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Harnessing synthetic active particles for
physical reservoir computing

Xiangzun Wang1,2 & Frank Cichos 1

The processing of information is an indispensable property of living systems
realized by networks of active processes with enormous complexity. They
have inspired many variants of modern machine learning, one of them being
reservoir computing, in which stimulating a network of nodes with fading
memory enables computations and complex predictions. Reservoirs are
implemented on computer hardware, but also on unconventional physical
substrates such asmechanical oscillators, spins, or bacteria often summarized
as physical reservoir computing. Here we demonstrate physical reservoir
computing with a synthetic active microparticle system that self-organizes
from an active and passive component into inherently noisy nonlinear dyna-
mical units. The self-organization and dynamical response of the unit are the
results of a delayed propulsion of the microswimmer to a passive target. A
reservoir of such units with a self-coupling via the delayed response can per-
form predictive tasks despite the strong noise resulting from the Brownian
motion of the microswimmers. To achieve efficient noise suppression, we
introduce a special architecture that uses historical reservoir states for output.
Our results pave the way for the study of information processing in synthetic
self-organized active particle systems.

Storing and processing of information is vital for living systems1. The
detection of low amounts of chemicals by a bacterium to navigate
environments2,3, the feedback mechanisms controlling and maintain-
ing the function of organisms4, or the highly sophisticated computa-
tions in large biological neural networks in the brain5 are intricate
examples of this importance created by evolutionary development. All
theseprocesses with livingmatter as the substrate of computation rely
on its inherent activity, e.g., the microscopic energy conversion to
power the signaling cascades in the presence of strong thermal noise.
They have inspired many computational models of machine learning
that are not executed on livingmatter, but onwell-designed electronic
hardware using completely different information representations than
living matter6. Recurrent neural networks are a variant of such math-
ematical algorithms with a fading memory that allows learning from
information sequences as in language or time series7. Reservoir com-
puters employ sparsely and statically connected recurrent nodes8–10 or
even a single node by using time-multiplexing11,12 to create a high-

dimensional space. Information can be injected into this space to
spread over themany degrees of freedom. Unlike the training of other
neural networks, where the interactions of all components are opti-
mized, training reservoir computers is often only restricted to finding
how the desired information can be retrieved from the node states
using adjustable readout only13,14.

As one of themainproperties of recurrent nodes is thememory of
past states, reservoir computers also allow for a physical realization on
unconventional computational substrates15–17 using optoelectronic
oscillators18–20, mechanical oscillators21,22, carbon nanotubes23 or pas-
sive soft bodies15 as excitable physical systems. It is thus intriguing to
close the loop and draw inspiration from active living systems to
explore microscopic reservoir computing in synthetic active micro-
systems, where noise is omnipresent as well but a precise control over
the shape and the physics of the active system is possible. Motile
synthetic active particles have generated enormous interests as a
model for self-propelled systems far from equilibrium and emergent
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collective effects24 that mimic, for example, the dynamics of
swarms25–27. Information processing28,29 and machine learning30 in
experiment31 and simulation32–36 have also entered the field of syn-
thetic active matter. However, studies that extend the use of synthetic
microparticles as computational substrates are still rare or purely
numerical37.

We demonstrate that motile self-propelled active microparticles
can be used for physical reservoir computing. An active particle self-
organizes into a nonlinear dynamical unit based on a retarded pro-
pulsion towards an immobile target forming a noisy physical recurrent
node. The node is perturbed by a time-multiplexed input signal to
form a network of virtual nodes with sparsely connected topology.
Multiple of these active units realize a high dimensional space of our
reservoir computer. Harnessing the physics and inherent dynamics of
the active particles, the reservoir computer is capable of predicting
chaotic series despite the strong influence of the Brownian motion of
the active particles. In particular, we find that using historical reservoir
states for the output derivation effectively suppresses the intrinsic
noise of the reservoir opening new routes for reservoir computing in
noisy systems.

Results
Active particle recurrent node
A reservoir computer (RC), as a paradigm derived from recurrent
neural networks, consists of recurrent nodes that nonlinearly process
external signal inputs as well as their previous states8,10. We realize a
simple recurrent nodewith the helpof a single synthetic active particle
as amicroscopicmodel formotile activematter24. An activeparticle is a
polymermicrobeadof 2.19μmdiameter with the surface decorated by
gold nanoparticles (about 8 nmdiameter). It is immersed in a thin layer
of water bounded by two coverslips and can move freely in two

dimensions. The active particle is propelled with a speed v038 towards
an immobile target particle by partially heating the gold nanoparticles
using a focused laser in amicroscopy setup (see Fig. 1a, b andMethods
section). The continuous propulsion in a desired direction is realized
by adjusting the focused laser spot position in real time with the help
of a feedback loop using a spatial light modulator (SLM). A time delay
δt is added to the intrinsic feedback latency to control the active
particle27,39 and to introduce a finite reaction time, as is inherent in
many processes in living systems. Correspondingly, the attraction F̂ðtÞ
experienced by the active particle at time t is determined by its posi-
tion at previous time t − δt,

F̂ðtÞ= � rðt � δtÞ
jrðt � δtÞj , ð1Þ

where r denotes the location of the active particle with respect to the
immobile particle center. The consequence of this retardation is an
angular displacement θ(t) =ϕ(t) −ϕ(t − δt) during the delay timewithϕ
denoting its angular position, thus results in a transient rotational
motion of the active particle around the immobile target (Fig. 1c). The
dynamics of the angular position can then be described by a nonlinear
delay differential equation

_ϕðtÞ= v0
R0

sin θðtÞ+uðtÞð Þ+
ffiffiffiffiffiffi

2D
p

R0
wðtÞ ð2Þ

assuming that the active and the immobile particle (radius of aact and
aimm) are in physical contact, i.e., R0 = aact + aimm, under the delayed
attraction. The active particle inwater is subject to Brownianmotion as
represented by the noise term in Eq. (2) with w(t) denoting Gaussian
white noise. The diffusion coefficient was determined from the

Fig. 1 | Experimental realization. a Experimental setup (see Sec. Method for
detail). b Active particle recurrent unit consisting of a gold-nanoparticle covered
melamine resin particle (MF–Au) and an immobile target polystyrene particle (PS).
A 532 nm laser is focused on the active MF–Au particle at a distance d from the
particle center. The resulting heat and asymmetric temperature induce a self-
thermophoretic motion of the particle with a speed of v0 and a direction set by the
vector from the laser to the particle center. cTop viewof the active particle system.
The active particle is controlled to carry out amotion along F̂ towards the immobile

particle with a time delay δt. The direction of F̂ðtÞ (dashed arrow) is determined by
the previous active particle location r(t − δt). An additional angle u(t) between the
particle propulsion direction (solid arrow) and F̂ðtÞ represents an external input
into the system.dDarkfieldmicroscopy imageof the sampleconsistingof 10 active-
immobile particle pairs (larger circle is the immobile particle, smaller circle the
active particle) as physical nodes in the experiment. An additional calibrator is used
as an active particle swimming along a square route to measure the propulsion
speed v0. The real-time video is provided in Supplementary Movie 1.
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experiment to be D =0.08μm2 s−1, giving rise to a Péclet number of
Pe = aactv0/D = 38.7. To make the physical recurrent node capable of
receiving external inputs, we introduce the u(t) in Eq. (2) representing
an angular deviation of the particle propulsion direction from
F̂ (Fig. 1c).

For its function as a recurrent node, the dynamics of the angle θ(t)
is important. Described by Eq. (2), the dynamics of θ can be approxi-
mated by an overdamped motion of a particle in a self-generated
effective quartic potentialUeff(θ)

27, which resembles a generic Landau-
type description27,40. The shape of the potential is controlled by a
dimensionless parameter θ0 = v0δt/R0. With increasing θ0, Ueff(θ)
transitions from a near parabolic shape with a minimum at θ =0 to a
symmetric double well shape with minima at θ+ and θ− in a pitchfork
bifurcation (see Fig. 2c and Supplementary Note 1).

Aperturbation of θ (solid arrow in Fig. 2c)will result in a relaxation
with a dynamics determined by the control parameter θ0. We have
experimentally determined the response of θ(t) to an impulsive per-
turbation u(t) = δ(t) for different values of θ0 (Fig. 2a, b) active particle.
However, the ensemble average of 500 trajectories of θ(t) (red lines in
Fig. 2a) exhibits an asymptotic behavior, which nicely reflects the
response evaluated in the deterministic simulation (Fig. 2b dashed
lines). The characteristic relaxation time τθ extracted from the deter-
ministic simulations reveals the expected strong increase around the
transition point. Tuning the control parameter θ0, i.e., activity (v0) and/
or delay (δt) therefore allows to manipulate the fading memory of the
active particle as a recurrent node, which is paramount for the cou-
pling and response of the recurrent nodes in our reservoir computer.
Note that the nonlinear dynamics of the active particle system is the
result of the delayed propulsion towards the target.

Reservoir computer with active particle nodes
The asymptotic relaxation of θ(t) demonstrated in Fig. 2b represents a
basic requirement for reservoir computing9,41–43. The time delay also
realizes the coupling of the recurrent nodes with their past states. In

the discrete-time setting of our experiment with the sampling per-
iodΔt, Eq. (2) can be rewritten as

ϕðTÞ=ϕðT � 1Þ+ v0Δt
R0

sin θðT � 1Þ+uðT � 1Þð Þ+
ffiffiffiffiffiffiffiffiffiffiffiffi

2DΔt
p

R0
W ðT � 1Þ,

ð3Þ

where T = t/Δt is an integer number representing the time step. W
denotes Gaussian random numbers with zero mean and unit variance.
The evolution of θ then follows as

θðTÞ=ϕðTÞ � ϕðT � δTÞ

=θðT � 1Þ+ v0Δt
R0

sin θðT � 1Þ+uðT � 1Þð Þ

� v0Δt
R0

sin θðT � δT � 1Þ+uðT � δT � 1Þð Þ

+

ffiffiffiffiffiffiffiffiffiffiffiffi

2DΔt
p

R0
W ðT � 1Þ �W ðT � δT � 1Þð Þ,

ð4Þ

with the discrete time delay δT = δt/Δt. Referring to the concept of
virtual nodes and time-multiplexing12, we consider the transient state
θ(T) of a physical node at different time steps as virtual nodes
constituting the reservoir. Each virtual node state θ(T) is, according to
Eq. (4), coupled to its previous states θ(T − 1) and θ(T − δT − 1). The
virtual nodes thus reflect a topology with sparse interconnections
realized by the delay of the physical node (Fig. 3a). The interconnec-
tions are inherently nonlinear due to the sine function in Eq. (4), which
originates from the physical interaction between the active and the
immobile particle and naturally serves as the activation function in
our RC.

The working principle of our RC is now illustrated in Fig. 3. For
simplicity of the discussion, we consider a RC with a single physical
node, scalar input Xn and output Yn at the n-th computation step (for
the general case see Supplementary Note 2). The input layer un is

Fig. 2 | Impulse response of the active particle node. a Responses of θ(t) to an
impulsive input u(t) = δ(t)measured in the experimentwith θ0 of 0.05 and0.16. The
gray curves denote the measured θ(t) traces, which strongly fluctuate due to the
Brownian motion of the active particles. The red curves denote the means of 500
θ(t) traces in each case. b Comparison of the mean impulse responses of θ(t) from
the experiment (solid lines), same as �θðtÞ in (a) to the ones obtained from the
deterministic simulation (dashed lines). c Effective potential Ueff(θ) with different

θ0.Ueff(θ) transitions froma singlewell to a doublewell format the transition point,
with its localminimapositions bifurcating fromzero to twoopposite values (θ+, θ−).
After perturbations Δθ (solid arrows), θ relaxes to one of the minima (dashed
arrows). d Relaxation time τθ of θ as function of θ0 evaluated in deterministic
simulations. θ is perturbedwithΔθ fromone of the states θ+,− at t =0 s, then relaxes
to θ(τθ) − θ+,− =Δθ/10. τθ diverges to infinity at the transition point of Ueff(θ) (dot-
ted line).

Article https://doi.org/10.1038/s41467-024-44856-5

Nature Communications |          (2024) 15:774 3



generated via a matrix of input weights Win 2 RPin × 2,

un =Win ½bin,Xn�T, ð5Þ

with the scalar bin as the input bias. un is a one-dimensional array
containing Pin elements, which are sequentially input into the physical
node as the angle u(T) of the active particle in Eq. (3). This operation is
equivalent to a time-multiplexing of the input Xn into Pin virtual nodes
withWin as the mask, as commonly applied in continuous-time single
node physical RC approaches12,44. The output Yn is derived as a linear
combination of a scalar bias bout, the input signal Xn, and the node
states θ of the past Pout time steps using an output weight matrix
Wout 2 R1 × ð2 +PoutÞ,

Yn =Wout½bout,Xn,θðT =0Þ,θðT = � 1Þ, � � � ,θðT = 1� PoutÞ�T, ð6Þ

where T =0 denotes the time of the current computation step. The
output weight matrixWout is the only quantity to be trained in the RC
framework to tune the output towards the target signal via a ridge
regressions14 for each computation cycle.

As compared to conventional time-multiplexed physical RCs
where Pin = Pout, we explicitly allow these two parameters to be inde-
pendent and freely adjustable (see Fig. 3b). In particular, we set
Pout≫ Pin for our RC. By this means, each output is derived not only
from the reservoir states of its corresponding step, but previous
nhist = Pout/Pin steps. It will be demonstrated in the next sections that
this setting enables us to carry out the RC with a good stability of the
output and, most importantly, an effective reduction of the impact of
the intrinsic noise.

This single physical node architecture can be further extended to
multiple physical nodes operated in parallel. In our experiment, we
control Nnode = 10 independent physical nodes in one sample simul-
taneously and set Pin = 2. The virtual nodes of the 10 physical nodes
together constitute the reservoir with a size of NnodePin = 20. Figure 1d
and SupplementaryMovie 1 show the real time image and video of the
sample in the experiment. Exemplary traces of θ(t) of four physical
nodes (blue lines) driven by an external signal X (red line) in the
experiment are plotted in Fig. 3c.

The configuration of the RC is optimized in the simulation for the
best performance and then applied in the experiment. The input
weights are selected from a binary distribution Wi

in 2 f�2,2g, which

brings a better noise resistance of the RC than the multi-value weights
according to simulation results. The details of the RC configuration are
described in Supplementary Note 2.

Chaotic series prediction
We test our RC with the free-running prediction of the chaotic
Mackey–Glass series (MGS). The MGS is generated by the delay dif-
ferential equation

dSðnÞ
dn

=α
Sðn� τÞ

1 + Sðn� τÞβ
� γSðnÞ, ð7Þ

which was introduced to model the complex dynamics of physiologi-
cal feedback systems45. It has beenwidely used as a benchmark task for
series forecasting46–49. With parameters α = 0.2, β = 10, γ =0.1, and a
delay parameter τ = 17, the MGS exhibits a chaotic behavior with the
Lyapunov exponent of around 0.00646. The performance of the pre-
diction is evaluated by the normalized root-mean-square error
(NRMSE, see Supplementary Note 3 for details). Figure 4 shows the
results of the MGS predictions by our RC in experiments and
simulations.

Simulatedprediction. The deterministic simulations have been carried
out with a very small reservoir with only 20 virtual nodes but using a
large Pout = 400, i.e., nhist = 200 historical reservoir states for each out-
put. The simulation result shows a very good prediction of the target
MGSup toaround900steps (corresponding to 5.4 Lyapunov time)with
a NRMSE of 6.7 × 10−2 (Fig. 4a). Similarly, Supplementary Note 4 also
describes thepredictionof a three-dimensional chaotic Lorenz series by
our RC in a deterministic simulation. These results signify the capability
of our architecture for chaotic systems predictions.

Experimental prediction. As compared to the simulations, the
experimental RCperformance is significantly degraded as a result of the
Brownian motion of the active particles and the sensitivity of chaotic
systems. The noise induced by Brownian motion acts on the particle
angular positionϕ(T) (Eq. (3)) and propagates to the virtual node states
θ(T) (Eq. (4)). The signal-to-noise ratio (SNR) of the RC can be estimated
by comparing the ϕ(T) in simulations with and without noise (see
Supplementary Note 5) and reveals an extremely low value (SNR= 1.9
(2.78 dB)). Figure 4b depicts the experimental results from 50

Fig. 3 | Architecture of the reservoir computer. aTopologyof the reservoirwith a
single physical node and a discrete time delay δT = 1 in this example. The θ of the
active particle at different time steps T are considered as the virtual nodes. Each
virtual node state θ(T) is nonlinearly coupled to previous states θ(T − 1) and θ(T −

δT − 1) through the dynamics of the system Eq. (4). b Sketch of the information
processing in the single node RC with Pin = 2 and Pout = 4 in this example. The
external signalXof each computation step ismultiplexedby aweightmatrixWin to

Pin elements, which are sequentially input into the node as the perturbation u(T) of
the active particle (Fig. 1c). Each output is linearly derived from the θ states of
previous Pout time steps using a weight matrix Wout that is trained via ridge
regression. Biases bin/out for the input and output layers are not plotted for the sake
of simplicity. c Examples of θ(t) traces of four physical nodes (blue lines) driven by
an external signal X(t) (red line, see Eq. (7)) measured in the experiment.
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repetitions of the MGS prediction. The outputs Y(n) (gray curves) from
different experimental predictions exhibit a notable influence of the
noise. The mean of the outputs Y ðnÞ (blue curve) can reproduce the
fundamental period of the target MGS for around 200 steps, and the
details of the series for about 50 steps, which is, considering the
extremely low SNR, still remarkable. These results obtained from the
experimental RC are further underscored by the very good prediction
of a non-chaotic periodic trigonometric series (see Supplemen-
tary Note 4).

The outstanding RC performance under these very noisy condi-
tions becomes possible by introducing the special architecture using a
number of historical reservoir states nhist for the output derivation.
Figure 4c–g demonstrates the experimental results of the RC with Pout
varying from 200 to 400, corresponding to nhist from 100 to 200. The
accuracy of the predictions is improved by increasing nhist (Fig. 4c).
Changing nhist from 100 to 200 results in a decrease of the difference
between the mean of the outputs Y and the target MGS by 22% (eval-
uated by the root-mean-square (RMS) of 200 steps jY � Y targetj in
Fig. 4d). The standard deviation σY of 50 predictions decreases by 32%
(200 steps RMS of σY in Fig. 4e), and the resulting NRMSE of 200 step
predictions diminishes by 28%. This trend of lower prediction error for
the experimental system is also picked up by stochastic simulations
with an NRMSE reduction of 11% (Fig. 4f).

This finding is striking as increasing nhist does not add more
information to the RC, nor increases the reservoir dimensionality,
which is determined by the number of linearly independent
variables43,50 of the reservoir. During the computation of the RC, the
node states of each step are nonlinearly transformed andmapped into
the states of the following steps43, while they attenuate in magnitude
due to the memory fading property of the node. Conventional RCs
derive the output from the reservoir state of its corresponding step,
which implicitly contains the information of the historical states.
Whereas in our RC, the historical reservoir states can directly con-
tribute to the output.

The actual contributions of the historical states are determined via
the training of the output weightsWout. The states correlating more to
the current outputobtainhigherweightmagnitudes. Figure4gplots the
Wout trained in experiments with nhist of 100 and 200. The first 2000
elements of Wout corresponding to the near past reservoir states
(n from 0 to −99) have similar structures in both cases. As compared
to the near past, the far past states (n from −100 to − 199 in the nhist =
200 case) correspond to smaller weights in amplitude, indicating the
weaker correlations and contributions to the current output. The
highest magnitude ofWout appears at around n = − 17, which coincides
with the delay parameter τ = 17 of the target MGS (Eq. (7)). The trained
Wout thereby partly reveals the property of the target signal.

Fig. 4 | Results of free-running predictions of the Mackey–Glass series.
a Prediction (blue line) of the Mackey–Glass series (MGS, red line) in the determi-
nistic simulation by the RC with 20 virtual nodes, and using nhist = 200 historical
reservoir states (Pin = 2, Pout = 400) for each step output. b Experimental results of
MGS predictions with the same RC configuration as in (a). The gray curves denote
the RC outputs from 50 repeated predictions with strong fluctuations due to
Brownianmotion of the active particles. The blue curve represents themean of the
output traces. c–g Comparison of the experimental results with Pout from 200 to
400 (nhist from 100 to 200) evaluated by 50 repeated predictions for each case.
c Means (colored lines) and corresponding standard deviations (colored areas) of
the RC output traces. d The deviation between themean of predictions (Y ) and the

target MGS (Ytarget), and e the standard deviations σY of the predictions versus the
step n. The curves are smoothed via 100-step moving average. f NRMSE of
200 steps predictions from experiments and stochastic simulations versus nhist.
gMeans of the output weightsWout trained in experiments. The elements ofWout

are in turn theweight for the output bias bout, the input signalX, and the historical θ
states of the physical nodes (see SupplementaryNote 2). EachNnodePin = 20weights
for θ correspond to one computation step, which is denoted by n on the top axis
with the negative values representing the past. The peak marked by the arrow
indicates the high contribution of the historical reservoir states of around n = − 17,
which reveals the property of the target MGS with the delay parameter τ = 17
(Eq. (7)).
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Impact of noise. These results suggest that there might be an optimal
relation between the used number of historical states and the error of
the RC to stabilize the prediction and to reduce the impact of the
inherent noise due to Brownian motion. To investigate this interrela-
tion we refer to deterministic and stochastic simulations. Figure 5a, b
display the RC performance as measured by the NRMSE of the pre-
dictions as functions of Pin and Pout. Without noise (Fig. 5a), the results
indicate a larger error with low Pin or Pout and poor performances for
Pin < 2 and Pout < 50. The performance is improving for increasing Pin
and Pout simultaneously. The best results for the deterministic system
are obtained with nhist = Pout/Pin = 60.

For the noisy active particle nodes (Fig. 5b), the RC outputs are
unstable for Pout < 100. The free-running prediction has a high prob-
ability to yield fast diverging outputs and a large NRMSE (bottom
subplot). With Pout ≥ 100, stable outputs can be obtained. A trend
towards lower NRMSE with higher nhist can be observed in agreement
with our experimental results (Fig. 4f). Thus, both experiments and
simulations confirm that using historical states for the prediction of
our RC improves the stability and the quality of the prediction even
under extremely noisy conditions.

Impact of the dynamical properties of the nodes. Our active particle
recurrent node also provides the opportunity to tune the dynamical
response of the physical node across the transition of the pitchfork
bifurcation with either particle speed v0 or delay δt. The tuning varies
how fast the memory of each node fades, as indicated in Fig. 2d by the
relaxation time τθ and also the coupling of the virtual nodes, as given
by Eq. (4).

The impact of the node dynamics on the performance of the RC is
depicted in Fig. 5c–e with the NRMSE of the MGS predictions as
function of v0/R0 and δt resulting from deterministic simulations. For
stochastic simulation results see Supplementary Note 6.

As discussed above, θ0 determines the asymptotic behavior of θ
after an impulsive perturbation. The correlation betweenNRMSE and θ0
with the optimum at around θ0≈0.2 in Fig. 5e indicates that the dyna-
mical properties of the physical node as characterized by the relaxation
time τθ (Fig. 2d), are indeed a key factor of the RC performance for this
task. The optimal performance of the RC is found below the transition
point (yellow dashed line) where the approximate effective potential
Ueff(θ) is largely determined by its parabolic term (Fig. 5c, right)27. At the
transition point, where the relaxation time τθ is largest and thememory
fades slowest, the RC does not exhibit the worst performance as
expected9. The maximal NRMSE appears beyond the transition point,
where the Ueff is in a double well form. The double well Ueff may cause
inconsistent responses of the RC, i.e., similar inputs into the node may
result in θ relaxations towards different potential minima. This incon-
sistency is presumed to induce the degradation of the RC
performance37,51,52. If the barrier of the double-well potential is further
raised by increasing θ0, the NRMSE appears to decrease again (Fig. 5e)
presumably due to the fact that the θ is largely residing in one of the
potential wells with a short relaxation time. This interpretation is sup-
ported by the comparison of the RC performances with different jWi

inj
magnitudes in Fig. 5e. Larger jWi

inj induces stronger inputs as pertur-
bationsonθ, therebyahigherprobability ofθ to jumpover thebarrier to
another potential well. Hence themaximumof NRMSEwith larger jWi

inj
appears at higher θ0, where the barrier of the potential is also higher.

Fig. 5 | Simulation results of the RC performance as function of the RC con-
figuration.NRMSE of 200 stepsMGS prediction versus Pin and Pout (a, b) v0/R0 and
δt (c–e).Win and bin are optimized (see SupplementaryNote 2) for each grid point.
aResults of RCwithout noise. Thewhite dashed lines represent the contour lines of
nhist = Pout/Pin. b Results of RC with noise and the same parameters as in (a). Each
grid point is evaluated by 50 repeated predictions. The outputs of RC with
Pout < 100 are unstable, and result in large NRMSE as plotted separately in the
bottom subplot. c, d Performance of RC without noise. The elements of Win are
selected from { − 1, 1} (c) and { − 2, 2} (d) respectively. The results with noise are

presented in Supplementary Note 6. The white dash-dotted curves denote the
contour linesofθ0 = v0δt/R0. The yellowdashed curves denote the transitionpoints
of Ueff(θ) from single well to double well form. An instrumental feedback latency
δtF =0.125 s is considered, thereby the transition curves do not coincide with the θ0
contour lines. Formore details see Supplementary Note 1 and 7. The subplot on the
right illustrates the corresponding Ueff(θ), also θ perturbations and relaxations.
eComparison of the NRMSE results of the diagonal grid points in (c, d) (from lower
left to upper right) as function of θ0. The dashed line denotes the transition point
of Ueff.
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Discussion
We have demonstrated above the realization of a physical reservoir
computer in an experiment using self-propelled active microparticles.
A retardedpropulsion towards an immobilized target particle creates a
self-organized non-linear dynamical system that is, despite the strong
Brownian noise, capable of predicting chaotic time series such as
Mackey–Glass and Lorenz series when used as a physical node in a
reservoir computer. The key element of this physical recurrent node is
a time delay realizing a retarded interaction27,53,54 that creates the
fadingmemory as a basic requirement for reservoir computing8. It also
provides the coupling of the active particle dynamics to its past
allowing to implement virtual nodes living on a single physical active
particle system via time-multiplexing12,44. The information processing
that is provided by such a single node may therefore extend the rare
simulation work on reservoir computing with active particle swarms
with interparticle coupling37. Additionally, the nonlinearity that is
required for computations is an intrinsic physical property of our
active particle system and requires no extra treatment of the output
signal 55. Future work could introduce direct physical coupling
between the isolated physical nodes in our configuration, e.g., through
hydrodynamic or other interactions, to obtain more complex dyna-
mical networks of interacting synthetic active particles.

The dynamics of the physical recurrent node that is the basic unit
of our reservoir computer is controlled by a parameter containing
the product of activity (active particle speed) and time delay. It can be
understood with a simple Landau-like self-induced quartic effective
potential, which exhibits a transition from a single-well to double-well
form27. The system thereby allows to address the relation of RC per-
formance and node relaxation time, where we found a clear indication
for an optimal performance below the transition point. While the
memory fading becomes extremely slow at the transition point and
one might expect the worst performance of the system accordingly, it
is observed that a double-well potential with a small barrier leading to
inconsistencies in the relaxation dynamics is more severe. Interest-
ingly, suchdouble-well potentials have recently beendiscussed asnon-
linear stochastic-resonance-based activation functions in an attempt
to provide better stability of Echo-State-Networks against noise56.

Noise is an inherent property of our information processing units,
as Brownianmotion causes strong fluctuations of the node state. Such
noises are inevitable at the smallest scales also in the context of bio-
logical information processing57, for instance in neurons58, with both
positive and negative effects59,60. In physical RC approaches, noise is
commonly a major limiting factor for the performances43,47,61 although
subtle noises are reported to be beneficial as well8,19,46,62,63. Yet, general
strategies for the noise suppression are unclear except increasing the
reservoir size64, which is normally costly for physical RCs. While the
performance of our reservoir computer for the chaotic system pre-
diction is highly degraded by the noise due to the sensitivity of chaotic
systems (for non-chaotic series predictions see Supplementary
Note 4), we have introduced the architecture that utilizes historical
reservoir states for output derivation providing remarkable stability
and noise reduction even under low signal-to-noise ratios. This archi-
tecture is not increasing the dimensionality of the reservoir nor
changing the dynamics of the nodes, and could be potentially useful in
future reservoir computing studies.

In summary, simple retarded interactions in synthetic active
microparticle systems can give rise to nonlinear self-driven dynamics
that form a basis for information processing with active matter. Our
reservoir computer highlights this connection between information
processing, machine learning, and active matter on the microscale,
and also paves the way for new studies on noise in reservoir com-
puting. While we so far referred to isolated active recurrent units, we
envision that the high level control of the synthetic active matter will
yield new emergent physical collective states, whichmay leverage the

field of active synthetic dynamical systems for information
processing.

Methods
Sample preparation
The sample used in experiments contains two kinds of microparticles:
polystyrene (PS) particles (microParticles GmbH) of 3μm diameter
and themelamine formaldehyde (MF) (microParticles GmbH) particles
of 2.19μmdiameter, suspended in a water solution (Fig. 1b). Gold (Au)
nano-particles of around 8 nm diameter are uniformly distributed on
the surface of theMFparticle, cover about 10%of the total surface area
of the latter. Two glass coverslips (20 × 20mm2 and 24 × 24mm2)
confine a 3μm thick sample layer in between. Due to the surface ten-
sion of water, the PS particles are compressed and immobilized on the
coverslips serving as spacers to define the sample thickness. The PS
and MF–Au particles are separately added into two 2% Pluronic F-127
solutions. After 30min, the Pluronic concentration of both solutions is
decreased to 0.02% by diluting twice. Each dilution is followed by a
centrifugation and then a removal of a part of the solution to keep the
particle concentration. A 0.3μL sample of PS particles is pipetted on
one of the coverslips, then a 0.3μL sample of MF–Au particles is
pipetted in the droplet of PS particles. The sample is then covered
carefully with a second coverslip. The edges of the sample are sealed
by polydimethylsiloxane (PDMS) to prevent leakage and evaporation,
also to relieve the liquid flow inside the sample. The experiment starts
about 1 h after the samplepreparation towait until residual liquidflows
in the sample ceased.

Experimental setup
The experimental setup is illustrated in Fig. 1a. The MF–Au micro-
particles are heated by a focused, continuous-wave laser with a
wavelength of 532 nm. The light from the laser module (CNI, MGL-H-
532-1W) is expanded by two tube lenses (35mm, 150mm focal lengths)
in the beam size, then guided by mirrors to a high-speed reflective
Spacial LightModulator (SLM,MeadowlarkOptics, HSP512-532), which
modulates the phase of the reflected laser. The reflected laser is then
guided through two lenses (500mm, 300mm focal lengths) to an
inverted microscope (Olympus, IX73). A small opaque dot on a glass
window located at the focal point of the 500mm lens serves as amask
to block the unmodulated laser reflected by the SLM top surface. The
laser in themicroscope is reflected by a dichroic beam splitter (Omega
Optical, 560DRLP), then focused by an objective lens (100x, Olympus,
UPlanFL N x 100/1.30, Oil, Iris, NA. 0.6–1.3) on the sample plane with a
beam width at half maximum about 0.6μm.

The sample is illuminated by white light from an LED lamp
(Thorlabs, SOLIS-3C) through an oil-immersion dark-field condenser
(Olympus, U-DCW, NA 1.2–1.4). The image of the sample is projected
by the objective lens and a tube lens (180mm focal length) inside the
microscopy stand as well as two additional lenses (100mm, 150mm
focal lengths) outside the microscopy stand to a camera (Hamamatsu
digital sCMOS, C11440-22CU). The numerical aperture (NA) of the
objective is set to a value below the minimal NA of the dark-field
condenser. Two filters (EKSMA Optics 246-2506-532, Thorlabs
FESH0800) in front of the camera block the back reflections of the
laser from themicroscope. Adesktop PC (Intel(R)Core™ i7-7700KCPU
@4× 4.20 GHz, NVIDIA GeForceGTX 1050Ti) with a LabVIEWprogram
(v. 2019) analyzes the images, records data, andmanipulates the active
particles by controlling the laser through the phase pattern on the
SLM. More details are given in Supplementary Note 7.

Data availability
All data in support of this work is available in the manuscript or the
supplementarymaterials. Further data andmaterials are available from
the corresponding author upon request.
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