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Segment anything in medical images

Jun Ma1,2,3, Yuting He4, Feifei Li 1, Lin Han5, Chenyu You 6 &
Bo Wang 1,2,3,7,8

Medical image segmentation is a critical component in clinical practice, facil-
itating accurate diagnosis, treatment planning, and disease monitoring.
However, existing methods, often tailored to specific modalities or disease
types, lack generalizability across the diverse spectrum of medical image
segmentation tasks. Here we present MedSAM, a foundation model designed
for bridging this gap by enabling universal medical image segmentation. The
model is developed on a large-scale medical image dataset with 1,570,263
image-mask pairs, covering 10 imaging modalities and over 30 cancer types.
Weconduct a comprehensive evaluation on 86 internal validation tasks and 60
external validation tasks, demonstrating better accuracy and robustness than
modality-wise specialist models. By delivering accurate and efficient seg-
mentation across a wide spectrum of tasks, MedSAM holds significant
potential to expedite the evolution of diagnostic tools and the personalization
of treatment plans.

Segmentation is a fundamental task inmedical imaging analysis, which
involves identifying and delineating regions of interest (ROI) in various
medical images, such as organs, lesions, and tissues1. Accurate seg-
mentation is essential for many clinical applications, including disease
diagnosis, treatment planning, and monitoring of disease
progression2,3. Manual segmentation has long been the gold standard
for delineating anatomical structures and pathological regions, but
this process is time-consuming, labor-intensive, and often requires a
high degree of expertise. Semi- or fully automatic segmentation
methods can significantly reduce the time and labor required, increase
consistency, and enable the analysis of large-scale datasets4.

Deep learning-basedmodelshave showngreat promise inmedical
image segmentation due to their ability to learn intricate image fea-
tures and deliver accurate segmentation results across a diverse range
of tasks, from segmenting specific anatomical structures to identifying
pathological regions5. However, a significant limitation of many cur-
rent medical image segmentation models is their task-specific nature.
These models are typically designed and trained for a specific seg-
mentation task, and their performance can degrade significantly when
applied to new tasks or different types of imaging data6. This lack of
generality poses a substantial obstacle to the wider application of
these models in clinical practice. In contrast, recent advances in the

field of natural image segmentation have witnessed the emergence of
segmentation foundation models, such as segment anything model
(SAM)7 and Segment Everything Everywhere with Multi-modal
prompts all at once8, showcasing remarkable versatility and perfor-
mance across various segmentation tasks.

There is a growing demand for universal models inmedical image
segmentation: models that can be trained once and then applied to a
wide range of segmentation tasks. Suchmodels would not only exhibit
heightened versatility in terms of model capacity but also potentially
lead to more consistent results across different tasks. However, the
applicability of the segmentation foundation models (e.g., SAM7) to
medical image segmentation remains limited due to the significant
differences between natural images and medical images. Essentially,
SAM is a promptable segmentation method that requires points or
bounding boxes to specify the segmentation targets. This resembles
conventional interactive segmentation methods4,9–11 but SAM has bet-
ter generalization ability, while existing deep learning-based inter-
active segmentationmethods focusmainly on limited tasks and image
modalities.

Many studies have applied the out-of-the-box SAM models to
typical medical image segmentation tasks12–17 and other challenging
scenarios18–21. For example, the concurrent studies22,23 conducted a
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comprehensive assessment of SAM across a diverse array of medical
images, underscoring that SAM achieved satisfactory segmentation
outcomes primarily on targets characterized by distinct boundaries.
However, the model exhibited substantial limitations in segmenting
typical medical targets with weak boundaries or low contrast. In con-
gruence with these observations, we further introduce MedSAM, a
refined foundation model that significantly enhances the segmenta-
tion performance of SAM on medical images. MedSAM accomplishes
this by fine-tuning SAM on an unprecedented dataset with more than
one million medical image-mask pairs.

We thoroughly evaluate MedSAM through comprehensive
experiments on 86 internal validation tasks and 60 external validation
tasks, spanning a variety of anatomical structures, pathological con-
ditions, and medical imaging modalities. Experimental results
demonstrate that MedSAM consistently outperforms the state-of-the-
art (SOTA) segmentation foundation model7, while achieving perfor-
mance on par with, or even surpassing specialist models1,24 that were
trained on the images from the samemodality. These results highlight
the potential of MedSAM as a new paradigm for versatile medical
image segmentation.

Results
MedSAM: a foundation model for promptable medical image
segmentation
MedSAM aims to fulfill the role of a foundation model for universal
medical image segmentation. A crucial aspect of constructing such a
model is the capacity to accommodate a wide range of variations in
imaging conditions, anatomical structures, and pathological condi-
tions. To address this challenge, we curated a diverse and large-scale

medical image segmentation dataset with 1,570,263 medical image-
mask pairs, covering 10 imaging modalities, over 30 cancer types, and
a multitude of imaging protocols (Fig. 1 and Supplementary
Tables 1–4). This large-scale dataset allows MedSAM to learn a rich
representation of medical images, capturing a broad spectrum of
anatomies and lesions across different modalities. Figure 2a provides
an overview of the distribution of images across different medical
imaging modalities in the dataset, ranked by their total numbers. It is
evident that computed tomography (CT), magnetic resonance ima-
ging (MRI), and endoscopy are the dominant modalities, reflecting
their ubiquity in clinical practice. CT and MRI images provide detailed
cross-sectional views of 3D body structures, making them indis-
pensable for non-invasive diagnostic imaging. Endoscopy, albeit more
invasive, enables direct visual inspection of organ interiors, proving
invaluable for diagnosing gastrointestinal and urological conditions.
Despite the prevalence of thesemodalities, others such as ultrasound,
pathology, fundus, dermoscopy, mammography, and optical coher-
ence tomography (OCT) also hold significant roles in clinical practice.
The diversity of these modalities and their corresponding segmenta-
tion targets underscores the necessity for universal and effective
segmentation models capable of handling the unique characteristics
associated with each modality.

Another critical consideration is the selection of the appropriate
segmentation prompt and network architecture. While the concept of
fully automatic segmentation foundation models is enticing, it is
fraught with challenges that make it impractical. One of the primary
challenges is the variability inherent in segmentation tasks. For
example, given a liver cancer CT image, the segmentation task canvary
depending on the specific clinical scenario. One clinician might be

Fig. 1 | MedSAM is trained on a large-scale dataset that can handle diverse segmentation tasks. The dataset covers a variety of anatomical structures, pathological
conditions, and medical imaging modalities. The magenta contours and mask overlays denote the expert annotations and MedSAM segmentation results, respectively.
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interested in segmenting the liver tumor, while another might need to
segment the entire liver and surrounding organs. Additionally, the
variability in imaging modalities presents another challenge. Mod-
alities such as CT and MR generate 3D images, whereas others like
X-ray and ultrasound yield 2D images. These variabilities in task defi-
nition and imaging modalities complicate the design of a fully auto-
matic model capable of accurately anticipating and addressing the
diverse requirements of different users.

Considering these challenges, we argue that a more practical
approach is to develop a promptable 2D segmentation model. The
model can be easily adapted to specific tasks based on user-provided
prompts, offering enhanced flexibility and adaptability. It is also able
to handle both 2D and 3D images by processing 3D images as a series
of 2D slices. Typical user prompts include points and bounding boxes
and we show some segmentation examples with the different prompts
in Supplementary Fig. 1. It can be found that bounding boxes provide a
more unambiguous spatial context for the region of interest, enabling
the algorithm to more precisely discern the target area. This stands in
contrast to point-based prompts, which can introduce ambiguity,
particularly when proximate structures resemble each other. More-
over, drawing a bounding box is efficient, especially in scenarios
involving multi-object segmentation. We follow the network archi-
tecture in SAM7, including an image encoder, a prompt encoder, and a
mask decoder (Fig. 2b). The image encoder25 maps the input image
into a high-dimensional image embedding space. The prompt encoder
transforms the user-drawn bounding boxes into feature representa-
tions via positional encoding26. Finally, the mask decoder fuses the
image embedding and prompt features using cross-attention27

(Methods).

Quantitative and qualitative analysis
We evaluated MedSAM through both internal validation and external
validation. Specifically, we compared it to the SOTA segmentation
foundation model SAM7 as well as modality-wise specialist U-Net1 and
DeepLabV3+24 models. Each specialized model was trained on images
from the corresponding modality, resulting in 10 dedicated specialist
models for each method. During inference, these specialist models
were used to segment the images from corresponding modalities,
while SAMandMedSAMwere employed for segmenting images across
all modalities (Methods). The internal validation contained 86 seg-
mentation tasks (Supplementary Tables 5–8 and Fig. 2), and Fig. 3a
shows themedian dice similarity coefficient (DSC) score of these tasks
for the four methods. Overall, SAM obtained the lowest performance
on most segmentation tasks although it performed promisingly on
some RGB image segmentation tasks, such as polyp (DSC: 91.3%,
interquartile range (IQR): 81.2–95.1%) segmentation in endoscopy
images. This could be attributed to SAM’s training on a variety of RGB
images, and the fact that many targets in these images are relatively
straightforward to segment due to their distinct appearances. The
other threemodels outperformedSAMbya largemargin andMedSAM

has a narrower distribution of DSC scores of the 86 interval validation
tasks than the two groups of specialist models, reflecting the robust-
ness of MedSAM across different tasks. We further connected the DSC
scores corresponding to the same task of the four models with the
podium plot Fig. 3b, which is complementary to the box plot. In the
upper part, each colored dot denotes the median DSC achieved with
the respective method on one task. Dots corresponding to identical
test cases are connected by a line. In the lower part, the frequency of
achieved ranks for eachmethod is presented with bar charts. It can be
found thatMedSAM ranked in first place onmost tasks, surpassing the
performance of theU-Net andDeepLabV3+ specialistmodels that have
a high frequency of ranks with second and third places, respectively, In
contrast, SAM ranked last place in almost all tasks. Figure 3c (and
Supplementary Fig. 9) visualizes some randomly selected segmenta-
tion exampleswhereMedSAMobtained amedianDSC score, including
liver tumor in CT images, brain tumor in MR images, breast tumor in
ultrasound images, and polyp in endoscopy images. SAM struggles
with targets of weak boundaries, which is prone to under or over-
segmentation errors. In contrast, MedSAM can accurately segment a
wide range of targets across various imaging conditions, which
achieves comparable of even better than the specialist U-Net and
DeepLabV3+ models.

The external validation included 60 segmentation tasks, all of
which either were from new datasets or involved unseen segmen-
tation targets (Supplementary Tables 9–11 and Figs. 10–12). Fig-
ure 4a, b show the task-wisemedian DSC score distribution and their
correspondence of the 60 tasks, respectively. Although SAM con-
tinued exhibiting lower performance on most CT and MR segmen-
tation tasks, the specialist models no longer consistently
outperformed SAM (e.g., right kidney segmentation in MR T1-
weighted images: 90.1%, 85.3%, 86.4% for SAM, U-Net, and Dee-
pLabV3+, respectively). This indicates the limited generalization
ability of such specialist models on unseen targets. In contrast,
MedSAM consistently delivers superior performance. For example,
MedSAM obtained median DSC scores of 87.8% (IQR: 85.0-91.4%) on
the nasopharynx cancer segmentation task, demonstrating 52.3%,
15.5%, and 22.7 improvements over SAM, the specialist U-Net, and
DeepLabV3+, respectively. Significantly, MedSAM also achieved
better performance in some unseen modalities (e.g., abdomen T1
Inphase and Outphase), surpassing SAM and the specialist models
with improvements by up to 10%. Figure 4c presents four randomly
selected segmentation examples for qualitative evaluation, reveal-
ing that while all the methods have the ability to handle simple
segmentation targets, MedSAM performs better at segmenting
challenging targets with indistinguishable boundaries, such as cer-
vical cancer in MR images (more examples are presented in Sup-
plementary Fig. 13). Furthermore, we evaluated MedSAM on the
multiple myeloma plasma cell dataset, which represents a distinct
modality and task in contrast to all previously leveraged validation
tasks. Although this task had never been seen during training,
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Fig. 2 | Overviewof themodalitydistribution in thedataset and thenetwork architecture. aThe numberofmedical image-mask pairs in eachmodality.bMedSAM is a
promptable segmentation method where users can use bounding boxes to specify the segmentation targets. Source data are provided as a Source Data file.
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Fig. 4 | Quantitative and qualitative evaluation results on the external
validation set. a Performance distribution of 60 external validation tasks in terms
of median dice similarity coefficient (DSC) score. The center line within the box
represents the median value, with the bottom and top bounds of the box deli-
neating the 25th and 75th percentiles, respectively. Whiskers are chosen to show
the 1.5 of the interquartile range. Up-triangles denote the minima and down-
triangles denote the maxima. b Podium plots for visualizing the performance
correspondence of 60 external validation tasks. Upper part: each colored dot

denotes the median DSC achieved with the respective method on one task. Dots
corresponding to identical tasks are connected by a line. Lower part: bar charts
represent the frequency of achieved ranks for each method. MedSAM ranks in the
first place on most tasks. c Visualized segmentation examples on the external
validation set. The four examples are the lymph node, cervical cancer, fetal head,
and polyp in CT,MR, ultrasound, and endoscopy images, respectively. Source data
are provided as a Source Data file.
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Fig. 3 | Quantitative and qualitative evaluation results on the internal
validation set. a Performance distribution of 86 internal validation tasks in terms
of median dice similarity coefficient (DSC) score. The center line within the box
represents the median value, with the bottom and top bounds of the box deli-
neating the 25th and 75th percentiles, respectively. Whiskers are chosen to show
the 1.5 of the interquartile range. Up-triangles denote the minima and down-
triangles denote the maxima. b Podium plots for visualizing the performance
correspondence of 86 internal validation tasks. Upper part: each colored dot
denotes the median DSC achieved with the respective method on one task. Dots

corresponding to identical tasks are connected by a line. Lower part: bar charts
represent the frequency of achieved ranks for each method. MedSAM ranks in the
first place on most tasks. c Visualized segmentation examples on the internal
validation set. The four examples are liver cancer, brain cancer, breast cancer, and
polyp in computed tomography (CT), (Magnetic Resonance Imaging) MRI, ultra-
sound, and endoscopy images, respectively. Blue: bounding box prompts; Yellow:
segmentation results. Magenta: expert annotations. Source data are provided as a
Source Data file.
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MedSAM still exhibited superior performance compared to the SAM
(Supplementary Fig. 14), highlighting its remarkable generalization
ability.

The effect of training dataset size
We also investigated the effect of varying dataset sizes on MedSAM’s
performance because the training dataset size has been proven to be
pivotal in model performance28. We additionally trained MedSAM on
two different dataset sizes: 10,000 (10K) and 100,000 (100K) images
and their performances were compared with the default MedSAM
model. The 10K and 100K training images were uniformly sampled
from the whole training set, to maintain data diversity. As shown in
(Fig. 5a) (Supplementary Tables 12–14), the performance adhered to
the scaling rule, where increasing the number of training images sig-
nificantly improved the performance in both internal and external
validation sets.

MedSAM can improve the annotation efficiency
Furthermore, we conducted a human annotation study to assess the
time cost of two pipelines (Methods). For the first pipeline, two human
experts manually annotate 3D adrenal tumors in a slice-by-slice way. For
the secondpipeline, the expertsfirst drew the long and short tumor axes
with the linear marker (initial marker) every 3-10 slices, which is a com-
mon practice in tumor response evaluation. Then, MedSAMwas used to
segment the tumors based on these sparse linear annotations. Finally,
the expert manually revised the segmentation results until they were
satisfied.We quantitatively compared the annotation time cost between
the two pipelines (Fig. 5b). The results demonstrate that with the assis-
tance of MedSAM, the annotation time is substantially reduced by
82.37% and 82.95% for the two experts, respectively.

Discussion
We introduce MedSAM, a deep learning-powered foundation model
designed for the segmentation of awide array of anatomical structures
and lesions across diverse medical imaging modalities. MedSAM is
trained on a meticulously assembled large-scale dataset comprised of
over one million medical image-mask pairs. Its promptable config-
uration strikes an optimal balance between automation and customi-
zation, renderingMedSAM a versatile tool for universal medical image
segmentation.

Through comprehensive evaluations encompassing both internal
and external validation, MedSAM has demonstrated substantial cap-
abilities in segmenting a diverse array of targets and robust general-
ization abilities to manage new data and tasks. Its performance not
only significantly exceeds that of existing the state-of-the-art seg-
mentation foundation model, but also rivals or even surpasses spe-
cialist models. By providing precise delineation of anatomical
structures and pathological regions, MedSAM facilitates the compu-
tation of various quantitative measures that serve as biomarkers. For

instance, in the field of oncology, MedSAM could play a crucial role in
accelerating the 3D tumor annotation process, enabling subsequent
calculations of tumor volume, which is a critical biomarker29 for
assessing diseaseprogression and response to treatment. Additionally,
MedSAM provides a successful paradigm for adapting natural image
foundationmodels to new domains, which can be further extended to
biological image segmentation30, such as cell segmentation in light
microscopy images31 and organelle segmentation in electron micro-
scopy images32.

While MedSAM boasts strong capabilities, it does present certain
limitations. One such limitation is the modality imbalance in the
training set, with CT, MRI, and endoscopy images dominating the
dataset. This could potentially impact the model’s performance on
less-represented modalities, such as mammography. Another limita-
tion is its difficulty in the segmentation of vessel-like branching
structures because the bounding boxprompt can be ambiguous in this
setting. For example, arteries and veins share the same bounding box
in eye fundus images. However, these limitations do not diminish
MedSAM’s utility. Since MedSAM has learned rich and representative
medical image features from the large-scale training set, it can be fine-
tuned to effectively segment new tasks from less-represented mod-
alities or intricate structures like vessels.

In conclusion, this study highlights the feasibility of constructing a
single foundation model capable of managing a multitude of seg-
mentation tasks, thereby eliminating the need for task-specificmodels.
MedSAM, as the inaugural foundation model in medical image seg-
mentation, holds great potential to accelerate the advancement of new
diagnostic and therapeutic tools, and ultimately contribute to
improved patient care33.

Methods
Dataset curation and pre-processing
Wecurated a comprehensive dataset by collating images frompublicly
available medical image segmentation datasets, which were obtained
fromvarious sources across the internet, including theCancer Imaging
Archive (TCIA)34, Kaggle, Grand-Challenge, Scientific Data, CodaLab,
and segmentation challenges in the Medical Image Computing and
Computer Assisted Intervention Society (MICCAI). All the datasets
provided segmentation annotations by human experts, which have
been widely used in existing literature (Supplementary Table 1–4). We
incorporated these annotations directly for both model development
and validation.

The original 3D datasets consisted of computed tomography (CT)
andmagnetic resonance (MR) images inDICOM,nrrd, ormhd formats.
To ensure uniformity and compatibility with developing medical
image deep learning models, we converted the images to the widely
used NifTI format. Additionally, grayscale images (such as X-Ray and
Ultrasound) aswell asRGB images (including endoscopy, dermoscopy,
fundus, and pathology images), were converted to the png format.

Fig. 5 | The effect of training dataset size and a user study of tumor annotation
efficiency. a Scaling up the training image size to one million can significantly
improve the model performance on both internal and external validation sets.

b MedSAM can be used to substantially reduce the annotation time cost. Source
data are provided as a Source Data file.
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Several exclusive criteria are applied to improve the dataset quality
and consistency, including incomplete images and segmentation tar-
gets with branching structures, inaccurate annotations, and tiny
volumes. Notably, image intensities varied significantly across differ-
ent modalities. For instance, CT images had intensity values ranging
from -2000 to 2000, while MR images exhibited a range of 0 to 3000.
In endoscopy and ultrasound images, intensity values typically span-
ned from 0 to 255. To facilitate stable training, we performed intensity
normalization across all images, ensuring they shared the same
intensity range.

For CT images, we initially normalized the Hounsfield units using
typical window width and level values. The employed window width
and level values for soft tissues, lung, and brain are (W:400, L:40),
(W:1500, L:-160), and (W:80, L:40), respectively. Subsequently, the
intensity values were rescaled to the range of [0, 255]. For MR, X-ray,
ultrasound,mammography, and optical coherence tomography (OCT)
images, we clipped the intensity values to the range between the 0.5th
and 99.5th percentiles before rescaling them to the range of [0, 255].
Regarding RGB images (e.g., endoscopy, dermoscopy, fundus, and
pathology images), if they were already within the expected intensity
range of [0, 255], their intensities remained unchanged. However, if
they fell outside this range, we utilized max-min normalization to
rescale the intensity values to [0, 255]. Finally, to meet the model’s
input requirements, all images were resized to a uniform size of
1024 × 1024 × 3. In the case of whole-slide pathology images, patches
were extracted using a slidingwindow approachwithout overlaps. The
patches located on boundaries were padded to this size with 0. As for
3D CT and MR images, each 2D slice was resized to 1024 × 1024, and
the channel was repeated three times to maintain consistency. The
remaining 2D images were directly resized to 1024 × 1024 × 3. Bi-cubic
interpolation was used for resizing images, while nearest-neighbor
interpolation was applied for resizing masks to preserve their precise
boundaries and avoid introducing unwanted artifacts. These standar-
dization procedures ensured uniformity and compatibility across all
images and facilitated seamless integration into the subsequent stages
of the model training and evaluation pipeline.

Network architecture
The network utilized in this study was built on transformer
architecture27, which has demonstrated remarkable effectiveness in
various domains such as natural language processing and image
recognition tasks25. Specifically, the network incorporated a vision
transformer (ViT)-based image encoder responsible for extracting
image features, a prompt encoder for integrating user interactions
(bounding boxes), and a mask decoder that generated segmentation
results and confidence scores using the image embedding, prompt
embedding, and output token.

To strike a balance between segmentation performance and com-
putational efficiency, we employed the base ViT model as the image
encoder since extensive evaluation indicated that larger ViT models,
such as ViT Large and ViT Huge, offered onlymarginal improvements in
accuracy7 while significantly increasing computational demands. Speci-
fically, the base ViT model consists of 12 transformer layers27, with each
block comprising a multi-head self-attention block and a Multilayer
Perceptron (MLP) block incorporating layer normalization35. Pre-training
was performed using masked auto-encoder modeling36, followed by
fully supervised training on the SAM dataset7. The input image
(1024× 1024× 3) was reshaped into a sequence of flattened 2D patches
with the size 16 × 16× 3, yielding a feature size in image embedding of
64×64 after passing through the image encoder, which is 16 ×down-
scaled. The prompt encodersmapped the corner point of the bounding
box prompt to 256-dimensional vectorial embeddings26. In particular,
each bounding box was represented by an embedding pair of the top-
left corner point and the bottom-right corner point. To facilitate real-
timeuser interactionsonce the imageembeddinghadbeencomputed, a

lightweight mask decoder architecture was employed. It consists of two
transformer layers27 for fusing the image embedding and prompt
encoding, and two transposed convolutional layers to enhance the
embedding resolution to 256× 256. Subsequently, the embedding
underwent sigmoid activation, followed by bi-linear interpolations to
match the input size.

Training protocol and experimental setting
During data pre-processing, we obtained 1,570,263 medical image-
mask pairs for model development and validation. For internal vali-
dation, we randomly split the dataset into 80%, 10%, and 10% as
training, tuning, and validation, respectively. Specifically, for mod-
alities where within-scan continuity exists, such as CT and MRI, and
modalities where continuity exists between consecutive frames, we
performed the data splitting at the 3D scan and the video level
respectively, by which any potential data leak was prevented. For
pathology images, recognizing the significance of slide-level cohe-
siveness, we first separated the whole-slide images into distinct slide-
based sets. Then, each slide was divided into small patches with a fixed
size of 1024 × 1024. This setup allowed us to monitor the model’s
performance on the tuning set and adjust its parameters during
training to prevent overfitting. For the external validation, all datasets
were held out and did not appear during model training. These data-
sets provide a stringent test of the model’s generalization ability, as
they represent new patients, imaging conditions, and potentially new
segmentation tasks that the model has not encountered before. By
evaluating the performance of MedSAM on these unseen datasets, we
can gain a realistic understanding of howMedSAM is likely to perform
in real-world clinical settings, where it will need to handle a wide range
of variability and unpredictability in the data. The training and vali-
dation are independent.

The model was initialized with the pre-trained SAM model with
the ViT-Base model. We fixed the prompt encoder since it can already
encode the bounding box prompt. All the trainable parameters in the
image encoder and mask decoder were updated during training.
Specifically, the number of trainable parameters for the image encoder
and mask decoder are 89,670,912 and 4,058,340, respectively. The
bounding boxpromptwas simulated from the expert annotationswith
a random perturbation of 0-20 pixels. The loss function is the
unweighted sum between dice loss and cross-entropy loss, which has
been proven to be robust in various segmentation tasks1. The network
was optimized by AdamW37 optimizer (β1 = 0.9, β2 = 0.999) with an
initial learning rate of 1e-4 and aweight decay of 0.01. The global batch
size was 160 and data augmentation was not used. The model was
trained on 20 A100 (80G) GPUs with 150 epochs and the last check-
point was selected as the final model.

Furthermore, to thoroughly evaluate the performance of Med-
SAM, we conducted comparative analyses against both the state-of-
the-art segmentation foundation model SAM7 and specialist models
(i.e., U-Net1 and DeepLabV3+24). The training images contained 10
modalities: CT, MR, chest X-ray (CXR), dermoscopy, endoscopy,
ultrasound, mammography, OCT, and pathology, and we trained the
U-Net and DeepLabV3+ specialist models for each modality. There
were 20 specialist models in total and the number of corresponding
training images was presented in Supplementary Table 5. We
employed the nnU-Net to conduct all U-Net experiments, which can
automatically configure the network architecture based on the dataset
properties. In order to incorporate the bounding box prompt into the
model, we transformed the bounding box into a binary mask and
concatenated it with the image as the model input. This function was
originally supported by nnU-Net in the cascaded pipeline, which has
demonstrated increased performance in many segmentation tasks by
using the binary mask as an additional channel to specify the target
location. The training settings followed the default configurations of
2D nnU-Net. Each model was trained on one A100 GPU with 1000
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epochs and the last checkpoint was used as the final model. The
DeepLabV3+ specialistmodels usedResNet5038 as the encoder. Similar
to ref. 3, the input images were resized to 224 × 224 × 3. The bounding
boxwas transformed into a binarymask as an additional input channel
to provide the object location prompt. Segmentation Models Pytorch
(0.3.3)39 was used to perform training and inference for all the
modality-wise specialist DeepLabV3+models. Each modality-wise
model was trained on one A100 GPU with 500 epochs and the last
checkpoint was used as the final model. During the inference phase,
SAM and MedSAM were used to perform segmentation across all
modalities with a singlemodel. In contrast, the U-Net and DeepLabV3+
specialist models were used to individually segment the respective
corresponding modalities.

A task-specific segmentationmodelmight outperformamodality-
based one for certain applications. Since U-Net obtained better per-
formance than DeepLabV3+ on most tasks, we further conducted a
comparison study by training task-specific U-Net models on four
representative tasks, including liver cancer segmentation in CT scans,
abdominal organ segmentation in MR scans, nerve cancer segmenta-
tion in ultrasound, and polyp segmentation in endoscopy images. The
experiments included both internal validation and external validation.
For internal validation, we adhered to the default data splits, using
them to train the task-specific U-Net models and then evaluate their
performance on the corresponding validation set. For external vali-
dation, the trained U-Netmodelswere evaluated onnewdatasets from
the same modality or segmentation targets. In all these experiments,
MedSAMwas directly applied to the validation sets without additional
fine-tuning. As shown in Supplementary Fig. 15, while task-specific U-
Net models often achieved great results on internal validation sets,
their performance diminished significantly for external sets. In con-
trast, MedSAM maintained consistent performance across both inter-
nal and external validation sets. This underscores MedSAM’s superior
generalization ability, making it a versatile tool in a variety of medical
image segmentation tasks.

Loss function
We used the unweighted sum between cross-entropy loss and dice
loss40 as the final loss function since it has been proven to be robust
across different medical image segmentation tasks41. Specifically, let
S,G denote the segmentation result and ground truth, respectively.
si, gi denotes the predicted segmentation and ground truth of voxel i,
respectively. N is the number of voxels in the image I. Binary cross-
entropy loss is defined by

LBCE = � 1
N

XN

i= 1

gi log si + ð1� giÞ logð1� siÞ
� �

, ð1Þ

and dice loss is defined by

LDice = 1� 2
PN

i= 1 gisiPN
i = 1 ðgiÞ2 +

PN
i= 1 ðsiÞ2

: ð2Þ

The final loss L is defined by

L= LBCE + LDice: ð3Þ

Human annotation study
The objective of the human annotation study was to quantitatively
evaluate how MedSAM can reduce the annotation time cost. Specifi-
cally, we used the recent adrenocortical carcinoma CT dataset34,42,43,
where the segmentation target, adrenal tumor, was neither part of the
training nor of the existing validation sets. We randomly sampled 10
cases, comprising a total of 733 tumor slices requiring annotations.
Two human experts participated in this study, both of whom are

experienced radiologists with 8 and 6 years of clinical practice in
abdominal diseases, respectively. Eachexpert generated twogroupsof
annotations, one with the assistance of MedSAM and one without.

In the first group, the experts manually annotated the 3D adrenal
tumor in a slice-by-slice manner. Annotations by the two experts were
conducted independently, with no collaborative discussions, and the
time taken for each case was recorded. In the second group, annota-
tions were generated after one week of cooling period. The experts
independently drew the long and short tumor axes as initial markers,
which is a common practice in tumor response evaluation. This pro-
cess was executed every 3-10 slices from the top slice to the bottom
slice of the tumor. Then, we applied MedSAM to segment the tumors
based on these sparse linear annotations, including three steps.

• Step 1. For each annotated slice, a rectangle binary mask was
generated based on the linear label that can completely cover
the linear label.

• Step 2. For the unlabeled slices, the rectangle binarymasks were
created through interpolation of the surrounding labeled slices.

• Step 3. We transformed the binary masks into bounding boxes
and then fed them along with the images into MedSAM to gen-
erate segmentation results.

All these stepswere conducted in anautomaticway and themodel
running time was recorded for each case. Finally, human experts
manually refined the segmentation results until they met their satis-
faction. To summarize, the time cost of the second group of annota-
tions contained three parts: initial markers, MedSAM inference, and
refinement. All the manual annotation processes were based on ITK-
SNAP44, an open-source software designed for medical image visuali-
zation and annotation.

Evaluation metrics
We followed the recommendations inMetrics Reloaded45 and used the
dice similarity coefficient and normalized surface distance (NSD) to
quantitatively evaluate the segmentation results. DSC is a region-based
segmentation metric, aiming to evaluate the region overlap between
expert annotationmasks and segmentation results,which is definedby

DSCðG, SÞ = 2jG \ Sj
jGj+ jSj ,

NSD46 is a boundary-based metric, aiming to evaluate the boundary
consensus between expert annotationmasks and segmentation results
at a given tolerance, which is defined by

NSDðG, SÞ = j∂G \ BðτÞ
∂S j+ j∂S \ BðτÞ

∂Gj
j∂Gj+ j∂Sj ,

where BðτÞ
∂G = fx 2 R3 j 9~x 2 ∂G, jjx � ~xjj≤ τg, BðτÞ

∂S = fx 2 R3 j 9~x 2 ∂S, jjx �
~xjj≤ τg denote the border region of the expert annotation mask and
the segmentation surface at tolerance τ, respectively. In this paper, we
set the tolerance τ as 2.

Statistical analysis
To statistically analyze and compare the performance of the afore-
mentioned four methods (MedSAM, SAM, U-Net, and DeepLabV3+
specialist models), we employed the Wilcoxon signed-rank test. This
non-parametric test is well-suited for comparing paired samples and is
particularly useful when the data does not meet the assumptions of
normal distribution. This analysis allowed us to determine if any
method demonstrated statistically superior segmentation perfor-
mance compared to the others, providing valuable insights into the
comparative effectiveness of the evaluated methods. The Wilcoxon
signed-rank test results are marked on the DSC and NSD score tables
(Supplementary Table 6–11).
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Software utilized
All code was implemented in Python (3.10) using Pytorch (2.0) as the
base deep learning framework. We also used several Python packages
for data analysis and results visualization, including connected-
components-3d (3.10.3), SimpleITK (2.2.1), nibabel (5.1.0), torchvision
(0.15.2), numpy (1.24.3), scikit-image (0.20.0), scipy (1.10.1), and pan-
das (2.0.2), matplotlib (3.7.1), opencv-python (4.8.0), ChallengeR
(1.0.5), and plotly (5.15.0). Biorender was used to create Fig. 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The training and validating datasets used in this study are available in
the public domain and can be downloaded via the links provided in
Supplementary Tables 16 and 17. Source data are provided with this
paper in the Source Data file. We confirmed that All the image datasets
in this study are publicly accessible and permitted for research pur-
poses. Source data are provided in this paper.

Code availability
The training script, inference script, and trained model have been
publicly available at https://github.com/bowang-lab/MedSAM. A per-
manent version is released on Zenodo47.
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