propose to utilize
singular value decomposition (SVD) to estimate these contributions
from the measured Au spectra (Fig. S1). This allows us to extract the
amplitude of the noise (i.e., fluctuation) from the original spectra,
which is used for noise learning. The spectra are arranged as a two-
dimensional matrix, which are then decomposed by the singular value
decomposition (SVD) by:

Sm×n =Um×nΣm×nV
T
m×n = u1 � � � um

� � � Σk 0

0 0

� �
�

vT1

..

.

vTn

2
664

3
775,

Σk =

σ1 � � � 0

..

. . .
. ..

.

0 � � � σk

2
664

3
775

ð5Þ

where m denotes number of data point in each Raman spectrum
determined by the effective readout pixels of the CCD detector, n
denotes the total number of the spectra in the matrix. After that, the
instrumental noise can be estimated by removing the background
components in the above equation. This can be done by manual
inspection of each column vector of the left singular matrix
(u1 � � � um ), or simply remove the first component (σ1�u1�vT1 )
because it contributes the most majority of the background. By
denoting J as the set of background components index, the instru-
mental noise can be estimated as follows:

Noisem×n = Sm×n �
X
J

σj � uj � vTj ð6Þ

In this work, we measured 12,500 instrumental noise spectra on
LabRAM HR-Evolution instrument. The measuring condition is: Laser
wavelength, 633 nm; power, 0.1mW; Integration time, 0.1~0.5 s/pixel
(2500 spectra for each condition); Grating, 1800 gr/mm; 100× objec-
tive, NA = 0.7; Pinhole size: 100 μm. We measured 400,000 instru-
mental noise spectra in a line-scan manner (400 spectra/line) on
Raman-11 instrument. The measuring condition is: Laser: 532 nm,
50mW/line; Integration time: 0.05, 0.1, 0.5, 1 s/line (100,000 spectra
for each condition); Grating: 600 gr/mm; Objective lens: 50×, NA =
0.45; Slit size: 50μm.

Noise learning, conventional supervised learning and network
training
In the NL, the network is trained using the discrete cosine transform
(DCT) coefficients data pairs of the noise spectrum and its corre-
sponding instrumental noise. The output coefficient of the network is
then processed by an inverse DCT (IDCT) operation to reconstruct the
predicted instrumental noise. The DCT and IDCT can be described as
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follows:

Y kð Þ=
ffiffiffiffi
2
N

r
�
XN
m= 1

X mð Þ cos 2m+ 1
2N

kπ
� �

ð7Þ

X mð Þ=
ffiffiffiffi
2
N

r
�
XN
k = 1

Y kð Þ cos 2k + 1
2N

mπ

� �
ð8Þ

The network is optimized with anMSE loss function, which can be
described as:

loss =
1
m

Xm
i= 1

y ið Þ � x ið Þ
		 		2 ð9Þ

For each Raman instrument, 80% of the full dataset was used for
training and 20% for validating. The stochastic gradient descent (SGD)
was used as the optimizer, a cosine annealing learning rate strategy
was used to tune the model. The model was trained 2000 epochs for
LabRAM HR-Evolution, and 200 epochs for Raman-11. As for the con-
ventional supervised learning model, the model architecture was the
same. It was trained using the low- and high- SNR Raman spectra
dataset. This dataset is generated using the method described in
Supplementary Fig. S3. The original Raman spectra were acquired on a
Cr/Si grating sample with 12,500 spectra in total. Experimental con-
ditions are as follows: 633 nm laser, 0.1mW; integration time was
0.1 s~0.5 s/pixel (2500 spectra for each condition). The model was
trained 100 epochs for testing. The networks were implemented using
PyTorch, and was trained on a graphic processing unit (GPU, Tesla
V100, Nvidia).

Traditional denoising algorithms
The Wavelet and SG filter used in this work are classical denoising
methods, and we directly used the MATLAB version to implement the
denoising. The functionname forWavelet inMATLAB is ‘wdenoise’, the
denoising rule was ‘BlockJS’, and the wavelet decomposition level
was 3. The function name of SG in MATLAB is ‘sgolayfilt’, the poly-
nomial order was 2, the window was 15. The parameters for the two
methods were manually selected after careful comparisons.

Evaluation metrics
The MSE and SNR are used to evaluate the restoration of the spectra.
The MSE is shown in Eq. (9), the SNR can be calculated as follows:

SNR= 10 � log10
x2

ðy� xÞ2
ð10Þ

where x denotes the GT spectrum, y denotes the noisy spectrum. The
PSNR and SSIM are used to evaluate the restoration of the images, and
defined as follows:

PSNR = 10 � log10
1

ðY � X Þ2 ð11Þ

SSIM =
2μxμy + c1


 �
2σxy + c2


 �

μ2
x +μ2

y + c1

 �

σ2
x + σ2

y + c2

 � ð12Þ

where Y denotes the noisy image, X denotes the reference image, μx ,
μy,σ

2
x ,σ

2
y andσxy are the local averages, variances, and covariance forX

and Y , c1 and c2 are small constants that are used to stabilize the
division with small denominator.

Evaluation of spatial resolution of TERS
A commonway to evaluate the spatial resolution of TERS is to track the
Raman intensity change over a step13. In general, we use a sigmoidal
function to fit the intensity curve by:

y= I2 +
I1 � I2

1 + e�aðx�bÞ ð13Þ

Where I1 and I2 are the lower and upper limits, a is time constant and b
is location of inflection point. Then, by taking the first derivative of the
obtained sigmoid curve, we can obtain the bell-shaped curve, whose
FWHM is a good evaluation of the TERS spatial resolution. To get
statistically reliable result, we average the value of spatial resolution
estimated from several parallel lines (Supplementary Fig. S12 and S13).

Sample preparation
The ultra-flat Au films were fabricated by Hegner’s method51. In brief,
200nm Au was first coated on Si(100) by vapor evaporation. Then, a
glass slide was adhered to the Au film by high-temperature resistant
epoxy glue. After lifting the glass slide, an atomically smooth Au film
can be obtained. The Cr/Si grating sample was a magnification stan-
dard (684-1E, PelcotecTMCDMS-XY-1T) purchased fromTed Pella, Inc.
(Sweden). It was made by depositing grating shaped 50nm high Cr on
an ultra-smooth silicon substrate.

Two-dimensional few layers of graphene and four kinds of tran-
sition metal dichalcogenides (TMDCs) were prepared by mechanical
exfoliation method52. First, the Nitto tape was used to obtain fresh
thick 2D flakes from bulk TMDC crystals. Then, the poly-
dimethylsiloxane stamp (Gel-park, WF-20-X4 for TMDCs and WF-20-
X8 for graphene) tore downmonolayer or few layers TMDCby sticking
to the thick flakes. Finally, the few layers graphene was transferred
onto a SiO2/Si substrate and the few layers TMDCs were transferred
onto an Au film. The thickness of graphene was determined by AFM
and the thickness of TMDCs were determined by optical contrast and
photoluminescence spectra. For obtaining large area samples suitable
for focused ion beam (FIB) machining, we obtained millimeter-sized
MoSe2 by Au film-assisted exfoliation method. The ultra-smooth Au
film should be quickly attached to freshly cleaved MoSe2 flakes after
being lifted from the Si(100) and heated at 100 °C for 10min, to avoid
the effect of surface impurities.When theMoSe2 flakeswasuncovered,
a large area of 2 L MoSe2 can be obtained. We next prepared the
chessboard-like sample of MoSe2/Au by impacting MoSe2 with Ga+ ion
beam. The width of the square lattice was set to 8 µm.

The HeLa cells were seeded onto 35mm dishes containing cov-
erslips and cultured in DMEM (Yuanpei, Shanghai, China) supple-
mented with 10% fetal bovine serum, 1% non-essential amino acids,
penicillin, and streptomycin. The cells were incubated in a humidified
5% CO2 incubator at 37 °C for 24 h. For labeling, the adherent cells on
the coverslip were stained with LysoTracker Green DND-26, Mito-
Tracker Green FM, and BODIPY FL PI(5)P. The staining procedure fol-
lowed the protocols provided by the manufacturer (Thermo Fisher
Scientific, USA) and lasted for 30min. After staining, the cells were
washed twice with DMEM (without phenol red). For fluorescence
imaging experiments, the stained cells were cultured in an in-situ pool
(Tokai Hit) to maintain a humidified atmosphere (5% CO2, 95% air,
37 °C). For Raman imaging experiments, the cells were fixed in 75%
ethanol for 10min and then washed three times with sterile PBS.
Subsequently, the cells were sealed on slides for Raman imaging.

The Pd/Au (111) sample was prepared by traditional electro-
chemical underpotential deposition (UPD) method. A well-defined
Au(111) single crystal was made by Clavilier’s method and it was elec-
trochemically polished and annealing with hydrogen flame before
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UPD. Sub-monolayer Pd was electrochemically deposited on Au(111)
surface by one-drop solution method with the solution containing
1mM H2PdCl4 and 0.1M H2SO4. After that, the Pd/Au(111) was
immersed in 20 µM phenyl isocyanide (PIC) ethanolic solution for
10minutes to form self-assembled monolayer but avoiding surface
etching. Au tips for TERS experiments were fabricated by reported
electrochemical etching method53.

Statistics and reproducibility
The code and datasets used for training and testing the deep-learning
models are made publicly available for reproducibility. No statistical
method was used to predetermine the sample size. No data were
excluded from the analyses. In both simulated datasets, the training
and testing datasets were randomly allocated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data related to the work is available upon request to the cor-
responding author. Example Raman imaging datasets54 for neural
network training and testing in this study have been deposited in the
figshare under accession code https://doi.org/10.6084/m9.figshare.
24823353.v1.

Code availability
The code of AUnet can be download publicly55 at https://github.com/
XMUSpecLab/Noise-learning. Other information is available upon
request to the corresponding author.
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