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Mesoscale simulation of biomembranes with
FreeDTS

Weria Pezeshkian 1 & John H. Ipsen2

We present FreeDTS software for performing computational research on
biomembranes at the mesoscale. In this software, a membrane is represented
by a dynamically triangulated surface equipped with vertex-based inclusions
to integrate the effects of integral and peripheral membrane proteins. Several
algorithms are included in the software to simulate complex membranes at
different conditions such as framed membranes with constant tension, vesi-
cles and high-genus membranes with various fixed volumes or constant
pressure differences and applying external forces to membrane regions. Fur-
thermore, the software allows the user to turn off the shape evolution of the
membrane and focus solely on the organization of proteins. As a result, we can
take realistic membrane shapes obtained from, for example, cryo-electron
tomography and backmap them into a finer simulation model. In addition to
many biomembrane applications, this software brings us a step closer to
simulating realistic biomembraneswithmolecular resolution. Herewe provide
several interesting showcases of the power of the software but leave a wide
range of potential applications for interested users.

Fluid artificial and biological membranes can adapt to a diverse range of
morphologies from multi-spherical structures to the astonishing forms
seen in the subcellular organelles such as endoplasmic reticulum, Golgi
apparatus, and mitochondria1,2. These shapes are often dynamic and
constantly undergo significant changes that are crucial for cell function
e.g., such as endocytosis, cellular respiration. Also, biologicalmembrane
shapes contain information about overall health of an organism,
thephysiological state of the cell and abnormalmembrane architectures
are implicated in many diseases such as Parkinson’s Disease3–7. The
shape classes of simple lipid membranes are well understood and they
canbedescribedby a fewmacroscopic parameters such as spontaneous
membrane curvature and pressure difference1. The membranes of cells,
however, are much more complex, and distinct mechanisms govern
their overall arrangement at various scales, ranging from the molecular
to the macroscale8–10. Thus, the study of membrane organization con-
tinues to be an active and essential field of science. Computer simula-
tions are an effective tool for studying biomembrane architecture and
the mechanisms involved in its remodeling11. For analyzing membrane

shape at length scales of up to 100nm, molecular simulations, such as
molecular dynamics and dissipative particle dynamics simulations, have
been very effective. Examples of excitingdevelopments include the local
curvature of membranes caused by a single protein or by the assembly
of proteins12–14, membrane shape-induced lipid sorting15, wetting-
induced membrane deformation16, and even curvature sensing of
proteins17. Due to limitations in accessibility of large time and length
scales, molecular-based simulations alone cannot provide a compre-
hensive picture of membrane remodeling. On the other end, macro-
scopicmodeling that incorporatesprotein effects as ameanfielddensity
function enables the description of large-scale and generic membrane
remodeling behaviors. However, it overlooks many phenomena which
are the result of membrane fluctuations and rotational and translational
entropy of single and (few) proteins8,18,19. In between these two scales,
mesoscopic modes in which large biomolecules such as proteins are
explicitly considered, while lipids are modeled in a mean field manner
(but allows for undulations and shape fluctuations) are needed to fully
map out the organization of complex membranes20,21.
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Several mesoscopic models have been used to explore diverse
range of membrane-associated processes such membrane shape
remolding by BAR-domain proteins and crowding of intrinsically dis-
ordered proteins22–24, as protein clustering via membrane-mediated
interaction25, membrane neck constriction by assembly of proteins26

and even activity-driven membrane remodeling27 (for more see ref. 20
and the reference within). In spite of this, these studies are often
conducted with in-house software, or/and the software is limited to
those specific applications that are difficult to apply to new research
questions, which has hampered progress in mesoscopic membrane
modeling. Recently, a software package called TriMem has been
released that facilitates the simulation of triangulated surfaces with a
strong focus on performance, in order to integrate the evolution of a
system efficiently28. However, this package currently lacks the protein
model and only applicable to simple lipid bilayers.

Here, we present FreeDTS, a software package for the com-
putational investigation of biomembranes, at the mesoscopic
length scale which can also be used for macroscale modeling of
membranes. We have chosen the name FreeDTS because it is free
to use and free from any external library apart from the C + +
Standard Library. DTS refers to Dynamically Triangulated Sur-
faces. The software is designed to cover a diverse range of biolo-
gical processes and is easy to expand to cover more. In FreeDTS, a
membrane is represented by a dynamically triangulated surface
equipped with vertex-based inclusions to integrate the effects of
integral and peripheral membrane proteins. Several algorithms are
implemented in FreeDTS to perform complex membrane simula-
tions in different conditions, e.g., framed membranes with con-
stant tension. Membranes also can be confined into a fixed region
of the space to explore the effect of the environment on the
membrane shape and fluctuations. In addition, FreeDTS allows one
to turn off the shape evolution of the membrane and only explore
organization of membrane proteins. This allows us to take realistic
membrane shapes obtained, for instance, from cryo-electron
tomography and obtain heterogeneous organization of biomole-
cules which can be backmapped to finer simulation models. This
feature with helps from backmapping schemes e.g., TS2CG, brings
us a step closer to simulating realistic biomembranes with mole-
cular resolution29,30. In the following, we report several interesting
examples to show the power of the software and the detailed
information of how to use the software is included in the manual.

Results
In this section, we present a number of results to demonstrate the
power of FreeDTS in capturing membrane mesoscale organization.
These include capturing membrane undulation spectrum, protein-
induced membrane deformation, tether pulling, curvature-induced
protein sorting, and finally protein sorting by real mitochondrial
membrane shape (the proteins are hypothetical and do not represent
any realistic mitochondrial proteins).

Undulation of framed membranes
Flat membranes are a very common and pragmatic model of mem-
brane segments as the curvature of typical cellular or model mem-
branes is small and can be locally considered flat. FreeDTS allows
simulations of flat membranes within a periodic box with constant
frame tension. Theoretical analysis, confirmed by experiment and
molecular simulations shows that a free membrane undulation spec-
trum (with the exception ofmembraneswith small bending rigidities31)
follows Eq. (1)32–35,

uðqÞuð�qÞ� �
=

1
κeffq4 + τq2

ð1Þ

where κeff and τ are effective bending rigidity (renormalized bending
rigidity) and frame tension respectively (Supplementary Fig. 1).
Accordingly, undulation spectrum for membranes under tension; fol-
lows q�4 for large q (small wavelength) and q�2 for small q, while for
tensionlessmembranes it follows q�4: (see Fig. 1A). It is, however,more
difficult to obtain the spectrum formembranes indifferent conditions,
such as complex membranes or membranes in confinement. Using
FreeDTS,weare able toobtainmembraneundulation spectrumsunder
a variety of different conditions. Figure 1B shows undulation spec-
trums for three different flat membranes (1) framed membrane with
zero tension and 20% coverage by inclusions (2,3) framed membrane
with zero tension confined between two sandwiching walls for two
different values of wall-to-wall distance.

Membrane shape deformation by proteins
Proteins are one of the main drivers of membrane deformations36,37.
FreeDTS allows for exploring the membrane-shaping and sorting
capacity of membrane proteins. Figure 2 shows several examples of
membrane deformation by different membrane proteins at the

Fig. 1 | Undulations spectrum for different membranes obtained using
FreeDTS. A Undulation spectrums for membranes with five different values of
frame-tensions (τ); for large q (small wavelength) it follows q�4, while for small q, it
follows q�2. B undulations spectrum for membranes in different conditions; (blue)
framed membrane with zero tension and 20% inclusion coverage (orange) mem-
branes between two sandwiching walls with a wall-to-wall distance of H = 2ldts ,

(green) membranes between two sandwiching walls with a wall-to-wall distance of
H =4ldts . The data are obtained by simulating ten different replicas, each for 10
million Monte Carlo steps for every system. The initial one million Monte Carlo
steps were disregarded in the analysis. Note, the unit of frame-tensions is kBT=l

2
dts

in FreeDTS. Source data are provided as a Source Data file.
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mesoscale. For small protein–protein interactions (above a certain c0
threshold38) buds form, and the membrane is divided into two
domains of protein-rich and protein-poor. However, for larger
protein–protein interactions, proteins cluster and form buds, leaving
the insignificant number of proteins on the flat surface. The non-zero
protein–protein interactions lead to a line tension effect at the
boundary that can energetically assist the budding process, especially
for large protein–protein interactions39. However, budding may occur
without a line tension effect solely as a result of the high concentration
of inclusions that induce membrane curvature38.

While these results can describe a wide range of processes
involving remodeling of membrane shapes by proteins, one can con-
vert ldts to a physical unit when for example a specific protein is under
consideration. For instance, if we consider that our proteins are B
subunit of cholera or Shiga toxins (they have a similar lateral size of
∼ 7:2 nm40,41), then ldts ∼6:9nm (see Supplementary Note 1). There-
fore, c0 =0:4 l�1 ∼0:058nm�1. This is actually very close to the
reported curvature induced by these proteins (∼0:056nm�1 for
cholera toxin and ∼0:07nm�1 for Shiga toxin). Also, in this case, the
total surface area of the membranes will be ∼0:15μm2. For Shiga
toxin, protein–protein interactions are primarily driven by close-
distance membrane fluctuation-induced forces ∼ 1kBT , which cannot
be captured by thismodel andmust be included directly42. However, it
is still unknownwhat causes the clustering of cholera toxin. Therefore,
the results of the first and second columns of Fig. 2 are expected for
the B subunit of Shiga toxin which is also very similar to the shape
reported in experimental settings43. In contrast, all configurations are
possible for cholera toxin, depending on the range of its
protein–protein interactions.

Pulling a membrane tether
One of the common procedures to deform membranes is pulling a
tether (nanotube) using, for example, optical tweezers12,44,45. Since
FreeDTSallows formembrane simulationswith constant tension, it can

also beused topull amembrane tether by applying aharmonic force to
a vertex (see SupplementaryMovie 1 and Supplementary Fig. 2). Such a
systemcanbe used, for example, to study protein sorting12 or to obtain
membrane bending rigidity46. Figure 3 illustrates how FreeDTS can be
used to pull a membrane tether as well as to study curvature-driven
protein sorting that is dependent not only on protein curvature but
also on protein–protein interactions.

Other shapes: vesicles, high-genus membranes and tubes
The type of membranes (surfaces) that can be simulated with FreeDTS
is not limited to flat membranes. In principle, any triangulated surface
that is closed (even if it is through a period box) can be handled. A
prime example is a spherical surface such as vesicles. Supplementary
Fig. 3 shows the transition of a spherical vesicle from prolate-to-oblate
and oblate-to-stomatocyte by volume reduction47. Figure 4A, B also
shows how both types of inclusions could induce tubular membrane
invaginations in a vesicle.

An important characteristic ofmembranes is the topology of their
surfaces. While membranes are flexible and easy to bend, their surface
topology tends to remain constant, as topological changes require
membrane fission and fusion processes that are restricted by a high-
energy barrier. Topology is characterized by the topological genus g,
which counts the number of handles attached to a sphere. For
instance, g =0 for a sphere and g = 1 for a coffee mug. Although
organelle membranes, such as the ones found in mitochondria and
Golgi apparatus, exhibit high-genus topology, there has been only a
limited number of studies conducted on membranes with non-
spherical topologies, which have considered only simple, low-genus
membranes48–50. FreeDTS allows for the exploration of these surfaces.
Just as an example, Fig. 4C, D shows how a closed surface with topo-
logical genus 20 transformed by some inclusions into a stomatocyte
structure. This process might be relevant for nuclear membrane for-
mation and assembly of nuclear pore complex driven by membrane
curvature51.

Fig. 2 | Protein-induced membrane deformation. Snapshots depicting the final
state of membrane simulations under periodic boundary conditions following 10
million Monte Carlo steps. The red spheres are the proteins. A–C In total, 20%
protein coverage, protein type one with Δκ =0, c0 =0:4½l�1

dts �,ΔκG = 0 and
A einc,inc= � 0:5½kBT �, B einc,inc = � 1½kBT �, C einc,inc = � 2½kBT �; D–F 40% protein

coverage, protein type one with Δκ =ΔκG =0, c0 =0:4½l�1
dts �, and

D einc,inc = � 0:5½kBT �; E einc,inc = � 1½kBT �; F einc,inc = � 2½kBT �; G–I 20% protein
coverage, protein type one with Δκ =0, c0 =0:6½l�1

dts � ΔκG =0 and
G einc,inc = � 0:5½kBT �; H einc,inc = � 1½kBT �; I einc,inc = � 2½kBT �.
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Another type of membrane structure is tube, a surface periodic in
one direction (Fig. 5A). Tubes can be used to study processes on the
segments of, for example, smooth endoplasmic reticulum. Figure 5
shows how FreeDTS can be used to explore tube deformations by
different means.

Confined membranes
In FreeDTS, membranes can be contained within spaces of various
shapes and sizes. In the current version, a membrane can be confined
between two sandwiching walls, an ellipsoidal shape, an ellipsoidal
shell, or a block (Fig. 1B and Supplementary Fig. 4).

Protein sorting on realistic membranes
Advances in experimental techniques such as cryo-electron tomo-
graphy now allows for resolving membrane shape of a full organelle
or even a cell2,52. When the density and mesoscale parameters of
each biomolecule are provided, FreeDTS can use these structures as
input files to determine biomolecular organization. Figure 6 shows a
DTS simulation of a real inner mitochondrial membrane with two
different kinds of proteins (each with different model parameters).
It is important to note that these proteins are not representative of
realistic mitochondrial proteins and have only been used as a proof
of concept. Proteins are sorted in different regions of the mem-
brane based on the type of protein and their interactions with one
another. In this simulation, only the proteins have the possibility of
organizing and the triangulated mesh does not change (shape
change).

Discussion
Mesoscopic simulations are a necessary tool to explore many impor-
tant features of membrane-involved cellular processes20. In particular
DTS approaches have shown to be very robust in capturing spatial and
lateral organization of biomembranes. FreeDTS as shown in the cur-
rent manuscript and our previous works12,26,31,38 offer a great technol-
ogy for exploring these processes. Also, as shown in Fig. 6, FreeDTS
can be used to obtain the organization of biomolecules on experi-
mentally resolved membrane shapes. In principle, protein density and
protein–protein interactions of main membrane-shaping proteins can
be obtained from experiments such as cross-linking mass
spectrometry53 or from higher-resolution simulations54. Other meso-
scopic model parameters (such as induced local curvature) can be
obtained from molecular simulations41 or from a top-down approach
through fitting to experimental data in controlled biophysical
experiments12,55. Once these parameters are available, FreeDTS can be
used to obtain the organization of these biomolecules. Furthermore,
the equilibrated output of the FreeDTS can be processed directly by
TS2CG to create the system structure with a molecular resolution29,30

for full cell or organelle simulations11,56.
In a series of pioneering works, Voth and coworkers introduced a

mesoscopic membrane model (called EM2, later upgraded to MesM-
P)23,24,57 that can be performed using LAMMPS open-source molecular
dynamics package58,59. This model has been successfully used to
describe complex membrane morphologies induced by BAR-domain
proteins. While the model described in this manuscript shares certain
similarities with MesM-P, there exist fundamental distinctions. Firstly,
in FreeDTS, a membrane is explicitly represented as a surface, and the
evolution of this surface is governedby the simultaneous adherence to
self-avoidance principles and the preservation of the manifold con-
figuration of the surface. In contrast, in MesM-P, the starting point is a
coarse-grainedmodel in fluid dynamics, where the explicit solvent and
membrane components are represented by quasi-particles and the
membrane’s bending energy is included through a particle position
with respect to its nearest neighbor membrane particles. Effects of
curvature and topology changes e.g., membrane fragmentation, are

Fig. 3 | Tether pulling frommembraneswithperiodic boundary conditions and
constant frame tension. AA tube is pulled from a framedmembrane coupledwith
a constant tension of τ = 2½kBTl

�2
dts �; B protein sorting due to curvature. Protein

coverage 10%, type 2, with k1 = 10½kBT �,k2 =0,Cjj0 = 1½l�1
dts �, C?0 =0,einc,inc =0;

C protein sorting due to curvature influenced by protein–protein interactions.
Protein coverage 10%, type 2, with k1 = 10½kBT �,k2 =0,Cjj0 = 1½l�1

dts �,
C?0 =0,einc,inc = � kBTð1:5 +0:5 cos½2ðΘÞ�Þ. The red lines show the proteins and
their orientation on the plane of the membrane.

Fig. 4 | Vesicle and high-genus membranes remodeling by proteins. A Tubular
membrane invagination induced in a vesicle by 20% coverage of protein type 2with
k1 = 10½kBT �,k2 = 5,Cjj0 = 1½l�1

dts �, C?0 =0,einc,inc = � kBTð2+ cos½2ðΘÞ�Þ. B a vesicle
containing 20% proteins type one with Δκ =ΔκG =0, c0 =0:6½d�1

dts �,einc,inc = � kBT .
C, D a high-genus membrane (g = 20) with k1 = 15½kBT �,k2 = 0,Cjj0 = 1:5½l�1

dts �,
einc,inc =0 (C) starting configuration (D) final configuration, a minimal model for
nuclear membranes where nuclear pore complex assembles and transforms the
handles into pores.
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described through anisotropic quasi-particle interactions, while they
are handled with geometrical quantifiers in FreeDTS. Note, the current
version of FreeDTS does not allow for surface topology change, how-
ever, it can be achievedby the additionof certain discontinuousMonte
Carlo moves (see below)60,61. The explicit representation of the mem-
brane surface in FreeDTS is important, in particular, in themodeling of
highly curved and folded membranes, e.g., subcellular membranes
with tubular or high-genus structures (see Fig. 4D). It also allows for
correct measurement of quantities such as system volume, surface
area, local curvature, and surface topology and offers several advan-
tages, such as the utilization of numerous algorithms and geometrical
descriptions originally developed for image processing techniques
providing a wealth of algorithms to adopt formesoscopicmodeling of
membranes. Also, FreeDTS allows for a more accurate representation
of membrane proteins coupling to membrane curvature making it
especially suitable for elongated proteins. In addition, it enables the
modeling of proteins that induce changes in themembrane’s Gaussian
modulus, a factor that has been demonstrated to be critical for the
emergence of membrane-mediated interactions. Last but not least,
FreeDTS allows for parallel transport which is very important for
proper modeling of anisotropic in-plane interactions between mem-
brane proteins on curved surfaces.

To obtain biologically relevant information, models such as DTS
may appear to be highly dependent on calibrating their parameters to
start with. It should be noted, however, that this is not entirely accu-
rate. Even without any knowledge of membrane-shaping protein
structure, DTS simulation can provide some knowledge about their
structure by tuning the model parameters against macroscopic bio-
physical experiments26,55.

FreeDTS can be expanded (and is in our agenda) inmany different
ways to become a versatile tool to explore membrane remolding
processes. For example, during a simulation in FreeDTS, the number of
vertices, triangles, and edges of the triangulated mesh remains con-
stant. In addition, the membrane surface is considered closed, i.e., no
possibility of an open edge, such as a hole, exists. Due to these lim-
itations, FreeDTS does not allow for severalmembrane-related cellular
processes, including membrane fission, fusion and membranes with

large holes62,63. Fission and fusion can be captured by developing a
dynamic topology algorithm such as refs. 60,61,64. It is, however,
more challenging for a membrane with open edges, especially since
the energy of the edge also depends on the geodesic curvature of the
edge65. This indeed requires theoretical developments on how to
evaluate these geometrical variables, e.g., edge geodesic curvature on
triangulated surfaces.

TheHelfrichHamiltonian (themembrane bending energy used by
FreeDTS) is a function of principal curvatures up to the second order
of principal curvatures assuming the energy should be invariant under
in-plane rotation. It has been demonstrated that this bending energy is
very excellent for describing large-scale membrane shapes1. Never-
theless, at the mesoscale, the effects of higher order may become
significant as cellular membranes often exhibit curvature radii that are
comparable to the thickness of the membrane36,66. However, the
challenge of resolving this problem is more theoretical in nature, i.e.,
finding a suitable bending energy function. Once obtained, its imple-
mentation within FreeDTS is rather straightforward without a sig-
nificant increase in computational cost.

FreeDTS is currently designed to explore the equilibrium shape of
complex membranes that is the answer to a wide range of key
membrane-involved biological processes. Nevertheless, there are
important biological processes that require a detailed description of
membrane dynamics, consequently a correct membrane and solvent
hydrodynamics, e.g., pearling instability67, which is beyond the cap-
abilities of the current FreeDTS version. Previously there have been
some attempted to include the hydrodynamics effects, using implicit
and explicit solvent particle, in both coarse-grained and mesoscopic
simulations68–71. Capturing realistic dynamics, in particular the effects
of long-range hydrodynamics, is a challenging task and demands
expensive computations. Nevertheless, the shape operator framework
used in FreeDTS make it possible to evaluate in-plane vector and ten-
sor fields, thereby providing a new strategy for coupling surface
mechanics with hydrodynamics which in principle could have lower
computational cost. Therefore, we expect that in the future, FreeDTS
will become capable of handling sufficiently accurate hydrodynamics
and dynamics without significant computational costs.

FreeDTS currently runs most movies sequentially and only uses
one CPU core (with the exception of parallel tempering, where each
replica is run on a separate core). Themoves can in fact be parallelized
to some extent28 in order to exploremembranes with more vertices or
obtain resultsmore quickly for smaller systems.However, thismaynot
lead tobettermembrane exploration. It is, for example, not amendable
to properly capture configurations of membranes larger than a few
folds just by allocating more resources, since the required steps to
properly sample the configurations increase rapidly (nonlinearly) with
system size. In addition, membranes exhibit shapes with very different
configurational structures, separated by many large energy barriers,
but energetically close (degenerate). Therefore, often it is more
practical to perform many replicas to capture these possible

Fig. 6 | Experimentally resolved real biological membranes can be loaded in
FreeDTS to obtain protein organizations. A real inner mitochondrial membrane
containing two different kinds of proteins simulated by FreeDTS. Blue and red
spheres are showing the proteins (each color to represent a specific kind of
protein).

Fig. 5 | Configuration of a tube with periodic boundary conditions along
its axis. A A tube made of a simple membrane. B A tube with spontaneous cur-
vature (�C =0:4½1=ldts �).CA tubewith 20%protein coverage. The proteins are type 2
with k1 = 10½kBT �,k2 = 0,Cjj0 = 1:5½d�1

dts �,C?0 = 0 and einc,inc = � kBTð1 + cos½2ðΘÞ�Þ.
D A tube decorated with 40% proteins of type 1. Δκ =0, c0 = 0:4½d�1

dts �,ΔκG =0 and
einc,inc = � 1. The red lines and spheres are the proteins.
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configurations, or use enhanced sampling methods e.g., parallel tem-
pering and Hamiltonian replica exchange methods that are much
easier to parallelize efficiently for DTS-like methods.

In biomembranes, different phases with specific molecular com-
positions coexist. These phases can recruit membrane proteins which
have been postulated to be essential for many biological processes
such as signaling and endocytosis72,73. Currently, FreeDTS is capable of
capturing such phenomena, but the total surface area of each phase
remains constant. In a biological system, however, these phases are
dynamic and can appear, disappear, shrink, or expand depending on
the physiological conditions. In the future developments, we will
address this limitation.

Finally, the current software can be enhanced by equipping it with
models of, for example, cell walls, cortical actin cytoskeleton and
active processes (breaking detailed balance) or by coupling the
membrane mechanics to kinetic models of the cellular processes to
provide a mechano-kinetic model of the cell membranes74,75.

To summarize, we have presented FreeDTS software to perform
computational research on biomembranes at the mesoscale. The
model parameters of proteins have physical meaning and in principle
can be calibrated using finer scale simulation techniques e.g., all-atom
and coarse grain molecular dynamics, or through a top-down
approach through experimental data. Several algorithms are inclu-
ded in the software that allows for simulations of framed membranes
with constant tension, vesicles with various fixed volume or constant
pressure difference, confined membranes into the fixed region of the
space, constant fixed global curvature, and application for external
forces on regions of the membrane. In addition, the software allows
one to turn off the shape evolution of the membrane and only explore
inclusions organization. This allows us to take realistic membrane
shapes obtained from cryo-electron tomography and obtain hetero-
geneous organization of biomolecules which can be backmapped to
finer simulations models. In addition to its use for exploring many
biomembrane application, this software brings us a step closer to
simulating realistic biomembranes with molecular resolution.

Methods
Membrane model
FreeDTS represents a membrane as a triangulated surface containing
Nυ vertices, Ne edges andNT triangles (Supplementary Fig. 5). During
the system evaluation, the vertices position gets updated and the
mutual link between two adjacent triangulates can be flipped (see
below and ref. 54). These two moves allow us to sample through all
possible triangulations for a given Nυ, Ne, and NT and therefore such
representation is often referred to as dynamically triangulated sur-
faces (DTS). DTS is a very popular and successful model to describe
shape configurations of interfaces, surfaces, and lipid membranes76,77.
For the purpose of a mesoscopic model, each vertex represents a
membrane patch containing hundreds of lipids54. Discrete geometric
operations are used to determine the geometric properties of the
surface at each vertex. Severalmethods are available, eachwith its own
advantages and disadvantages78–80. In the current version, we are using
a method based on Shape Operator described in ref. 81 where the
verification is given for well-defined geometries. The reason for this
choice is that with this scheme we can obtain, on each vertex υ, asso-
ciated principal curvatures ðc1,υ,c2,υÞ, and principal directions
ðT̂1,υ,T̂2,υÞ, in addition to an associated area (Aυ) and surface normal
(N̂υ) (see Supplementary Note 2 and Supplementary Fig. 5). Moreover,
this schemeallows for parallel transportof in-plane vectorfields. These
quantities are particularly important when modeling anisotropic pro-
teins and protein–protein interactions (see below). These features are
well verified in ref. 82 where the simulation results agrees well with
theory in analytically tractable limits.

Due to the fluid nature ofmembranes (the type ofmembrane that
we are considering which encompass most of biological membranes),

bending energy will be a function of mean and Gaussian curvatures. In
the current version, we will use a discretized version of the Helfrich
Hamiltonian that is a function of surface curvature up to the second
order (Eq. (2)),

Eb =
XNυ

υ= 1

κ

2
2Hυ � �C
� �2 � κGKυ

� �
Aυ ð2Þ

where the sum is over all vertices, 2Hυ = c1,υ + c2,υ, Kυ = c1,υc2,υ and κ,κG

and �C are bending rigidity, Gaussian modulus, and spontaneous
membrane curvature, respectively (the model parameters of the
membrane). The second term is written with a minus sign so that κG is
positive. However, often in the literature a positive sign is used for the
second term and therefore the reported value of κG is negative.
Equation (2) implicitly indicates that a vertex has the character of a
surface element rather than a particle. As a note, different bending
energy functions can be easily adopted in FreeDTS without any sig-
nificant performance reductions.

To ensure self-avoidance, there is a hard-core potential between
the vertices such that theminimum distance between any two vertices
must be equal to ldts (the basic length unit in FreeDTS). In addition,
self-avoidance requires that the edge length vary within a specific
range (lmin ≤ le ≤ lmax). It has been tested that lmin = ldts and lmax =

ffiffiffi
3

p
ldts

with a mild constraint on the dihedral angle between two neighboring
triangles is enough to ensure self-avoidance of the surface81. As a note,
lmin, lmax and the minimum dihedral angle can be set by the user in
FreeDTS.

Due to the flexibility of the edge size, the area of each triangle (in
principle) can vary between

ffiffiffi
3

p
l2min=4≤AT ≤

ffiffiffi
3

p
l2max=4, but on average

the total area of the surface remains constant (see Supplementary
Fig. 6 and Supplementary Table 1). However, to control the surface
area, an area constraint algorithm can be loaded which couple the
system energy to an additional term as Eq. (3),

EA =NT
KA

2
A
A0

� 1
	 
2

ð3Þ

where A0 is the targeted area and KA is compressibility modules.
For membrane patches in a periodic box, i.e., with periodic

boundary condition (PBC), see Supplementary Fig. 7, the possibility of
the box change (dynamic box) is crucial to allow membrane shape
remodeling. FreeDTS is equipped with a tension-controlling algorithm
that allows for performing simulation at constant (or zero) tension
(ðNυ,τ,TÞ ensemble). This algorithm couples the system energy to
Eτ = � τAp where τ is frame tension and Ap is the projected area. We
have described the details of this algorithm in ref. 38 and the Sup-
plementary Note 3. Supplementary Fig. 1 shows that this tension (τ) is
equal to the tension derived from the undulation spectrum, consistent
with previous works38,83,84.

Due to the osmolarity effect, closed surfaces, such as vesicles, will
be bound by the volume of themedia they encompass. It is possible to
apply an energy potential as Eq. (4), which supports both first- and
second-order couplings of the volume in FreeDTS,

Ev = � ΔPV +
K
2

V
V0

� vt

	 
2

ð4Þ

where ΔP is the pressure difference between in and outside, V is the
vesicle volume, K is volume compressibility modulus (coupling con-
stant), V0 =

1
6π1=2 A

3=2 i.e., the volume of a perfect sphere with the area
of A (area of the triangulated surface), and vt is the targeted reduced
volume ð0<vt ≤ 1Þ.

FreeDTS also provide a more sophisticated volume coupling
through the Jacobus van ‘t Hoff equation to better model osmotic
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pressure. In this way, the energy of the system is coupled to Eq. (5),

ΔEosmos Vð Þ= � RT �cinV iniln
V
Vini

� cout V � Vini

� �� �
ð5Þ

where Vini is the initial volume and �cinð�coutÞ is effective concertation of
the inside (outside) solute (more details can be found in Supplemen-
tary Note 4).

While Eq. (2) allows for controlling the spontaneous membrane
curvature, spontaneous membrane curvature could be global, origi-
nating from, for example, the number of lipid molecules in each
monolayer.

FreeDTS allows for controlling global membrane curvature
energy to a potential as

Es =
kr

2A
M �m0A
� �2

, ð6Þ

whereM =
PNυ

υ= 1 2HυAυ,m0 is the averagemembrane global curvature,
and kr is the coupling constant. Since the area difference between
inner and outermembrane (ΔA) is proportional toM (ΔA=hM), Eq. (6)
can also be used to control area difference.

Protein model
Proteins are modelled as in-plane inclusions with an in-plane orienta-
tion (D̂, also see Fig. 7A). They interact with the membrane and locally
modify the membrane physical and mechanical properties e.g., spon-
taneous curvature and rigidity. There is at most one inclusion per
vertex, which naturally handles the in-plane excluded volume effect
between inclusions. Inclusions also interact with one another (see
below). In FreeDTS two types of membrane-inclusion interactions
exist. First are for proteins with symmetric (or almost symmetric)
interactions (Supplementary Fig. 8A), such as the one seen for Shiga

and cholera toxins40,41. The interaction energy between a vertex and an
inclusion of this type is given by Eq. (7).

emem�inc = 2ΔκH2
υ � 2 Δκ + κð Þc0Hυ � ΔκGKυ

n o
Aυ ð7Þ

Where Hυ, Kυ and Aυ are mean curvature, gaussian curvature and area
associated with the vertex υ and Δκ, c0 and ΔκG are the inclusion
model parameters. These parameters has physical meaning, Δκ and
ΔκG can be seen as an increase in the membrane bending rigidity and
gaussian modulus and c0 as a local curvature (for a discussion on this,
see ref. 8).

Second protein type are the one which break in-plane symmetry
of the membrane (Supplementary Fig. 8B), such as dynamin and BAR
protein family. Membrane-protein interaction between this type of
inclusions is given by Eq. (8).

emem�inc =
k1

2
Cjj � Cjj0
� �2 + k2

2
C? � C?0

� �2� �
Aυ ð8Þ

Cjj and C? are membrane curvature in a direction parallel and
perpendicular to the inclusion orientation. Since the used discretized
geometric operations allows us to obtain T̂1,T̂2,c1 and c2, we can obtain
Cjj and C? using Eulers curvature formula as

Cjj = c1cos
2θ+ c2sin

2θ

C? = c1sin
2θ+ c2cos

2θ

(
ð9Þ

where θ is the angle between the orientation of the inclusion and the
first principal direction (cosθ= D̂:T̂1, also see Fig. 7A). k1,k2,Cjj0,C?0 are
protein model parameters. k1 and k2 are the directional bending rigid-
ities imposed by the inclusion on the membrane. Cjj0 (C?0) is inclusion
preferred membrane curvature in the direction of (perpendicular to)
its in-plane orientation (for a discussion on this, see refs. 8,54). Note

Fig. 7 | A protein is defined as an in-plane inclusion. A An inclusion has a varying
orientation in the plane of the vertex. θ is the angle between the inclusion orien-
tation and the first principal direction (T̂1). B Inclusions interact with one another if
they are located on two neighboring vertices through a potential in Eq. (10).Θ1 and
Θ2 are the angle between each inclusion with the projection of a line (blue line)
connecting the two vertices. For parallel transport, each inclusion orientationmust
remain constant with respect to these projections. γ is the angle between the two
normal vectors (N̂υ, N̂υ0). But defined as positive if the tip-to-tip distance is larger
than the edge length and negative otherwise. C, D Protein–Protein interaction

influence the membrane shape and organization of proteins (C) A membrane with
periodic boundary condition and 20%protein coverage of type 2with k1 = 10 kBT

 �
;

k2 =0; Cjj0 = 1½l�1
dts �; C?0 =0 and Ai,j =Bi,j = 1 kbT

 �
;Ci,j =0;Θ0 =0: The red lines

show the location of the proteins and their orientation on the plane of the mem-
brane (D) Amembranewith periodic boundary condition and 10%protein coverage
(of type 1) without any local curvature (Δκ,=c0 =ΔκG =0) induces membrane
budding solely due to protein–protein interaction Ai,j =Bi,j =0; Ci,j = 20 kbT

 �
and

γ0 =π=4. The red spheres are the proteins on the membrane surface.
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Eqs. (7) and (8) indicate that the effective interaction area of an inclusion
with themembrane is Aυ. Therefore, knowing the size of the protein will
convert ldts to a physical unit such as nm12,40 (also see Supplementary
Note 1). The model, however, requires some modification of the
excluded volume contributions when dealing with small proteins
(smaller than membrane thickness, <4 nm). In this case, a vertex could
in principle own more than one inclusion, and therefore the excluded
volume should be explicitly introduced into the system energy and ldts
will be defined by maximum number of inclusions occupying a vertex.

Protein–protein interactions will be a function of the angle
between the two inclusions along the geodesic (Θ=Θ2 �Θ1 and see
Fig. 7B) and the normal angle between the vertices that the proteins
occupy (cos γ= ± N̂v1:N̂v2, positive if tip-to-tip distance is larger than
the edge length and negative otherwise). The interaction between two
neighboring inclusions i and j can be expressed as a Fourier expansion
at the lowest order as

einc,incðΘ,γÞ= � Ai,j � Bi,j cos½nðΘ� Θ0Þ� � Ci,j cos½γ � γ0� ð10Þ

The first term ðAi,jÞ models the isotropic part of the interaction,
while the second term models anisotropic interactions (Fig. 7C). The
third term allows for additional membrane curvature imprint by two
proteins (only if they aggregate) related to the value of γ0 (see Fig. 7B).
n is the least common multiple of the degree of the i,j proteins sym-
metry in the plane of the membrane. Ai,j,Bi,j and Ci,j are strength
coefficients of each energy term. Θ0 is phase shift. The third term in
Eq. (10) models proteins that induce membrane curvature through
dimerization or oligomerization (see Fig. 7D)85,86. This interaction
energy (Eq. (10)) can also be used tomodel lipid domain formations in
multicomponent membranes. FreeDTS can easily accommodate a
more complicated interaction function54, but for the moment, Eq. (10)
suffices within the resolution of the mesoscopic model.

System evolution
System evolution and the equilibrium properties of the membranes
are evaluated by Monte Carlo sampling of Boltzmann’s probability
distribution. Every Monte Carlo step consists of, NT Alexander moves,
a trial to flip the mutual link between two neighboring triangles, Nυ

vertex positional updates and Ni inclusion moves (where Ni is the
number of the inclusions in the system)54. If a system is coupled to a
tension-controlling scheme, then, with the a given probability, there
will be also one trial move to change the box size (see Supplementary
Note 3)38. There is also a possibility to activate parallel tempering
algorithm. This will run multiple replicas at different temperature
using OpenMP parallelization to better sampling of the system (for
more detail, see Supplementary Note 5).

About the source code
FreeDTS is implemented in C + +. It is self-contained and does not
depend on any additional library. It is very well-linked to TS2CG
through input and output meshes and can be expanded to be linked
with TS2CG on the fly. Also, it is easy to compile and run (for more
detail, see the tutorial section in the manual or the tutorial section on
GitHub). The energy unit is kBT and the unit length is ldts which is the
minimumdistance between any pair of vertices. For information about
the code performance, see Supplementary Note 6.

The source code can be found at https://github.com/weria-
pezeshkian/FreeDTS.git.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Any other files related to this manuscript are available from the cor-
responding authors upon reasonable request. Source data are pro-
vided with this paper.

Code availability
The source code data generated in this study have been deposited in
the Github and Zenodo databases under accession codes https://
github.com/weria-pezeshkian/FreeDTS.git and https://doi.org/10.
5281/zenodo.1039754287, respectively.
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