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Trajectory inference across multiple
conditions with condiments

Hector Roux de Bézieux 1,2, Koen Van den Berge 3,4,6, Kelly Street 5,7 &
Sandrine Dudoit 1,2,3,7

In single-cell RNA sequencing (scRNA-Seq), gene expression is assessed indi-
vidually for each cell, allowing the investigation of developmental processes,
such as embryogenesis and cellular differentiation and regeneration, at
unprecedented resolution. In such dynamic biological systems, cellular states
form a continuum, e.g., for the differentiation of stem cells into mature cell
types. This process is often represented via a trajectory in a reduced-
dimensional representation of the scRNA-Seq dataset. While many methods
have been suggested for trajectory inference, it is often unclear how to handle
multiple biological groups or conditions, e.g., inferring and comparing the
differentiation trajectories of wild-type and knock-out stem cell populations.
In this manuscript, we present condiments, a method for the inference and
downstream interpretation of cell trajectories across multiple conditions. Our
framework allows the interpretation of differences between conditions at the
trajectory, cell population, and gene expression levels. We start by integrating
datasets from multiple conditions into a single trajectory. By comparing the
cell’s conditions along the trajectory’s path, we can detect large-scale changes,
indicative of differential progression or fate selection. We also demonstrate
how todetect subtler changes byfinding genes that exhibit different behaviors
between these conditions along a differentiation path.

The emergence of RNA sequencing at the single-cell level (scRNA-
Seq) has enabled a new degree of resolution in the study of cellular
processes. The ability to consider biological processes as a con-
tinuous transition of cell states instead of individual discrete stages
has permitted a finer and more comprehensive understanding of
dynamic processes such as embryogenesis and cellular differ-
entiation. Trajectory inference (TI) was one of the first applications
that leveraged this continuum1 and a consequential number of
methods have been proposed since then2–4. Saelens et al.5 offer an
extensive overview and comparison of such methods. Analysis of
scRNA-Seq datasets using a curated database reveals that about half

of all datasets were used for trajectory inference6. At its core, TI
represents a dynamic process as a directed graph. Distinct paths
along this graph are called lineages. Individual cells are then pro-
jected onto these lineages and – given a root state (either user-
provided or automatically detected) – their distance along each
path is called pseudotime. In this setting, developmental processes
are often represented in a tree structure, while cell cycles are
represented as a loop. Following TI, other methods have been
proposed to investigate differential expression (DE) along or
between lineages, either as parts of TI methods3,7 or as separate
modules that can be combined to create a full pipeline8.
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Spearheaded by technological and laboratory developments
allowing increased throughput of scRNA-Seq studies, recent experi-
ments study dynamic systems affected by different experimental
perturbations or biological conditions. This includes, for example,
situations where a biological process is studied both under a normal
(or control) condition andunder an intervention suchas a treatment9–11

or a genetic modification12. In other instances, one may want to con-
trast healthy versus diseased13 cells or even more than two
conditions14. In steady-state systems, a reasonable approach consists
of clustering the cells into biologically relevant cell identities and
assessing differential abundance, i.e., imbalances between conditions,
for each cluster. However, in dynamic systems, clustering the cells and
assessing condition imbalances for each cluster ignores the continuity
of the cellular state transition process, making these approaches
suboptimal. For example, borrowing from the field of mass
cytometry15, milo16 and DAseq17 rely on a common low-dimensional
representation of all observations and define data-driven local neigh-
borhoods in which they test for differences in compositions. Each of
these methods shows clear improvements in performance over
cluster-based methods, which assess imbalances between conditions
for each cell state/type cluster, and provide a more principled
approach that better reflects the nature of the system.

However, many studies with multiple conditions actually involve
processes that can be described by a trajectory. Utilizing this under-
lying biology could increase both the interpretability of the results and
the ability to detect true andmeaningful changes between conditions.
In this manuscript, we present the condiments workflow, a general
framework to analyze dynamic processes under multiple conditions
that leverages the concept of a trajectory structure.While condiments
has a more specific focus thanmilo or DAseq, it compensates for this
by improving the quality of the differential abundance assessment
with better-performing tests and simplifying and enhancing the bio-
logical interpretation by breaking down the comparison into several
smaller and pertinent questions. Our proposed analysis workflow is
divided into three steps. In Step 1, condiments considers the trajec-
tory inference question, assessing whether the dynamic process is
fundamentally different between conditions, which we call differential

topology. In Step 2, it tests for global differences between conditions,
both along lineages – differential progression – and between lineages –
differential fate selection. Lastly, in Step 3, it estimates gene expression
profiles similarly to Van den Berge et al.8 and tests whether gene
expression patterns differ between conditions along lineages, there-
fore extending the scope of differential expression and improving on
cluster-based methods such as MAST18, scde18, or padoga219.

In this manuscript, we first present the condimentsworkflow, by
detailing the underlying statisticalmodel andproviding anexplanation
and intuition for each step. We then benchmark condiments against
more general methods that test for differential abundance to show-
case how leveraging the existence of a trajectory improves the
assessment of differential abundance. Finally, we demonstrate the
flexibility and improved interpretability of the condiments workflow
in three case studies that span a variety of biological settings and
topologies.

Results
General model and workflow
To help visualize the workflow, we first simulated toy datasets that
illustrate different scenarios that we will later encounter in our case
studies. In Fig. 1, we have four examples, one per column, with two
conditions each: a control condition and a knock-out (KO) condi-
tion. The first example represents a setting where there are no dif-
ferences at all between conditions. As we can see in the reduced-
dimensional representation (first row), the orange and blue cells are
similarly distributed. Therefore, we observe no differences, whe-
ther differential topology, differential progression, or differential
fate selection. In the second and third examples, cells differentiate
along the same structure so we have no differential topology. In the
second example, however, we can see that there are nearly no
orange cells at the beginning of the trajectory and that cells in the
KO condition progress faster: this is an example of differential
progression. In the third example, there are nearly no orange cells
after the bifurcation in the bottom lineage and cells in the KO
condition select the top lineage preferentially compared to the
control: this is an example of differential fate selection. Note that,

Fig. 1 | Illustrating the first two steps of the condiments workflowwith several
scenarios.Wehave four different toy datasets, one per column,with their reduced-
dimensional representation displayed in the first row. Each dataset contains 1, 000
cells equally distributed between two conditions: control in blue and knock-out
(KO) in orange. They represent possible outcomes from the first two steps of the
condiments workflow. The first dataset has no differences between the two con-
ditions. In the second dataset, the KO accelerates the differentiation process: we

therefore have differential progression, but neither differential topology nor
differential fate selection. In the third dataset, the KO blocks differentiation in the
bottom lineage: we therefore have differential fate selection and differential
progression, but no differential topology. Finally, in the fourth dataset, the KO
modifies the top lineage: we therefore have differential topology. The last row of
the table indicates case studies corresponding to each of the scenarios.
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since lineages are not distinguishable before they bifurcate, we only
see differential progression in the bottom lineage since orange cells
only progress along that lineage until the bifurcation. In the fourth
example, we can see that the top lineage is altered in the KO con-
dition: this is an example of differential topology and wewould infer
separate trajectories. We can still compare the lineages and, after
correcting for the differential topology, we see no differential
progression or differential fate selection. Case studies described in
a later section will give real-world examples of similar settings.

We now describe the data structure and statistical model. All
mathematical symbols used in this section are recapitulated in Table 1.
Weobserve gene expressionmeasures for Jgenes inn cells, resulting in
a J × n count matrix Y. For each cell i, we also know its condition label
c(i)∈ {1,…,C} (e.g.,"treatment” or “control”, “knock-out” or “wild-
type”). We assume that, for each condition c, there is an underlying
developmental structure Tc, or trajectory, that possesses a set of Lc
lineages.

For a given cell i with condition c(i), its position along the devel-
opmental path T cðiÞ is defined by two vectors: a vector of Lc(i) pseu-
dotimesTi, which represent how far the cell has progressed along each
lineage; and a unit-norm vector of Lc(i) weights Wi (∣∣Wi∣∣1 = 1), which
represents how likely it is that the cell belongs to each lineage. That is,
for each cell i, there is one pseudotime and one weight per lineage,
with:

Ti ∼GcðiÞ andWi ∼HcðiÞ: ð1Þ

The (multivariate) cumulative distribution functions (CDF) Gc and Hc

are condition-specific and we make limited assumptions on their
properties (see the Methods section for details). Using this notation,
we can properly define a trajectory inference (TI) method as a function
that takes as input Y – and potentially other arguments (e.g., cell
cluster labels) – and returns estimates of Lc, T, and W through the
estimate for Tc. That is, methods such as slingshot2 or monocle320 use

the count matrix to estimate the number of lineages, as well as the
pseudotime and lineage assignments (or weights) of each cell.

Thefirst question to ask inourworkflow (Step 1) is: Shouldwe fit a
common trajectory to all cells regardless of their condition? Or are the
developmental trajectories too dissimilar between conditions? To
demonstrate what this means, consider two extremes. For a dataset
that consists of a mix of bone marrow stem cells and epithelial stem
cells, using tissue asour condition, it is obvious that thedevelopmental
trajectories of the two conditions are not identical and should be
estimated separately. On the other hand, if we consider a dataset
where only a few genes are differentially expressed between condi-
tions, the impact on the developmental process will be minimal and it
is sensible to estimate a single common trajectory.

We favor fitting a common trajectory for several reasons. Firstly,
fitting a common trajectory is amore stable procedure sincemore cells
are used to infer the trajectory. Secondly, our workflow still provides
ways to test for differences between conditions even if a common
trajectory is inferred. In particular, fitting a common trajectory
between conditions does not require that cells of distinct conditions
differentiate similarly along that trajectory. Finally, fitting different
trajectories greatly complicates downstream analyses since we may
need tomap between distinct developmental structures in order to be
able to compare them (e.g., each lineage in the first trajectory must
match exactly one lineage in the second trajectory). Therefore, our
workflow recommends fitting a common trajectory if the differences
between conditions are small enough.

To quantify what small enough is, we rely on two approaches. The
first is a visual diagnostic tool called imbalance score. It requires as
input a reduced-dimensional representation X of the data Y and the
condition labels. Each cell is assigned a score that measures the
imbalance between the local and global distributions of condition
labels. Similarly to Dann et al.16,21, the neighborhood of a cell is defined
using a k-nearest neighbor graph on X, which allows the method to
scale very well to large values of n. Cell-level scores are then locally

Table 1 | Notation

Symbol Description

C The number of conditions in a dataset.

c(i) The condition label of the ith cell.

Gc Cumulative distribution function for the pseudotimes of a trajectory under condition c.
It represents how cells are distributed along the different lineages.

Hc Cumulative distribution function for the weights of a trajectory under condition c.
It represents how cells are distributed between the different lineages.

J The number of genes in a scRNA-Seq dataset.

L The number of lineages in a trajectory.

n The number of cells in a scRNA-Seq dataset.

sjlc The smoother that represents the gene expression pattern along lineage l for
gene j in condition c. It is a smooth function estimated by tradeSeq.

Ti The pseudotime for a cell i. For a trajectory with more than one lineage,
this is a vector, with one value per lineage. It measures how far the cell
has progressed along each lineage.

T c The structure of a trajectory under condition c. It is what trajectory inference
methods such as slingshot or monocle3 are trying to identify.

Wi The weights for a cell i. For a trajectory with more than one lineage,
this is a vector, with one value per lineage. It measures how close each cell is
to each lineage. A weight of 1 means the cell belongs only to that lineage;
a weight of 0 means the cell does not belong to that lineage.

X A reduced-dimensional representation of the dataset. For example, for UMAP,
this is a matrix with two columns, where each row gives the 2D coordinates of a cell
in that reduced dimension.

Y The count matrix. Each cell represents the expression level.
of a gene (row-wise) in a cell (column-wise).

The table provides the symbol, as well as a short explanation of what it represents. Symbols are listed in alpha-numerical order.
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scaled using smoothers in the reduced-dimensional space (see the
Methods section).

However, a visual representation of the scores may not always be
sufficient to decide whether or not to fit a common trajectory in less
obvious cases. Therefore, we introduce a more quantitative approach,
the topologyTest. This test assesses whether we can reject the fol-
lowing null hypothesis:

H0 : 8ðc1,c2Þ 2 f1, . . . ,Cg2,T c1
= T c2

: ð2Þ

We can test hypothesis (2) using the topologyTest, which involves
comparing the actual distribution of pseudotimes for condition-
specific trajectories to their distribution when condition labels are
permuted (see theMethods section for details). Sincewewant to favor
fitting a common trajectory and we only want to discover differences
that are not only statistically significant but also biologically relevant,
the tests typically include a minimum magnitude requirement for
considering the difference between distributions to be significant
(similar to a minimum log-fold-change for assessing DE). Examples of
results for the topologyTest can be seen in Fig. 1. In the first column,
there is no differential topology between the blue and orange
condition, while in the fourth column, the top lineage is different
between the two conditions.

In practice, the topologyTest requires maintaining a mapping
between each of the trajectories, both between conditions and
between permutations (see the Methods section where we define a
mapping precisely). Trajectory inference remains a semi-supervised
task, that generally cannot be fully automated. In particular, the
number of estimated lineages might change between different per-
mutations for a given condition, precluding a mapping. As such, the
topologyTest is only compatible with certain TI methods that allow
for the specification of an underlying skeleton structure, including
slingshot and TSCAN2,4. More details and practical implementation
considerations are discussed in the Methods section.

For Steps 2 and 3, we are no longer limited to specific TImethods.
Any TI method can be used as input. We can then ask whether cells
from different conditions behave similarly as they progress along the
trajectory.

The workflow then focuses on differences between conditions at
the trajectory level (Step 2) and asks: What are the global differences
between conditions? To facilitate the interpretation of the results, we
break this into two separate sub-questions.

Although the topology might be common, cells from different
conditions might progress at different rates along the trajectory (Step
2a). For example, a treatment might limit the cells’ differentiation
potential compared to the control, or instead speed it up. In the first
case, onewould expect to havemore cells at the early stages and fewer
at the terminal state, when comparing treatment and control. In the
second column of Fig. 1, we can see another example: there are more
orange cells at the latest stages of the trajectory, compared to the blue
cells. Using our statistical framework, testing for differential progres-
sion amounts to testing equality of the pseudotime distributions
between conditions:

H0 : 8ðc1,c2Þ 2 f1, . . . ,Cg2,Gc1
=Gc2

: ð3Þ

This test can also be conducted at the individual-lineage level, by
comparing univariate distributions.

In order to assess the null hypotheses in the progressionTest,
we rely on non-parametric tests to compare two ormore distributions,
e.g., the Kolmogorov-Smirnov test22 or the classifier test23. Moredetails
and practical implementation considerations are discussed in the
Methods section.

Although the topology might be common, cells in different con-
ditions might also differentiate in varying proportions between the

lineages (Step 2b). For example, an intervention might lead to cells
selecting one lineage over another, compared to the control condition,
or might alter survival rates of differentiated cells between two end
states. In the third column of Fig. 1, we can see another example: there
arenearly no orange cells at the later stage of the bottom lineage of the
trajectory, compared to the blue cells. Cells in the orange condition are
more likely to end up in the top lineage. In all examples above, the
weight distribution will be different between the control and treat-
ment. Assessing differential fate selection at the global level amounts
to testing, in our statistical framework, the null hypothesis of equal
weight distributions between conditions

H0 : 8ðc1,c2Þ 2 f1, . . . ,Cg2,Hc1
=Hc2

: ð4Þ

The above null hypotheses can again be tested by relying on non-
parametric test statistics. We also discuss specific details and practical
implementation in the Methods section. This test can also be
conducted for a single pair of lineages ðl,l0Þ.

The progressionTest and fateSelectionTest are quite
linked and will therefore often return similar results, as Fig. 1 shows.
However, they do answer somewhat different questions. In particular,
looking at single-lineage (progressionTest) and lineage-pair
(fateSelectionTest) test statistics will allow for a better under-
standing of the global differences between conditions. Differential fate
selection does not necessarily imply differential progression and vice
versa. The simulations will show some examples of this.

Steps 1 and 2 focus on differences at a global level (i.e., aggregated
over all genes) and will detect large changes between conditions.
However, such major changes are usually ultimately driven by under-
lying differences in gene expression patterns (Step 3). Furthermore,
even in the absence of global differences, conditions might still have a
more subtle impact at the gene level. In the third step, we therefore
compare gene expression patterns between conditions for each of the
lineages.

Following the tradeSeq manuscript by Van den Berge et al.8, we
consider a general and flexible model for gene expression, where the
gene expression measure Yji for gene j in cell i is modeled with the
negative binomial generalized additive model (NB-GAM) described in
Equation (11). We extend the tradeSeq model by additionally esti-
mating condition-specific average gene expression profiles for each
gene. We therefore rely on lineage-specific, gene-specific, and
condition-specific smoothers, sjlc.

With this notation, we can introduce the conditionTest, which,
for a given gene j, tests the null hypothesis that these smoothers are
identical across conditions:

H0 : sjlc1 = sjlc2 , 8ðc1,c2Þ,8l: ð5Þ

As in tradeSeq, we rely on the Wald test to test H0 in terms of the
smoothers’ regression coefficients. We can also use the fitted
smoothers to visualize condition-specific gene expression or cluster
genes according to their expression patterns.

Simulations
We generate multiple trajectories using the dyngen simulation fra-
mework provided by Cannoodt et al.24. Within this framework, it is
possible to knock out a specific gene. Here, we knock out a master
regulator that drives differentiation into the second lineage. The
strength of this knock-out can be controlled via amultiplier parameter
m: Ifm = 1, there is no effect; ifm = 0, the knock-out is total; if 0 <m < 1,
we have partial knock-out; if m > 1, the master regulator is over-
expressed and cells differentiatemuch faster along the second lineage.

Four types of datasets are generated: a) simple branching trajec-
tories (two lineages, e.g., Fig. 2a) of 3, 500 cells, with equal parts wild-
type and knock-out; b) trajectories with two consecutive branchings

Article https://doi.org/10.1038/s41467-024-44823-0

Nature Communications |          (2024) 15:833 4



(and thus three lineages, e.g., Fig. 2b) of 3, 500 cells, with equal parts
wild-type and knock-out; c) branching trajectories (two lineages) of
5, 000 cells with three conditions, wild-type, knock-out withmultiplier
m, and induction with multiplier 1/m (Fig. 2c); d) more complex tra-
jectories (five lineages, e.g, Fig. 2d) of 3, 500 cells, with equal parts
wild-type and knock-out.

Since the simulation framework cannot generate trajectories with
distinct topologies for the different conditions, we start the condi-
ments workflow at Step 2. We use either slingshot or monocle3
upstream of condiments. We compare the progressionTest and
fateSelectionTest to methods that also do not rely on clustering,
but instead take into account the continuum of differentiation.milo16

and DAseq17 both define local neighborhoods using k-nearest neigh-
bors graphs. They then look at differences of condition proportions in
these neighborhoods to test for what they call differential abundance.
These methods return multiple tests per dataset (i.e., one per neigh-
borhood), so we adjust for multiple hypothesis testing using the
Benjamini-Hochberg procedure for control of the false discovery rate
(FDR)25. By applying milo, DAseq, and condiments on the simulated
datasets,we can compare the results of the tests versus the values ofm:

We count a true positive when a test rejects the null and m ≠ 1, and a
true negative when the test fails to reject the null andm = 1. Note that
since monocle3 performs hard-assignments of cells to lineages, the
weight distributions are degenerate, and thus we cannot run the
fateSelectionTest downstream of this method.

We compare the methods’ ability to detect correct differences
between conditions using five measures: The true negative rate (TNR),
positive predictive value (PPV), true positive rate (TPR), negative pre-
dictive value (NPV), and F1-score, when controlling the FDR at a
nominal level of 5%. More details on the simulation scenarios and
performance measures can be found in the Methods section. Results
are displayed in Fig. 2e.

On all simulations, all methods display strong results for the TNR
and PPV. However, the performances for the TPR (power), NPV, and F1-
rate vary quite widely. On the datasets with two or three lineages, the
progressionTest, downstream of either slingshot or monocle3,
performs the best, followed by the fateSelectionTest, DAseq,-
DAseq, and milo. On the third simulation setting with three condi-
tions, we cannot benchmark DAseq since its testing framework is
restricted to two conditions. DAseq slightly outperforms the
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Fig. 2 | Simulated datasets. Four types of datasets are generated, with respectively
2, 3, 2, and 5 lineages, and 2, 2, 3, and 2 conditions (WT - wild type, KO - knock-out,
UP - upregulated). Reduced-dimensional representations of these datasets are
presented in panels (a–d). Fig. S6 shows the same plot as (d), using dimensions 3
and4, showing thatLineages 1 and2doseparate. After generatingmultiple versions
of the datasets for a range of values of m, representing more or less differences
between conditions, we compare the performance of the progressionTest after
running either slingshot or monocle3; the fateSelectionTest after running
slingshot; DAseq17 andmilo16, when controlling the false discovery rate at nominal
levels of 5% using the Benjamini-Hochberg25 procedure. In (e), each cell of the table

represents a performance measure associated with one test on one of the four
types of dataset, where the blue-to-yellow color palette corresponds to low-to-high
performance. Cells are also colored according to the performance measure.
Overall, the progressionTest and fateSelectionTest work well across all
datasets. DAseq also has good performances with two conditions, but cannot be
extended to more. Exact simulation parameters and performance measures are
specified in the Methods section. The poor performance of the fate-

SelectionTest for (d) is expected, since the effect only appears at the end of
Lineage 5, not at the branching itself.
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progressionTest on the dataset with 5 lineages although the results
are quite similar. On those datasets, the knock-out only affects the tip
of lineage 5 but not the proportion of cells that select that lineage.
Therefore, the fact that the fateSelectionTest has no power (. 01)
is expected. This displays the increased flexibility and interpretability
procured by the condiments workflow, while still outperforming
competitors.

The dyngen framework does not generate trajectories with dif-
ferential topology, therefore the correct workflow would be to fit a
common trajectory. We can nonetheless study the impact of fitting
separate trajectories on the rest of the workflow. We therefore con-
sider two settings: correctly fitting a common trajectory or incorrectly
fitting separate trajectories, to represent the two possible outcomes of
Step 1. We then compare the performance of the progressionTest
and fateSelectionTest in the two settings. The test performances
are identical for the progressionTest, and only slightly impacted in
the fateSelectionTest case, when looking at a receiver operating
characteristic (ROC) plot (see Fig. S5). The lower performance when
incorrectly fitting separate trajectoriesmay stem from the factwe tend
to have more false positives, which can be expected: fitting separate
trajectories when it is not needed amounts to over-fitting to the data.

Even if the correct decision is taken after Step 1, the trajectory
inferencemay still be imperfect. We therefore assess the performance
of the progressionTest as we add increasing noise to the true
simulated pseudotimes and lineage assignment values. Since the
dyngen framework assumes hard lineage assignments, we cannot test
thefateSelectionTest.With up to60%of cells improperly assigned
(noise of.3) and 200% noise on pseudotime (see the Methods section
for details), the progressionTest still correctly rejects the null at the
5% nominal significance level, showing that moderate errors in the
trajectory inference have small impact on the test outcome.
See Fig. S4.

This is also reflected in the previous simulations of Fig. 2. While
slingshot correctly identifies the proper number of lineages 98% of the
time, monocle3 only does so 54% of the time. This is probably because
the former allows for the specification of both start and endpoints,
while the latter only allows for a start point. Nonetheless, the perfor-
mance of the progressionTest following monocle3 is nearly iden-
tical to that downstream of slingshot.

We consider four real datasets as case studies for the application
of the condiments workflow. Table 2 gives an overview of these
datasets and summary results. These case studies aim to demonstrate
the versatility and usefulness of the condiments workflow, as well as
showcase how to interpret and use the tests in practice. The results for
the TGF-β dataset and the Fibrosis dataset are presented below while
the results for the TCDD and KRAS datasets are presented in Supple-
mentary Results. Preprocessing for all three datasets is described in
Supplementary Methods26–28.

TGF-β dataset
McFaline-Figueroa et al.9 studied the epithelial-to-mesenchymal tran-
sition (EMT), where cellsmigrate from the epithelium (inner part of the

tissue culturedish) to themesenchyme (outer part of the tissue culture
dish) during development. The developmental process therefore is
both temporal and spatial. Moreover, the authors studied this system
under two settings: a mock (control) condition and a condition under
activation of transforming growth factor β (TGF-β).

After pre-processing, normalization, and integration (see Sup-
plementary Methods S1.3), we have a dataset of 9, 268 cells, of which
5, 207 are mock and 4, 241 are TGF-β-activated. The dataset is repre-
sented in reduceddimension usingUMAP29 (Fig. 3a). Adding the spatial
label of the cells (Fig. 3b) shows that the reduced-dimensional repre-
sentation of the gene expression data captures the differentiation
process.

We can then run the condiments workflow, beginning with the
differential topology question. The imbalance score of each cell is
computed and displayed in Fig. 3c. Although some regions do display
strong imbalance in conditions, there is no specific pattern along the
developmental path. This is confirmed when we run the topolo-
gyTest, which has a nominal p-value of 0.38. We clearly fail to reject
the null hypothesis and we consequently fit a common trajectory to
both conditions using slingshot with the two spatial labels as clusters.
The resulting single-lineage trajectory is shown in Fig. 3d.

Next, we ask whether the TGF-β treatment impacts the differ-
entiation speed. The developmental stage of each cell is estimated
using its pseudotime. Plotting the per-condition kernel density esti-
mates of the pseudotime distributions in Fig. 3e reveals a strong
treatment effect. The pseudotime distribution for the mock cells is
trimodal, likely reflecting initial, intermediary, and terminal states. By
contrast, the initialmode is not present in the TGF-β condition, and the
second is skewed towards higher pseudotime values. This is very
consistent with the fact that the treatment is a growth factor that
would stimulate differentiation, as shown in the original publication
and confirmed in the literature on EMT30. Testing for equality of the
two distributions with the progressionTest confirms the visual
interpretation. The nominal p-value associated with the test is smaller
than 2.2 × 10−16 and we reject the null that the distributions are
identical. Since the trajectory is limited to one lineage, the fate-
SelectionTest is not applicable.

Then, we proceed to identifying genes whose expression patterns
differ between themock and TGF-β conditions. After gene filtering, we
fit smoothers to 10, 549 genes, relying on the model described in
Equation (11).We test whether the smoothers are significantlydifferent
between conditions using the conditionTest. Testing against a log-
fold-change threshold of 2, we find 1, 993 genes that are dynamically
differentially expressed between the two conditions when controlling
the falsediscovery rate at a nominal level of 5%. Figure 3f shows the two
genes with the highest Wald test statistic. The first gene, LAMC2, was
also found tobedifferentially expressed in the original publication and
has been shown to regulate EMT31. The second gene, TGFBI or TGF-β-
induced gene, is not surprising, and was also labelled as differentially
expressed in the original publication. The DE genes confirm known
biology around TGF-β signaling and EMT. For example, it is known that
TGF-β signaling occurs through a complex of TGF-β receptor 1

Table 2 | Summary of all case studies datasets

Dataset n C L topologyTest progressionTest fateSelectionTest DE

TGF-β9 9268 2 1 0.38 ≤2.2 × 10−16 NA 1, 993

Fibrosis34 14,462 2 2 1 ≤2.2 × 10−16 ≤2.2 × 10−16 3

TCDD10 9951 2 1 0.07 ≤2.2 × 10−16 NA 2, 144

KRAS49 10,177 3 3 ≤2.2 × 10−16 ≤2.2 × 10−16 ≤2.2 × 10−16 363

The table reports the name, number of cells n, number of conditionsC, number of lineages L for each dataset, as well as thep-value resulting from testing for differential topology, progression, and
fate selection, and the number of differentially expressed genes between conditions according to the conditionTest. Note that the fateSelectionTest cannot be run on a datasetwith only one
lineage. No adjustment was made for multiple testing.
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(TGFBR1) and TGF-β receptor 2 (TGFBR2)32, and both genes are found
to be significantly upregulated after TGF-β treatment (Fig. S10).
Looking at all 1, 906 DE genes, we can cluster and display their
expression patterns along the lineage for both conditions (Fig. 3g and
identify several groups of genes that have different patterns between
the two conditions. These groups of genes may be further explored to
better understand TGF-β induced EMT. For example, genes that are
differentially expressed later in the EMT may be further downstream
targets of TGF-β signaling.

Finally, weperformagene set enrichment analysis on all the genes
that are differentially expressed between the conditions using fgsea33.
We find two significant gene sets that differentiate treatment and
control: biological adhesion and locomotion. This is in full con-
cordance with the biology: the TGF-β treatment accelerates the
migration anddifferentiationof cells on the tissue culturedish. Indeed,
the TGF-β-accelerated EMT requires epithelial cells to disband inter-
cellular junctions and subsequently migrate to the mesenchyme.

We also reproduce the analysis using monocle3 as a trajectory
inference method. We cannot perform Step 1 with monocle3. We use
the results from Step1 with slingshot and fit a common trajectory:
monocle3 also finds a single lineage developmental path (Fig. 4a). We
can then test for differential progression and find the same result as
with slingshot: We have clear differential progression (p-value of
2.2 × 10−16). Likewise, we find that the Wald statistics from the con-
ditionTest are very highly correlated (Pearson correlation coeffi-
cient of 0.97) when performed downstream of either slingshot or
monocle3. Finally, using the same FDR nominal level as before, we find
1613 DE genes downstream of monocle3, 92% of which were also
deemed DE downstream of slingshot. Therefore, changing the trajec-
tory inference method has no strong impact on the downstream
analysis.

We can also compare the results produced byDAseq andmilo on
this dataset. Both methods find similar regions of differential abun-
dance (Fig. 4b, c), but the results are hard to interpret; they are not
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Fig. 3 | TGF-β dataset. Full workflow. After normalization and projection on a
reduced-dimensional space (using UMAP), the cells can be colored either by
treatment label (a) or spatial origin (b). Using the treatment label and the reduced-
dimensional coordinates, an imbalance score is computed and displayed (c). The
topologyTest fails to reject the null hypothesis of no differential topology, and a
common trajectory is therefore fitted and cells colored according to pseudotime
(d). However, there is differential progression between conditions, as indicated by
different pseudotime distributions along the trajectory (e), and we reject the null
using the progressionTest. The tradeSeq gene expression model is fitted using

the trajectory inferred by slingshot. Differential expression between conditions is
assessed using the conditionTest and genes are ranked according to their Wald
test statistic. The expression measures and fitted values as a function of pseudo-
time are displayed for the genes with the two highest test statistics (f). After
adjusting p-values of the conditionTest to control the FDR at a nominal level of
5%, we display expression fitted values for the DE genes for both conditions using a
pseudocolor image, where fitted values are scaled to a [0, 1] range for each gene
(blue-to-red color palette represents low-to-high expression) (g).
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linked to the trajectory so biological interpretation of the statistical
result is more challenging.

Fibrosis dataset
Habermann et al.34 investigated chronic interstitial lung diseases (ILD)
by sequencing 10 non-fibrotic control lungs and 20 ILD lungs. In its
later stage, the disease progresses to pulmonary fibrosis, associated
with epithelial tissue remodelling. The original paper uses scRNA-Seq
to investigate how this remodelling plays amongmany cell types.Here,
we focus on a subset of the data comprised of 14, 462 cells, with 5, 405
control and 9, 057 ILD cells. These data underlie Fig. 3 of the original
paper and focus on two cell lineages, starting from, respectively, AT2
and SCGB3A2+ cells, that each differentiate independently into
AT1 cells.

We use the pre-processed and normalized data from the original
paper to obtain the reduced-dimensional representation depicted in
Fig. 5a (colored by disease status) and Fig. 5b (colored by cell type as
defined in the original work). The reduced-dimensional representation
captures the differentiation process, with both AT2 cells and
SCGB3A2+ cells differentiating into AT1 cells through an intermediate
’transitory AT2’ stage. Moreover, the SCGB3A2+ cell type contains
nearly no control cells.

To divemore deeply into the differences between control and ILD
cells, we run the condiments workflow. The imbalance score, dis-
played in Fig. 5c, strongly validates the initial observation: TheAT2-AT1
lineage has relatively low imbalance scoreswhile the SCGB3A2+cluster
shows strong imbalance. Interestingly, the transitional AT2 cluster
shows no particular local imbalance, suggesting that it is indeed a
common stage for both lineages, as the original paper demonstrated.

We then run the topologyTest downstreamof slingshot (see the
Methods section). On the full dataset, the test’s p-value is 3.0 × 10−12:
estimating the lineages from each condition separately produces tra-
jectories that are far more divergent than what can be produced from
permutation. This is expected, as only 3% of the cells in the SCGB3A2+
cluster come from the control group.When the trajectory is estimated
with only the control cells, the SCGB3A2+ lineage is spuriously drawn
towards the AT2 cells (see Fig. S11).

However, when running the topologyTest after removing the
SCGB3A2+ cells (and therefore only focusing on the second lineage),
we fail to reject the null (p-value of 1). This common lineage can
therefore be estimated using both conditions, while the first is only
present in the treatment condition. We can therefore fit a common
trajectory to the full dataset, and we find the two lineages depicted
in Fig. 5d.

We can then move to Step 2 of the condiments workflow. The
fateSelectionTest gives clear results: its p-value is ≤2.2 × 10−16.
When we look at the distribution of lineage weights in Fig. 5e, we can

see three clear peaks: at 0 (the cell does not belong to that lineage),. 5
(the cell belongs to both lineages), and 1 (the cell only belongs to that
lineage). Because the sum of weights over the two lineages equals 1 for
eachcell, thedistribution of theweights along Lineage 2 is symmetrical
to the distribution along Lineage 1. We can clearly see that, for the
control condition, we have some cells that belong to both lineages
(weights of. 5), butmost cells belongonly to Lineage 2 (weights of 0 for
Lineage 1 and of 1 for Lineage 2). The fateSelectionTest provides a
principledway of assessing this. Note that the test is named based on a
setting where cells differentiate from a single root stage into multiple
endpoints. Here, since we have the reverse (multiple root stages pro-
gression to a similar endpoint), it would bemore appropriate to speak
of differential origins. Looking at distributions of pseudotimes rein-
forces the fact that few cells in control belong to lineage 1. On the first
lineage, most of the control cells are at the beginning of the lineage
while the ILD cells are more evenly distributed, with a strong con-
centration at the end (see Fig. 5f). On the second (shared) lineage,
there is some differential progression, but much less. Concordingly,
the progressionTest’s p-value is ≤2.2 × 10−16.

We can then proceed on to Step 3 and look for genes with dif-
ferent expression patterns between conditions, within a lineage. We fit
the smoothers to 10, 100 genes. Testing against a log-fold-change
threshold of 2, we find only 3 genes that are differentially expressed
between conditions, according to the conditionTest, when con-
trolling the FDR at a nominal level of 5%. This result might seem sur-
prising at first but it is expected. Indeed, if we had a reverse scenario
with a single root point and a branching into two lineages, we would
expect many genes to be differentially expressed between conditions,
thus driving the global differences we observed in Step 2. Here, how-
ever, all global differences come from the fact that there are only a
handful of control cells in the SCGB3A2+ stage. Once we account for
this, cells differentiate similarly. In the disease state, the AT2 to AT1
differentiation path is unchanged compared to the normal state; the
only difference is that AT1 cells can also originate from a new cell state
(SCGB3A2+).

To compare the two possible origins of AT1 cells, we can look for
genes that have strong dynamic differences between lineages,
regardless of condition. Using the patternTest from tradeSeq, we
find 1, 589 DE genes when controlling the FDR at a nominal level of 5%.
The gene with the strongest difference between the two lineages is the
SCGB3A2 gene (Fig. S12a). This gene was also listed in the original
paper, as well as 3 other genes: SFTPC, ABCA3, and AGER (see
Fig. S12b–d). While our workflow confirms all four candidate genes as
DE genes, we additionally identify many more to be further investi-
gated. To further explore the relevance of these DE genes, we perform
a gene set enrichment analysis on all the genes that are differentially
expressed between the lineages. The top enriched gene sets include

Fig. 4 | TGF-β dataset. Alternate analyses. Using monocle3 to infer the trajectory
also yields a single-lineage trajectory (a), albeit different than the one inferred by
slingshot. After inferring the trajectory with monocle3, there is also differential
progression: the pseudotime distributions along the trajectory are not identical

and we indeed reject the null hypothesis using the progressionTest. On the
other hand, whileDAseq (b) andmilo (c) correctly identify that there is differential
abundance, their results are much harder to interpret.
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adhesion, defense response, cell proliferation, epithelium develop-
ment and morphogenesis, as well as immune response (Supplemen-
tary Table S1); biological processes that are all relevant to the system
being studied.

Discussion
In thismanuscript, we have introduced condiments, a full workflow to
analyze dynamic systems undermultiple conditions. By separating the
analysis into several steps, condiments offers a flexible framework
with increased interpretability. Indeed,we follow anatural progression
through a top-down approach, by first studying overall between-
condition differences in trajectories with the topologyTest, then
differences in abundance at the trajectory level with the pro-
gressionTest and fateSelectionTest, and finally gene-level dif-
ferences in expression with the conditionTest.

As demonstrated in the simulation studies, taking into account
the dynamic nature of biological systems via the trajectory repre-
sentation enables condiments to better detect true changes between
conditions. The flexibility offered by our implementation, which pro-
vides multiple non-parametric tests for comparing distributions, also
allows us to investigate a wide array of scenarios. This is evident in the
four case studies presented in the manuscript. Indeed, in the TGF-β
case study we have a developmental system under treatment and
control conditions, while in the Fibrosis case study we compare a
normal systemand its disease counterpart. In the TCDDcase study, the
continuum does not represent a developmental process but rather
spatial separation. In theKRAScase study, the conditions donot reflect
different treatments but instead different cancer models. This shows
that condiments can be used to analyze a wide range of datasets.

Taking batch effects into account can be difficult, particularly as
the different conditions often also represent different batches. Indeed,
some interventions cannot be delivered on a cell-by-cell basis and this
creates unavoidable confounding between batches and conditions.
Normalization and integration of the datasets must therefore be done

without eliminating the underlying biological signal. This balance can
be hard to strike, as discussed in Zhao et al.17. Proper experimental
design – such as having several batches per condition – or limiting
batch effects as much as possible – for example, sequencing a mix of
conditions together – can help lessen this impact. In settings where
there is no confounding of batches and conditions, condiments offers
additional tools to better performbatch correction. Still, some amount
of confounding is sometimes inherent to the nature of the problem
under study.

Normalization can still remove most of the batch effects before
performing trajectory inference. If the normalization is insufficient,
this might lead to rejecting the null in the topologyTest, as seen in
the KRAS case study. In that setting, it is still possible to perform the
downstream analysis: fitting one trajectory per condition is in fact a
way to account for the remaining batch effects and therefore solve the
issue for Step 2. Finally, when fitting smoothers to gene expression
measures in Step 3, it is possible to add covariates such as batch, if
batches are not fully confounded with conditions.

The tests used in the workflow (e.g., Kolmogorov-Smirnov test)
assume that the pseudotime and weight vectors are known and inde-
pendent random variables for each cell. However, this is not the case;
they are estimated using TI methods which use all samples to infer the
trajectory, and each estimate inherently has some uncertainty. Here,
we ignore this dependence, as is the case in other differential abun-
dance methods, which assume that the reduced-dimensional coordi-
nates are observed independent random variables even though they
are being estimated using the full dataset. We stress that, rather than
attaching strong probabilistic interpretations to p-values (which, as in
most RNA-Seq applications, would involve a variety of hard-to-verify
assumptions and would not necessarily add much value to the analy-
sis), we view the p-values produced by the condiments workflow as
useful numerical summaries for guiding the decision to fit a common
trajectory or condition-specific trajectories and for exploring trajec-
tories across conditions and identifying genes for further inspection.
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Fig. 5 | Fibrosis dataset. Step 1 and 2. After normalization and projection on a
reduced-dimensional space (using UMAP), the cells can be colored either by dis-
ease status (a) or cell type (b). Using the disease status and the reduced-
dimensional coordinates, an imbalance score is computed and displayed (c). The
topologyTest fails to reject the null hypothesis of no differential topology and a

common trajectory is therefore fitted (d). However, there is both differential fate
selection and differential progression between conditions. The weight distribu-
tions (e) and the pseudotime distributions (f) are not identical between conditions,
and we indeed reject the nulls using, respectively, the fateSelectionTest and
the progressionTest.
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Other methods have been presented that can generate p-values with
probabilistic interpretation35,36. However, current methods are
restricted to only one lineage, or scale poorly beyond a thousand cells,
showing the need for further work in this domain.

Splitting the data into two groups, where the first is used to esti-
mate the trajectory and the second is used for pseudotime and weight
estimation could, in theory, alleviate the dependence issue, at the cost
of smaller sample sizes. However, this would ignore the fact that, in
practice, users perform exploratory steps using the full data before
performing the final integration, dimensionality reduction, and tra-
jectory inference. Moreover, results on simulations show that all
methods considered keep excellent control of the false discovery rate
despite the violation of the independence assumptions. This issue of
“double-dipping” therefore seems to have a limited impact in practice.

The two issues raised in the previous paragraphs highlight the
need for independent benchmarking. Simulation frameworks such as
dyngen24 arecrucial. They alsoneed tobe complementedby real-world
case studies, which will become easier as more andmore datasets that
studydynamic systemsundermultiple conditions are being published.
condiments has thus been developed to be a general and flexible
workflow that will be of use to researchers asking complex and ever-
changing questions.

Methods
Tests for equality of distributions
Consider a set ofn i.i.d. observations,X, withXi ~P1, and a second set of
m i.i.d. observations, Y, with Yj ~P2, independent fromX. For example,
in our setting, X and Ymay represent estimated pseudotimes for cells
from two different conditions. We limit ourselves to the case where X
and Y are random vectors of the same dimension d.

The general goal is to test the null hypothesis that X and Y have
the same distribution, i.e., H0:P1 =P2.

The two-sample and weighted Kolmogorov-Smirnov test
Consider the case where X and Y are scalar random variables (i.e.,
d = 1). The associated empirical cumulative distribution functions
(ECDF) are denoted, respectively, by F1,n and F2,m. The univariate case
occurs, for example, when there is only one lineage in the tra-
jectory(ies), so that the pseudotime estimates are scalars.

In this setting, one can test H0 using the standard Kolmogorov-
Smirnov test22, with test statistic defined as:

Dn,m � sup
x

∣F1,nðxÞ � F2,mðxÞ∣:

The rejection region at nominal level α is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1
2
× log

α
2
×
n+m
n×m

r
,1

" !
:

That is, we reject the null hypothesis at the α-level if and only
if Dn,m ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=2 × logα=2 × n+m

n×m

q
.

We can also consider a more general setting where we have
weights w1,i∈ [0, 1] and w2,j∈ [0, 1] for each of the observations,
i = 1,…, n and j = 1,…,m. In trajectory inference, the weights may
denote the probability that a cell belongs to a particular lineage in the
trajectory. Following Monahan37, we modify the Kolmogorov-Smirnov
test in two ways. Firstly, the empirical cumulative distribution func-
tions are modified to account for the weights

F1,nðxÞ= 1Pn

i= 1
w1,i

Pn
i= 1

w1,i × I ð�1,x�ðXiÞ

F2,mðxÞ= 1Pm

j = 1
w2,j

Pm
j = 1

w2,j × I ð�1,x�ðYjÞ:

Secondly, the definition of Dn,m is unchanged, but the significance
threshold is updated, that is, the rejection region is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where

n0 =

Pn
i= 1 w1,i

� �2Pn
i= 1 w

2
1,i

and m0 =

Pm
j = 1 w2,j

� �2

Pm
j = 1 w

2
2,j

:

The multivariate classifier test
Suppose that we have a binary classifier δ( ⋅ ), which could be, for
example, a multinomial regression or SVM classifier. This classifier is a
function from the support of X and Y into {1, 2}. The data are first split
into a learning and a test set, such that the test set contains ntest
observations, equally-drawn from each population, i.e., there are ntest/
2 observationsX(test) fromX and ntest/2 observationsY(test) fromY. Next,
the classifier is trained on the learning set. We denote by Acc � jfi :
δðXðtestÞ

i Þ= 1gSf j : δðYðtestÞ
j Þ=2gj the number of correct assignations

made by the classifier on the test set.
If n =m, under the null hypothesis of identical distributions, no

classifier will be able to perform better on the test set than a random
assignment would, i.e., where the predicted label is a Bernoulli(1/2)
random variable. Therefore, testing the equality of the distributions of
X and Y can be formulated as testing

H0 : E½Acc�= ntest

2
vs. H1 : E½Acc�> ntest

2
:

Under the null hypothesis, the distribution of Acc is:

Acc∼ H0
Binomðntest,1=2Þ:

As detailed in Lopez-Paz and Oquab23, one can use the classifier to
devise a test that will guarantee the control of the Type 1 error rate.

In practice, we make no assumptions about the way in which the
distributions we want to compare might differ, which means the
classifier needs to be quite flexible. Following Lopez-Paz and Oquab23,
we chose to use either a k-nearest-neighbor classifier (k-NN) or a
Random Forests classifier38, since such classifiers are fast and flexible.
Hyper-parameters are chosen through cross-validation on the learning
set. To avoid issues with class imbalance, we downsample the dis-
tribution with the largest number of samples first so that each dis-
tribution has the same number of observations. That is, we have
n0 = minðm,nÞ observations in each condition (or class). A fraction (by
default 30%, user-defined) is kept as test data, so thatntest = 0:3 ×n

0.We
then train the classifier on the learning data, and select the tuning
parameters through cross-validation on that learning set. Finally, we
predict the labels on the test set and compute the accuracy of the
classifier on that test set. This yields our classifier test statistic.

It is interesting to note that the classifier test is valid nomatter the
classifier chosen. However, the choice of classifier will have obvious
impact on the power of the test.

Other multivariate methods
Although we have found that the classifier test performs best in
practice, there are many methods that test for the equality of two
multivariate distributions. We have implemented a few such methods
in condiments, in case users would like to try them: The two-sample
kernel test39, the permutation test relying on the Wasserstein
distance40,41, or the distinct method42. (see descriptions in the Sup-
plementary Methods S1.1).
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Extending the setting to more than two distributions
Consider C ≥ 2 sets of samples, such that, for c∈ {1,…,C}, we have nc
i.i.d. observations X(c) with XðcÞ

i ∼Pc. We want to test the null hypoth-
esis:

H0 : Pc1
=Pc2

, 8c1,c2 2 f1, . . . ,Cg and c1 ≠ c2:

While extensions of the Kolmogorov-Smirnov test43 and the two-
sample kernel test44 have been proposed, we choose to focus only on
the framework that is most easily extended to C conditions, namely,
the classifier test. Indeed, the C-condition classifier test requires
choosing a multiple-class classifier instead of a binary classifier (which
is the case for the k-NN classifier andRandomForests), selecting ntest/C
observations for each class in the test set, and testing:

H0 : E½Acc�= ntest

C
vs. H1 : E½Acc�>

ntest

C
:

Under the null hypothesis, the distribution of Acc is:

Acc∼ H0
Binomðntest,1=CÞ:

Extending the setting by considering an effect size
The null hypothesis of the (weighted) Kolmogorov-Smirnov test is
H0 : P1 = P2.We canmodify this null hypothesis by considering an effect
size threshold t, such that H0ðtÞ : supx ∣P1ðxÞ � P2ðxÞ∣≤ t. The test sta-
tistic is then modified as:

D0
n,m � maxðDn,m � t,0Þ

and the remainder of the testing procedure is left unchanged.
Similarly, the null and alternative hypotheses of the classifier test

can be modified to test against an effect size threshold t as follows

H0 : E½Acc�≤ ntest

C
+ t vs. H1 : E½Acc�>ntest

C
+ t:

General statistical model for the trajectories
Consider a set of condition labels c∈ {1,…,C} (e.g.,"treatment” or
“control”, “knock-out” or “wild-type”). For each condition, there is a
given topology/trajectory Tc that underlies the developmental pro-
cess. This topology is generally in the form of a tree, with a starting
statewhich thendifferentiates alongoneormore lineages; but one can
also have a circular graph, e.g., for the cell cycle. In general, a trajectory
is defined as a directed graph.

We denote by Lc the number of unique paths – or lineages – in the
trajectory Tc. For example, for a tree structure, paths go from the root
node (stem cell type) to the leaf nodes (differentiated cell type). For a
cell cycle, any node can be be used as the start. A cell i from condition
c(i) is characterized by the following random variables:

Ti ∼GcðiÞ : Avector of pseudotimes, oneper lineageof T cðiÞ
Wi ∼HcðiÞ : Avector of weights, one per lineageof T cðiÞ, s.t. jjWijj1 = 1:

Note that the distribution functions are condition-specific. We further
make the following assumptions:

• All Gc and Hc distributions are continuous;
• The support of Gc is bounded in RLc for each c;
• The support of Hc is ½0,1�Lc for each c.

The gene expressionmodelwill be discussedbelow, in the Testing
for differential expression section.

Many algorithms have been developed to infer lineages from
single-cell data5. Most algorithms provide a binary indicator of lineage
assignment, that is, theWi vectors are composed of 0s and 1s, so that a
cell either belongs to a lineage or it does not. (Note that when cells fall
along a lineage prior to a branching event, this vector may include
multiple 1s, violating our constraint that theWi have unit norm. In such
cases, we normalize the weights to sum to 1).

Mapping between trajectories
Many of the tests that we introduce below assume that the cells from
different conditions follow “similar” trajectories. In practice, this
means that we either have a common trajectory for all conditions or
that there is a possiblemapping fromone lineage to another. The term
“mapping” is more rigorously defined as follows.

Definition 1. The trajectories fTc : c 2 f1, . . . ,Cgg have a mapping if and
only if∀ (c1, c2)∈ {1,…,C}2, T c1

and T c2
are isomorphic.

If there is a mapping, this implies in particular that the number of
lineages Lc per trajectory Tc is the same across all conditions c and we
call this this common value L. Since a graph is always isomorphic with
itself, a common trajectory is a special case of a situationwhere there is
a mapping.

Definition2. The trajectories fTc : c 2 f1, . . . ,Cgg haveapartialmapping
if and only if∀ (c1, c2)∈ {1,…,C}2, there exist subgraphs T 0

c1
� T c1

and
T 0

c2
� T c2

that are isomorphic.
Essentially, this means that the changes induced by the various

conditions do not disturb the topology of the original trajectory too
much. The above mathematical definitions aim to formalize what too
much is. Indeed, if the conditions lead to very drastic changes, it will be
quite obvious that the trajectories are different and comparing them
will mostly be either non-informative or will not require a complex
framework. We aim to build a test that retains reasonable power in
more subtle cases.

Imbalance score
Consider a set of n cells, with associated condition labels c(i)∈ {1,…,C}
and coordinate vectors Xi in d dimensions, usually corresponding to a
reduced-dimensional representation of the expression data obtained
via PCA or UMAP29,45, i = 1,…, n.

Let p= fpcgc2f1,...,Cg denote the “global” distribution of cell condi-
tions, where pc is the overall proportion of cells with label c in the
sample of size n. The imbalance score of a cell reflects the deviation of
the “local” distribution of conditions in a neighborhood of that cell
compared to the global distribution p. Specifically, for each cell i, we
compute its k-nearest-neighbor graph using the Euclidean distance in
the reduced-dimensional space.We therefore have a set of kneighbors
and a set of associated neighbor condition labels ci,κ for κ∈ {1,…, k}.
We then assign to the cell a z-score, based on the multinomial test
statistic Pðfci,κgκ2f1,...,kg,pÞ, as defined in supplementary section S1.2.
Finally, we smooth the z-scores in the reduced-dimensional space by
fitting s cubic splines for each dimension. The fitted values for each of
the cells are the imbalance scores. Thus, the imbalance scores rely on
two user-defined parameters, k and s. We set default values of 10 for
both parameters. However, since this is meant to be an exploratory
tool, we encourage users to try different values for these tuning
parameters and observe the effect on the imbalance scores to better
understand their data.

Differential topology
The imbalance scoreonly provides an exploratory visual assessment of
local imbalances in the distribution of cell conditions. However, we
need a more global and formal way to test for differences in topology
between condition-specific trajectories. That is, wewish to test the null
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hypothesis

H0 : T c1
= T c2

,8ðc1,c2Þ 2 f1, . . . ,Cg2: ð6Þ

In practice, in order to test H0, we have a set of cells i with condition
labels c(i). Not all trajectory inference methods define T in the same
way, but they all do estimate pseudotimes. We can thus estimate the
pseudotimes of each cell when fitting a trajectory for each condition.
We then want to compare this distribution of pseudotimes to a null
distribution of pseudotimes corresponding to a common topology. To
generate this null distribution, we use permutations in the following
manner:
a. Estimate Ti for each i by inferring one trajectory per condition,

using any trajectory inference method.
b. Randomly permute the condition labels c(i) to obtain new labels

cðiÞ0, re-estimate T0
i for each i.

c. Repeat the permutation r times (by default, r = 100).

Under the null hypothesis of a common trajectory, the nTi should
therefore be drawn from the same distribution as the r × nT0

i. We can
test this using the weighted Kolmogorov-Smirnov test (if L = 1), the
kernel two-sample test (if C = 2), or the classifier test (any C). This is the
topologyTest.

The aforementioned tests require that the samples be indepen-
dent between the distributions under comparison. However, here, the
two distributions correspond to different pseudotime estimates for
the same cells so the samples are not independent. Even within dis-
tributions, the independence assumption is violated, as the pseudo-
times are estimated using trajectory inferencemethods that rely on all
samples. Moreover, within the T0

i, we have r pseudotime estimates of
each cell.

The first two violations of the assumptions are hard to avoid and
are further addressed in the Discussion section. However, we can
eliminate the third one by simply taking the average T0

i for each cell.
We then compare two distributions each with n samples. Both options
(with and without averaging) are implemented in the condiments R
package, but the default is the average.

Under the null, there should exist amapping between trajectories,
both within conditions and between permutations. However, in prac-
tice, most trajectory inference methods will be too unstable to allow
for automatic mapping between the runs. Indeed, they might find a
different number of lineages for some runs. Moreover, even if the
number of lineages and graph structure remained the same across all
permutations, mapping between permutations would break even
more the independence assumption since the condition labels would
need to be used.

Therefore, for now, the topologyTest test is limited to two
trajectory inference methods, slingshot2 and TSCAN4, where a set
graph structure can be prespecified. Both methods rely on con-
structing a minimum spanning tree (MST) on the centroids of input
clusters in a reduced-dimensional space to model branching lineages.
In TSCAN, a cell’s pseudotime along a lineage is determined by its
projection onto a particular branch of the tree and its weight of
assignment is determined by its distance from the branch. slingshot
additionally fits simultaneous principal curves. A cell’s pseudotime
along a lineage is determined by its projection onto a particular curve
and its weight of assignment is determined by its distance from
the curve.

We therefore construct the MST on the full dataset (i.e., using all
the cells regardless of their condition label), based on user-defined
cluster labels. Then, we keep the same graph structure as input to
either TI method: the nodes are the centers of the clusters, but
restrained to cells of a given condition. This way, the path and graph
structure are preserved. Note, however, that there is no guarantee that
the graph remains the MST when it is used for TI on a subset of cells.

In the examples from Fig. S1, the skeleton of the trajectory is
represented by a series of nodes and edges. In examples S1b-d, the
knock-out (KO) has no impact on this skeleton compared to the wild-
type (WT). In example S1e, the knock-outmodifies the skeleton, in that
the locations of thenodes change.However, the adjacencymatrix does
not change and the two skeletons represent isomorphicgraphs, so that
the skeleton structure is preserved.

A common skeleton structure can also be used if the null
hypothesis of the topologyTest is rejected. The availability of a
mapping between lineages means that the next steps of the workflow
can be conducted as if we had failed to reject the null hypothesis, as
done in Fig. S1e. The KRAS (supplementary section S-2.8) case study
presents an example of this. Even if the null is rejected by the topo-
logyTest and separate trajectories must be fitted for each condition,
a common skeleton structure can still be used to map between tra-
jectories. In cases where no common skeleton structure exists, such as
Fig. S1f, no automatic mapping exists. Differential abundance can be
assessed but requires a manual mapping. Differential expression can
still be conducted as well.

Testing for differential progression
The progressionTest requires that a (partial) mapping exist
between trajectories, or that a common trajectory be fitted across
conditions. If the mapping is only partial, we restrict ourselves to the
mappable parts of the trajectories (i.e., subgraphs).

For a given lineage l, we want to test the null hypothesis that the
pseudotimes along the lineage are identically distributed between
conditions, whichwe call identical progression. Specifically, we want to
test that the lth components Glc of the distribution functions Gc are
identical across conditions

H0 : Glc1
=Glc2

,8ðc1,c2Þ: ð7Þ

We can also test for global differences across all lineages, that is,

H0 : Gc1
=Gc2

,8ðc1,c2Þ: ð8Þ

If C = 2, all tests introduced at the beginning of the Methods section
can be used to test the hypothesis in Equation (7). If C > 2, we need to
rely on the classifier test.

If L = 1, the hypotheses in Equations (7) and (8) are identical.
However, for L > 1, the functionsGc are not univariate distributions and
this requires different testing procedures.

For L > 1, we can use observational weights for each cell corre-
sponding to the probability that it belongs to each individual lineage.
Two settings are possible.

• Test the null hypothesis in Equation (7) for each lineage using
the Kolmogorov-Smirnov test and perform a global test using
the classifier test or the kernel two-sample test.

• Test thenull hypothesis in Equation (7) for each lineageusing the
Kolmogorov-Smirnov test and combine the p-values pl for each
lineage l using Stouffer’s Z-scoremethod46, where each lineage is
associated with observational weights Wl =

Pn
i = 1 Wi½l�, with

Wi[l] the lth-coordinate of the vector Wi. The nominal p-value
associated with the global test is then

pglob �
PL

l = 1 WlplffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
i = 1 W

2
l

q :

Note that the second setting violates the assumption of Stouffer’s
Z-scoremethod, since the p-values are not i.i.d. However, this violation
does not seem to matter in practice and this test outperforms others,
so we set it as default.
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Testing for differential fate selection
The fateSelectionTest requires that a (partial) mapping exist
between trajectories. If the mapping is only partial, we restrict our-
selves to the mappable parts of the trajectories.

For a given pair of lineages fl,l0g, we want to test the null
hypothesis that the cells differentiate between l and l0 in the same way
between all conditions, which we call identical fate selection. Specifi-
cally, wewant to test that the lth and l0th components of the distribution
functions Hc for the weights are the same across conditions

H0 : 8ðc1,c2Þ,½Hlc1
,Hl0c1

�= ½Hlc2
,Hl0c2

�: ð9Þ

We can also test for a global difference across all pairs of lineages,
that is,

H0 : 8ðc1,c2Þ,Hc1
=Hc2

: ð10Þ

Since all variables are multivariate, we cannot use the Kolmogorov-
Smirnov test. By default, this test relies on the classifier test with
random forests as a classifier.

Testing for differential expression
The gene expression model does not require a mapping or even a
partial mapping between trajectories. Indeed, it can work equally well
with a common trajectory, different trajectories, or even partially
shared trajectories where some lineages can be mapped between the
trajectories for various conditions and others cannot. To reflect this,
we consider all Ltot lineages together. We introduce a new weight
vector for each cell:

Zi = fZilcgl2f1,...,Ltot g,c2f1,...,Cg s.t.
Zilc = 0, if cðiÞ≠ c or l =2T cðiÞ

fZilcðiÞgl2fl:l2T cðiÞg ∼ MðWiÞ, otherwise
,

(

where MðWiÞ is a binary (or one-hot) encoding representation of a
multinomial distribution with proportions Wi as in tradeSeq, i.e.
PðZilcðiÞ = 1Þ=Wi½l� if l 2 T cðiÞ, and l ∈ Tc(i) is an abuse of notation to
denote that a lineage belongs to a particular trajectory.

Likewise, we modify the pseudotime vectors to have length Ltot,
such that

Tli =
0, if l =2 T cðiÞ
Ti½l�, otherwise

�
:

We adapt the model from Van den Berge et al.8 to allow for
condition-specific expression. For a given gene j, the expression
measure Yji for that gene in cell i can be modeled as:

Y ji ∼ NBðμji,ϕjÞ
logðμjiÞ = ηji

ηji =
PLtot
l = 1

PC
c = 1

sjlcðTliÞZilc +Uiαj + logðNiÞ

8>>>><
>>>>:

, ð11Þ

where themeanμjiof thenegative binomial distribution is linked to the
additive predictor ηji using a logarithmic link function. The U matrix
represents an additional designmatrix, corresponding, for example, to
a batch effect, and Ni represents sequencing depth, i.e., Ni =∑jYij.

Themodel relies on lineage-specific, gene-specific, and condition-
specific smoothers sjlc, which are linear combinations of K cubic basis
functions, sjlcðtÞ=

PK
k = 1 bkðtÞβjlck .

With this notation, we can introduce the conditionTest, which,
for a given gene j, tests the null hypothesis that the smoothers are

identical across conditions:

H0 : 8ðc1,c2Þ,8k,8l,βjlc1k
=βjlc2k

: ð12Þ

We fit the model using the mgcv package47 and test the null
hypothesis using a Wald test for each gene. Note that, although the
gene expression model can be fitted without any mapping, the con-
ditionTest only exists for lineages with a mapping for at least two
conditions.

Furthermore, rather than attaching strong probabilistic inter-
pretations to p-values (which, as in most RNA-seq applications, would
involve a variety of hard-to-verify assumptions and would not neces-
sarily add much value to the analysis), we view the p-values produced
by the condiments workflow simply as useful numerical summaries
for exploring trajectories across conditions and identifying genes for
further inspection.

Simulation study
The simulation study relies on the dyngen framework of Cannoodt
et al.24 and all datasets are simulated as follows. 1/ A common trajectory
is generated, with an underlying gene network that drives the differ-
entiation along the trajectory. 2/ A set of NWT cells belonging to the
wild-type condition (i.e., with no modification of the gene network) is
generated. 3/ Onemaster regulator that drives differentiation into one
of the lineages is impacted, by multiplying the wild-type expression
rate of that gene by a factor m. If m = 1, there is no effect; if m > 1, the
gene is over-expressed; and ifm < 1, the gene is under-expressed, with
m =0 amounting to a total knock-out. 4/ A set of NKO=NWT knock-out
cells is generated using the common trajectory with themodified gene
network. 5/ A common reduced-dimensional representation is com-
puted using multidimensional scaling.

We generate four types of datasets, over a range of values ofm: a
simple trajectory with L = 2 lineages and C = 2 conditions (WT and KO)
denoted by T 1; a trajectory with two consecutive branchings with L = 3
lineages and C = 2 conditions (WT and KO) denoted by T 2; a simple
trajectory with L = 2 lineages and C = 3 conditions (WT, KO, and UP)
denoted by T 3 (for the latter case, dyngen Steps 3-4/ are repeated
twice, with values of m for KO and 1/m for UP); and a trajectory with
two consecutive branchings with L = 5 lineages and C = 2 conditions
(WT and KO) denoted by T 4.

For T 1 and T 2, we use values of m∈ {0. 5, 0. 8, 0. 9, 0. 95, 1, 1/
0. 95, 1/0. 9, 1/0. 8, 1/0. 5}, such that at the extremes the KO cells fully
ignore some lineages. Values of. 95 and 1/. 95 represent the closest to
no condition effect (m = 1), where the effect was still picked out by
some tests. For T 3, since the simulation is symmetrical in m, we pick
m∈ {0. 5, 0. 8, 0. 9, 0. 95, 1}. For T 4, we use values of
m∈ {0. 1, 0. 2, 0.3, 0. 5, 1, 2, 3, 5, 10}.

We have one large dataset per value ofm and per trajectory type.
We use these large datasets to generate smaller ones of size n, by
sampling 10% of the cells from each condition 50 times and applying
the various tests on the smaller datasets. The reason for first gen-
erating a large dataset and then smaller ones by subsampling instead
of generating small ones straightaway are computational: the genera-
tionof thedatasets is time-consuming and thepart that scaleswithNWT

can be parallelized. Hence, it is almost as fast to generate a large
dataset than a small one with dyngen. We pick NWT = 20,000 (for the
large dataset) and thus n = 2000.

Since we generate many datasets with true effect (m ≠ 1) but only
one null dataset, the size of NWT form = 1 is doubled to 40,000. To be
comparable, the fraction of cells sampled is decreased to 5%, so that
n = 2000 and we perform 100 subsamplings. Table 3 recapitulates all
of this.

To run the condiments workflow, we first estimate the trajec-
tories using slingshot with the clusters provided by dyngen. Then, we
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run the progressionTest and the fateSelectionTestwith default
arguments.

We compare condiments to two other methods. milo16 and
DAseq17 both look at differences in condition proportions within local
neighborhoods, using k-nearest-neighbor graphs to define this local-
ity. Then, milo uses a negative binomial GLM to compare counts for
each neighborhood, while DAseq uses a logistic classifier test. There-
fore, bothmethods test for differential abundance inmultiple regions.
To account for multiple testing, we adjust the p-values using the
Benjamini-Hochberg25 FDR-controlling procedure.

We select an adjusted p-value cutoff of 0.05, which amount to
controlling the FDR at nominal level 5%. For a given dataset, we can
look at the results of each test on all simulated datasets for all values of
m. For each test, the number of true positives (TP) is the number of
simulated datasets where m ≠ 1 and the adjusted p-value is less than
0.05, the number of true negatives (TN) is the number of simulated
datasets wherem = 1 and the adjusted p-value is greater than or equal
to 0.05, the number of false positives (FP) is the number of simulated
datasets wherem = 1 and the adjusted p-value is less than0.05, and the
number of false negatives (FN) is the number of simulated datasets
where m ≠ 1 and the adjusted p-value is greater than or equal to 0.05.
We then examine five measures built on these four variables:

True Negative Rate (TNR) =
TN

TN + FP

True Positive Rate (TPR) =
TP

TP + FN

Positive Predictive Value (PPV) =
TP

TP + FP

Negative Predictive Value (NPV) =
TN

TN + FN

F1-score = 2
PPV ×TPR
PPV +TPR

:

We also sought to generate incorrect inferences as follows. We gen-
erate a dataset of type T 1 with a multiplier effectm =0.85. We use the
true pseudotimes and lineage assignment values, as defined by dyn-
gen, and we add increasing noise along two dimensions: pseudotime
and lineage assignment. For the latter, we randomly select a propor-
tion p of cells and change their lineage assignments; p =0 means that
we use the true lineage assignments, while p = . 5 means that the line-
age assignment of the cells is fully random. For the former, we add
random Gaussian noise such that, for a cell i with pseudotime Ti, we
return a new pseudotime ~Ti =Ti ×N 2ðI2,sd × I2Þ. We choose
p∈ {0, . 1, . 2, . 3, . 4, . 5} and sd∈ [0: 40]/10. For each value of p and sd,
we did 100 runs and selected the median p-value.

Version of tools used
The following version have been used:

• condiments: 1.4.0
• tradeSeq: 1.10.0
• slingshot: 2.4.0
• monocle3: 1.2.9

• DASeq: 1.0.0
• miloR: 1.4.0
• dyngen: 1.0.3

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The results from this paper can be fully reproduced by following along
the vignettes at https://hectorrdb.github.io/condimentsPaper. Code
to reproduce the datasets used for the simulation study, as well as
processed versions of all four datasets used in the case studies, aug-
mented by metadata, are in particular available at https://github.com/
HectorRDB/condimentsPaper/tree/main/data. Functions to recreate
the processed versions, using raw counts obtained from GEO (TGFB
dataset: GSE114687 - https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE114687,TCDDdataset: GSE148339 - https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE148339, KRAS dataset: GSE137912 -
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137912,
Fibrosis dataset: GSE135893 - https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE135893) are also provided.

Code availability
The condiments workflow is available as an R package from GitHub
(https://github.com/HectorRDB/condiments48) and through the Bio-
conductor Project (https://www.bioconductor.org/packages/release/
bioc/html/condiments.html). All the methods to test for equality of
two (or k) distributions were implemented for use by others in an R
package called Ecume, available through CRAN (http://cran.r-project.
org) and that can be explored at https://hectorrdb.github.io/Ecume.
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