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Human brain representations of internally
generated outcomes of approximate
calculation revealed by ultra-high-field brain
imaging

Sébastien Czajko 1,2, Alexandre Vignaud3 & Evelyn Eger 1

Muchof human culture’s advanced technology owes its existence to the ability
to mentally manipulate quantities. Neuroscience has described the brain
regions overall recruited by numerical tasks and the neuronal codes repre-
senting individual quantities during perceptual tasks. Nevertheless, it remains
unknown how quantity representations are combined or transformed during
mental computations and how specific quantities are coded in the brain when
generated as the result of internal computations rather than evoked by a
stimulus. Here, we imaged the brains of adult human subjects at 7 Tesla during
an approximate calculation task designed to disentangle in- and outputs of the
computation from the operation itself. While physically presented sample
numerosities were distinguished in activity patterns along the dorsal visual
pathway and within frontal and occipito-temporal regions, a representation of
the internally generated result wasmost prominently detected in higher order
regions such as angular gyrus and lateral prefrontal cortex. Behavioral preci-
sion in the task was related to cross-decoding performance between sample
and result representations in medial IPS regions. This suggests the transfor-
mation of sample into result may be carried out within dorsal stream sensory-
motor integration regions, and resulting outputsmaintained for task purposes
in higher-level regions in a format possibly detached from sensory-evoked
inputs.

Understanding and mentally manipulating numbers is a vital skill in
our everyday life and is an important foundational capacity for the
technological advances of human society. Being impaired in this
capacity, as is, for example, the case in developmental dyscalculia, a
learning disability characterized by difficulties in acquiring number
concepts and learning mental arithmetic in spite of otherwise normal
intellectual functioning, can have profound implications for the con-
cerned individuals’ quality of life and socio-economic status1. Tackling

the nature of such deficits and the neuronal basis of the successful
development of mathematical abilities requires a sufficiently precise
dissection of the neurophysiological mechanisms underlying different
facets of numerical processing, which continues to be a challenge
within the field of cognitive neuroscience.

Much progress has already been made regarding the relatively
coarse system-level scale description of brain function in relation to
numerical processing: Several neuroscientific methods ranging from
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macaque neurophysiology over human functional imaging to lesion
studies converge on supporting a role of areas in and around the
intraparietal sulcus, as well as of lateral prefrontal regions, for
numerical tasks ranging from merely perceiving and detecting chan-
ges in numbers via quantitative decisions to more or less complex
mathematical operations2–5. Rather than merely distinguishing activa-
tion for numerical as opposed to non-numerical tasks overall, func-
tional imaging work in humans has proceeded to characterize the
representations and neural codes underlying numerical information in
human cortex, demonstrating brain signals distinguishing between
individual numerical quantities: for different numbers of items in a
visual display (typically, a set of dots), and to some extent the quantity
represented by number symbols, brain signals show numerical dis-
tance dependent adaptation, as well as distinguishable patterns of
direct evoked multi-voxel activity in intraparietal as well as some lat-
eral prefrontal brain regions6–12. In some of these regions, individual
fMRI recording sites’ responses are furthermore found to form orderly
topographic layouts as a function of the number of items and to
express tuning profiles similar to those observed by neurons in simi-
larly located and possibly functionally equivalent regions of macaque
monkey cortex13–15. More recent studies have further shown that
information closely related to the number of items, which is not
reducible to responses to other quantitative descriptors of dot sets
such as their density, total area, etc., is also available in several earlier-
level brain regions upstream from intra-parietal cortex16–18. In sum,
previous studies suggest that more explicit numerical representations
in higher-level (e.g., intra-parietal) brain regions may arise from the
gradual transformation of the visual information evoked at earlier
sensory processing stages along the dorsal visual pathway.

What the studies reviewed so far have in common is that they are
primarily concerned with “perceptual” number representations, that
is, neuronal patterns elicited in response to being presented with, and
in some cases in addition internally maintaining, a given presented
stimulus. To a large extent, these are likely to reflect representations
that are part of the sensory extraction of numerical information from
visual images. In addition, some recent work has dissociated repre-
sentations underlying the sensory encoding of numbers of items from
those maintaining those same entities in short-term memory, by
manipulating which of two presented dot pattern stimuli was to be
remembered19. The latter kind of representation was detected in intra-
parietal but not earlier or later cortical regions. However, numbers are
not only perceptual objects but also prime examples of entities thatwe
commonly transform internally during mental computations, gen-
erating new numbers as outcomes. Such internal number manipula-
tion is not limited to symbols nor dependent on formal mathematical
training, as attested by the ability of young children20–22, subjects from
cultures with very limited numerical symbol use23, and to some extent
evenmacaquemonkeys24, to performbasic numerical operations over
sets of objects. In the latter case, the results of the computations are
approximate, contrasting with the precise nature of outputs that can
be computed during formal arithmetic on symbols. While these stu-
dies document the extent to which such abilities exist, we currently
know very little about where and how quantities are coded in the brain
when generated internally as the result of such mental computations,
neither in symbolic nor non-symbolic format. It remains unclear to
what extent some of the representations previously described by fMRI
studies during perceptual tasks would also underlie the representation
of internally generated contents, or not.

The present study aimed at identifying representations of such
internally generated numerical contents, by using the enhanced signal-
to-noise ratio provided by ultra-high-field functional imaging.We used
a specifically designed paradigm based on an approximate calculation
taskonnon-symbolic numerical stimuli (sets of dots),motivatedby the
observation that non-symbolic quantities evoke brain representations
that aremore clearly distinguished in fMRI than symbolic ones, e.g.8,25.

This was combined with an analysis logic which maximized the
separability of brain codes internally generated from thoseof stimulus-
evoked contents as well as other partially correlated components of a
mental computation task. Similar to fMRI studies on the mental
transformation of simpler visual information represented in early
visual areas26, in our task, the result of computation had to be held in
working memory over a prolonged delay period to enhance its dis-
tinctness from the stimulus-evoked activity present earlier during the
trial. We further relied on pattern analyses, allowing us to isolate the
unique contributions of several predictors of the stimulus conditions’
similarity, as successfully applied previously to disentangle visual
perceptual representations of partially correlated quantities16. Our
results provide a demonstration of purely internally generated repre-
sentations of numerical contents in the brain, which, in contrast with
stimulus-evoked ones, are found predominantly at higher cortical
levels on top of or beyond the visual sensory processing hierarchy.

Results
During 7T fMRI, subjects were engaged in an approximate non-
symbolic calculation task (Fig. 1a) requiring them on each trial to
visually process a briefly presented sample number (6, 12, 24, or
48 simultaneously presented items) and to perform on this number an
operation as specified by a following symbolic cue (multiplication or
divisionby 2or4). They thenhad tokeep the resultingquantity inmind
up to the appearance of a probe number (another dot set presented
12 seconds after the sample), requiring a smaller-larger decision with
respect to the result of the preceding computation. A relatively long
delay periodwasexplicitly chosen to account for the slownature of the
hemodynamic response and to allow for the initial stimulus-evoked
activity to at least partly return to baseline to facilitate detection of the
internally generated result number representation.

Behavioral results for comparison with probe numbers
Probe numbers presented at the end of the delay period differed from
the correct result on each trial by one of 8 possible ratios (seeMethods
for details). The percentage of correct responses for comparing the
probe to the internally computed result (mean± SEM)was, on average,
76.8 ± 0.02 for division and 73.5 ± 0.01 for multiplication, with the
difference not reaching significance (t(16) = 1.84, p = 0.09, Cohen’s
d =0.42), suggesting that subjects were able to perform the task rea-
sonably well and equivalently for the two types of operations. Com-
bined across operations, the accuracies for the different comparison
ratios were: ratio 0.50: 88.9 ± 0.03, ratio 0.67: 79.2 ± 0.03, ratio 0.80:
68.2 ± 0.04, ratio 0.91: 55.0 ± 0.04, ratio 1.10: 60.4 ± 0.03, ratio 1.25:
75.4 ± 0.03, ratio 1.50: 84.6 ± 0.03, ratio 2: 89.2 ± 0.03. The range of
comparison ratios used further allowed us to fit psychometric func-
tions and compute the just noticeable difference (JND) for the com-
parative judgment performed here. Estimated across all numerosities,
the JND (on a logarithmic scale) corresponded to 0.289 ± 0.03 for
division and 0.287 ±0.02 for multiplication. We also tested for the
presence of a so-called operational momentum effect (referring to
larger or smaller than expected results reported depending on the
type of operation performed), which has been described for mental
calculation, most prominently in the non-symbolic case27,28. To mea-
sure the presence of such effects here, we estimated the point of
subjective equality (PSE) of the psychometric function separately for
trials with division as opposed to multiplication. The expected ten-
dency with division leading to under- and multiplication to over-
estimated results should lead to the PSE being shifted towards the left
or right, respectively, for these operations. Results showed that PSEs
were, on average, −0.029 ±0.06 for division, and −0.062 ±0.06 for
multiplication, with the difference not being significantly different
across subjects (t(16) = 0.32, p = 0.75, Cohen’s d =0.07), suggesting
that result representations were, on average, unbiased by the type of
operation performed in the task used here.
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FMRI pattern analysis to disentangle representations of sample,
result, operation, and operand
Our focus in this contribution is on specific fMRI pattern analyses
disentangling the unique contribution of each of several predictors
(sample numerosity, operation, operand, and result numerosity) to the
pattern of observed distances between all possible pairs of experi-
mental conditions in multi-voxel space. All these predictors were
applied here in a time-resolved fashion (for activity estimates at mul-
tiple time bins corresponding to each acquired image volume); see
Fig. 1b. Thus, our chosen analyses make no assumptions on the parti-
cular time course of the response for each predictor. Entering all
predictors together into a multiple regression at each time point
should ensure that the estimated effects only reflect the variance that
eachpredictor canexplain on top of all the others at eachof these time
points, also see16. Complementary exploratory analyses using uni-
variate methods relying on a canonical hemodynamic response func-
tion are described in the Supplementary Materials, and results are
presented in Supplementary Fig. 1 and Supplementary Table 1.

Performing the mentioned fMRI pattern analyses at a local scale
within a small searchlight at the participant level, followed by group
statistics in surface space, revealed most prominently the (stimulus-
evoked) representation of the sample numerosity which involved
predominantly dorsal stream intra-parietal, but also some lateral pre-
frontal and occipito-temporal brain regions, most strongly during
middle parts (4–8 s) of the trial delayperiod (Fig. 2 andTable 1). During
the late parts of the delay (8–12 s) before the probe numerosity

appeared on the screen, the different internally generated results
could be distinguished in lateral prefrontal regions overlapping,
according to Freesurfer’s parcellation ofmajor gyri and sulci29 with the
left middle frontal gyrus and the right inferior precentral sulcus, and
the left angular gyrus. A last significant cluster was present in the
medial parietal lobe (right subparietal sulcus). A slightlymore inferior /
anterior left lateral prefrontal region (overlapping with the inferior
frontal sulcus) was found to distinguish between the two operands,
detectable during the same later parts of the delay. No significant
effects were detectable for the operation at the level of the searchlight
analysis. For completeness, we also performed additional analyses
corresponding to differential comparisons between time periods:
middle > early, late > early, late >middle, and late and middle > early.
Results of these analyses, reported in detail in Supplementary Fig. 2
and Supplementary Table 2, confirmed that sample-related effects
weremost pronounced duringmiddle compared to early time periods
and showed that result-related effects while beingmost pronounced in
the late > early contrast, were already detectable in the left angular
gyrus region in the middle > early contrast.

In addition to the searchlight analyses scanning the entire
acquired brain volume for local pattern information related to our
predictors of interest, we investigated selected regions of interest,
focusing specifically on subregions of the parietal and lateral pre-
frontal cortex. The aims of these analyses were twofold: (1) To inves-
tigate information in brain response patterns at a slightly more
extended spatial scale than the one corresponding to the radius of the
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Fig. 1 | Experimental Paradigm and analytic approach. A Illustrates an experi-
mental trial where subjects were briefly presented with a cloud of visual items from
which they had to extract its approximate numerosity, followed by a symbolic cue
instructing themwhich operation to performon it. The result of the operation then
had to be maintained in memory over a prolonged delay period (9.6 s on standard
trials as shown here, randomly shortened on a smaller subset of additional catch
trials). At the end of the delay period, another cloud of items appeared on the
screen, which required a smaller/larger decision in comparison with the internally
maintained result of the operation. The total trial duration (delay between two
sample presentations) was 20 s. The 10 experimental conditions used, basedon the
combination of four different sample numerosities with two operations and two
operands, are shown on the right. B Illustration of inputs to the pattern analysis
employed to disentangle the stimulus-evoked and internally generated repre-
sentations of quantities from other components of the computation: 4 predictor

matrices reflecting the Euclidean distances of these conditions in terms of sample
numerosity, operation, operand, and result numerosity (on a logarithmic scale),
here color scaled between 0 and 1 for visualization purposes, were entered all
together into amultiple regression to predict the fMRI pattern similarity across the
10 conditions for each acquired fMRI data volume (TR corresponds to time of
repetition of one volume). Themultiple regression yielded estimates of effect sizes
(β) for sample (samp), operation (oprt), operand (opnd), and result (res) predictors.
The correlations between individual predictors are shown on the right. While it is
generally impossible to entirely decorrelate in- and outputs of calculation tasks
from each other and from the operation at the same time, our specific conditions
were chosen such that sample and result predictors were roughly equally corre-
lated with the operation predictor, and sample and result predictors were slightly
negatively correlated with each other (Pearson r = −0.34).
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previous searchlight analysis within functional-neuroanatomically
meaningful subdivisions of the cortex, and (2) evaluate the degree of
co-localization of sample and result representations at that level,
within independently defined regions of interest. A set of 16 sub-
regions of interest, each within the parietal and frontal cortex, were
derived from the HCP_MMP1 parcellation30, which is based on a com-
bination of functional and anatomical criteria using a large-scalemulti-
modal data set (see Fig. 3, and the Methods section for the selected
regions). As one additional characterization of these regions, their
average BOLD signal time courses for the 10 different experimental
conditions in the present paradigm can be seen in Supplementary
Figs. 3 and 4, for the parietal and frontal ROIs, respectively. Theseplots
illustrate thatwhile part of them (for example,mostof theROIs around
the intra-parietal sulcus) showed strong stimulus-evoked activity, this
was less the case in the lateral parietal and most frontal regions.

Results of multivariate pattern analyses, focusing on information
in distributed activity patterns rather than overall activation level,
showed that information about the sample numerosity was widely
distributed in the parietal cortex (Fig. 3a), reaching significance in all
subregions in both the middle and late delay periods. Information on
the result numerosity was detectable during the late delay period in
regions around the angular gyrus (regions PFm, PGi, PGs), confirming
the results of the previous searchlight analysis. The ROI analysis,
however, also revealed additional significant information on the result
in regions within the depth of / along the superior wall of the IPS
(region MIP during the middle and late delay period and region IP1
during the late delay period). Within the lateral prefrontal cortex,
information on the sample numerosity was widespread and sig-
nificantly detectable within all subregions tested during both time
intervals. The result representation was detectable only during the late

delay period and in most subregions with a few exceptions (Fig. 3b).
Overall, these ROI analysis results confirm the tendency of the repre-
sentation of the sample to be stronger or more widespread than the
one of the result, as had already been suggested by the searchlight
analysis, and they show that subregions which have significant infor-
mation about the result do in general represent information about the
sample numerosity as well. While our interest here is mostly in the
representation of stimulus-evoked and internally generated repre-
sentations of the individual quantities, we also performed equivalent
exploratory ROI analyses on the operation andoperandpredictors, the
results of which can be found in Supplementary Fig. 5.

FMRI pattern analysis to test for a shared representational space
between sample and result numerosities
Multiple regression analysis on representational distance matrices as
those described so far can reveal the unique contribution of the result
representation disentangled from the other (partly correlated) aspects
of the computation, and it can show in how far information on sample
and result numerosities is both present in a given part of the cortex.
What it cannot reveal, though, is whether and at which level in the
brain’s cortical hierarchy the perceptually evoked sample representa-
tions and the internally generated result representation are encoded
within a shared representational space (that is, the neuronal popula-
tions allowing to distinguish a specific numerosity as, e.g., 16, from8or
32, when perceived as the sample, would also allow the same dis-
crimination when these are computed as the result). We might hypo-
thesize the existence of such a shared representational space, at least
within the regions where the transformation from the sample into the
result initially occurs. To test for regions behaving in linewith this idea,
we used a multivariate decoding approach to predict numerosity, not
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Fig. 2 | Results of representational similarity searchlight analysis. Analyses
(n = 17 subjects) tested for the effects of sample, operation, operand, and result
predictors on brain activity pattern dissimilarity in a multiple regression approach.
Analyses were initially performed for each subject per time bin/acquired volume
during a prolonged delay period where subjects computed the result of an
operation and subsequently kept it in memory, with effect size estimates (β) then
being averaged across early,middle and late parts of the delayperiod (right) before
performing surface-based group analyses in FreeSurfer (two-tailed one-sample t-
tests, correction for multiple comparisons by permutation at cluster level,

pFWE < 0.05, cluster forming threshold p <0.01). The color scale represents
uncorrected −log(p) values within the clusters surviving correction. Results are
projected onto a flattened cortical average surface (https://mri.sdsu.edu/sereno/
csurf/), with superimposed lines representing the regional borders of the Human
Connectome Project (HCP-MMP1) parcellation30. For better orientation, the loca-
tion ofmajor anatomical landmarks (MFGmiddle frontal gyrus, IFG inferior frontal
gyrus, Cent S central sulcus, IPS intraparietal sulcus, STS superior temporal sulcus,
OTS occipitotemporal sulcus, Calc S calcarine sulcus) is indicated. Source data are
provided as a Source Data file.
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only for the sample and result in isolation but also attempting to
predict the result from the sample and vice versa, as illustrated in
Fig. 4b. In none of the ROIs tested, cross-decoding between early
sample-evoked activity patterns and later (pre-probe) result-evoked
activity patterns remained significant across subjects after correction
formultiple comparisons across ROIs. Full statistical results for all ROIs
can be found in Supplementary Table 3. This means that, on average
across the group, cross-decoding was absent in the regions which in
the preceding representational similarity analysis, were found to reli-
ably represent both the result and the sample numerosities.

We reasoned that the absence of significant cross-decoding per-
formance could be due to several factors: Beyond a true absence of a
shared representational space, it could reflect a limited signal-to-noise
ratio and / or statistical power in the present paradigm with small
amounts of trials/stimulus presentations. On the other hand, if repre-
sentations were shared at some level of the hierarchy, our ability to
detect this would, in addition, depend on the degree to which parti-
cipants actually are successful in generating the correct result
numerosity. Failing to do sowould be expected tomanifest in reduced
accuracy in the comparison task with the probe stimulus appearing at
the end of the delay. We therefore correlated, across subjects, the
above-mentioned cross-decoding performance with the subjects’
behavioral Weber fraction for comparing the result with the probe
numerosity (see Fig. 4b). Among the parietal ROIs, MIP was the only
region showing a significant (negative) correlation, corrected for
multiple comparisons across all parietal and frontal subregions tested
(Pearson r(15) = −0.8, pFDR = 0.0035). Full statistical results for all ROIs
can be found in Supplementary Table 4. This finding, in addition to the
fact that MIP was one of the regions representing significant infor-
mation about both sample and result numerosity in the previously

described multiple regression RSA ROI analysis, supports the idea of a
role of this region in supporting a shared representational space
between the sample and result numerosities in the present task,
identifying it as a candidate cortical location where the transformation
from in- to outputs of the computation could take place. An equivalent
analysis for frontal regions of interest did not reveal any significant
correlations (neither at corrected nor uncorrected level; see Supple-
mentary Table 4).

Discussion
The present study exploited the enhanced signal-to-noise ratio and
functional sensitivity afforded by ultra-high-field imaging to char-
acterize brain representations of internally generated numerical con-
tents beyond those representations that arise simply as a consequence
of the sensory processing of a stimulus (which has been in the focus of
multiple previous studies). Our specifically designed paradigm and
analytic approach allowed us to disentangle activity patterns reflecting
the result of an approximate numerical computation from those
representing the sample numerosity that was visually presented to the
subject, as well as the other associated aspects of the computation.
The representation of the physically presented sample numerositywas
most widespread and most easily detectable, involving the dorsal
visual stream hierarchy in addition to lateral prefrontal and occipito-
temporal regions, compatible with a range of previous studies that
either found numerical information detectable by multivariate
decoding or explicit topographic layouts of numerosity responses, in
most of these regions8,9,15,16. During later parts of the trial delay period,
result numerosity representations could be detected, most sig-
nificantly in higher-level cortical regions such as the angular gyrus and
lateral prefrontal cortex. To our knowledge, no such brain

Table 1 | Cluster summary table for the surface-based group analysis (N = 17) conducted on the searchlight pattern analysis
(multiple regression with sample, operation, operand, and result predictors on the fMRI distance matrices)

Hemisphere Cluster label Max Size (mm2) MNI X MNI Y MNI Z CWP NVtxs

Sample—early delay

Left G_oc-temp_med-Lingual 4.53 614.0 −12.5 −84 −13.2 0.0314 609

Right S_parieto_occipital 4.45 527.6 12.8 −71.2 19.4 0.0466 662

Sample—middle delay

Left S_oc_sup_and_transversal 6.33 13320.9 −34.6 −80.1 19.2 0.0008 22,980

S_front_sup 4.60 3222.6 −20.6 29.3 33.6 0.0120 5834

Right S_oc_sup_and_transversal 6.03 9186.8 34.6 −73.1 23.2 0.0012 17,077

S_front_sup 5.22 1633.0 21.5 −3.8 55.7 0.0262 3198

S_precentral-inf-part 4.46 1605.6 38.7 2.8 28.2 0.0266 3090

Sample—late delay

Left G_pariet_inf-Angular 6.81 5010.4 −41.1 −64.7 45.4 0.0032 10,617

S_front_sup 4.51 3045.1 −19.5 40.2 33.6 0.0068 4758

S_subparietal 4.20 1432.9 −6.8 −48.9 29.6 0.0203 2991

G_temporal_middle 3.50 1006.9 −55.2 −56.9 −2.8 0.0314 1710

Right G_pariet_inf-Supramar 5.37 8843.4 53.8 −38.4 45.4 0.0004 19,265

S_front_sup 4.61 1368.1 20.3 22.5 44.7 0.0207 2528

G_front_middle 5.39 880.0 41.9 16.7 43.5 0.0427 1461

Operand—late delay

Left S_front_inf 3.03 608.9 −37.1 30.2 12.9 0.0270 941

Result—late delay

Left G_pariet_inf-Angular 7.13 1717.0 −41.6 −64.1 45.2 0.0028 3632

G_front_middle 6.41 1377.1 −40 10.9 40.4 0.0076 2367

Right S_precentral-inf-part 4.06 1303.4 34.2 5.6 33.5 0.0092 2282

S_subparietal 3.52 609.5 7.8 −46.4 42.2 0.0494 1619

For each contrast displayed in Fig. 2, and each cluster surviving pFWE < 0.05 (corrected at cluster level by permutationmethodswith cluster forming threshold p < 0.01), the table reports: the cluster
label (as defined by the anatomical labels from the Destrieux Atlas), the maximum −log10(p) value in the cluster (Max), the cluster surface area in mm2 (size), the MNI coordinates of the maximally
activated vertexwithin each cluster (MNI X, Y, Z), the cluster-wise p-value of each cluster (CWP), the number of vertices included in each cluster (NVtxs). No above threshold clusters were detected
for the operation at any time window, nor for the operand and result at the early and middle delay.
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representation of internally generated results of numerical computa-
tions has previously been reported, while one previous study using a
slightly different paradigm involving subtraction or addition of small
symbolic numbers and magneto-encephalography tried but did not
succeed in detecting the representation of the internally generated
outcomes31.

The fact that result representations were most detectable in our
study during the last four seconds of the delay period preceding probe
appearance (though also see results for region MIP in the RSA ROI
analysis in Fig. 3, and differential contrasts between middle and early
delay for the result in Supplementary Figure 2), could be related to
inherent constraints of the type of signals measured in fMRI rather
than reflecting the actual time when results are available in the parti-
cipant’s mind. Indeed, given the temporal characteristics of the
hemodynamic response, although the neuronal representation of the
result could be available quickly after the operation instruction screen,
the visually evoked BOLD response to the sample numerosity at that
moment in time will still be strong and likely be overshadowing the
internally computed result response. The use of long delays before
probing the subjects with a comparison taskwas, therefore, ameans to
better separate the two types of responses (since the stimulus-evoked
sample-related activity is expected to decay with time while the result
has to be maintained for task purposes).

Given that our task involved internal maintenance of result
representations and a following comparison task with a visually pre-
sented probe, a relevant question is in how far result representations

could be contaminated with response selection processes on the one
hand or reflect internal visualization of the outcome of the computa-
tion, potentially even in combination with non-numerical visual stra-
tegies.We thinkwe can exclude a role of response selection confounds
in affecting our findings since the different result numerosities were
distinguishable before the appearance of the probe numerosity when
participants could not yet predict the response to be made since
probes differing by the same ratios towards the smaller vs. larger with
respect to the result were used for each possible result. That partici-
pantswere visualizing the outcomeof the computation ispossible, and
we think, in general, this possibility is difficult to exclude also with
other related approximate non-symbolic calculation tasks in the lit-
erature. If visualization occurs, we think that non-numerical visual
strategies based on something else than the approximate number of
discrete items, suchas, for example,manipulating density or field area,
would have limited viability since the field area within which the dots
appeared (which was uncorrelated with numerosity by design) was
always different between the sample and probe numerosity in our
paradigm, thereby reducing correlations with density and their
exploitability for performing the task. More generally, visual numer-
osity itself has been shown to be a salient visual property, for which
perceptual sensitivity can insufficiently be explained by sensitivity to
properties such as field area and density, which in theory jointly
determine numerosity32.

Among the regions found to represent result numerosities in the
present study, the lateral prefrontal cortex is an area commonly found

a b

sample

result

sample

result

Fig. 3 | Effects of sample and results numerosity in representational similarity
analysis on regions of interest (ROIs). Results for sample and results numerosity
predictors in a multiple regression analysis on brain activity pattern dissimilarity
are shown for subregions of the parietal (A) and lateral prefrontal (B) cortex. ROI
delineation, colors, and labels are based on the Human Connectome Project (HCP-
MMP1) parcellation30 shownhereon the flattened cortical average surface. For each
ROI, violin plots show the distribution of beta estimates for sample and result
predictors (n = 17 subjects). The central horizontal line indicates the mean, and the

adjacent colored area (colors corresponding to the ROIs above) the limits of the
first and third quartile, with the left part of the violin for each ROI corresponding to
averages of the middle (4–8 s), and the right part to averages of the late (8–12 s)
delay period. Star signs (*) indicate significantly larger responses than 0 in two-
tailed t-tests after false discovery rate (FDR) correction for multiple comparisons
(pFDR < 0.05, across all 32 subregions and the two time periods). Source data are
provided as a Source Data file.
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to be recruited during numerical tasks in fMRI studies, most promi-
nently in tasks involving arithmetic processing4, and it also has been
found to distinguish between individual numerical stimuli in both the
visual and auditory modality by previous studies using fMRI pattern
analyseswhichcovered that region9,12,33. This region is also theonewith
the highest percentage of numerosity selective neurons in macaque
monkeys34. Nevertheless, these neurons’ responses arise later than the
ones in the parietal cortex, and they are especially pronounced when
monkeys have been trained to performan explicit numericalmatch-to-
sample task and reduced during non-numerical tasks, which is not the
case for parietal responses35,36. This suggests that parts, but not all of,
prefrontal numerical responses can be attributed to the more general
encoding of task-relevant categories or working memory contents
which is a hallmark of these regions also outside the numerical
domain37–39. These aspects cannot be separated from the numerical
contents in accounting for the representations of internally generated
results, which we describe here for the first time, given the nature of
the task which involvedmaintenance of and a comparison task carried
out on the result. On the basis of previous fMRI work it seems, how-
ever, that mere working memory maintenance of perceived numer-
osity stimuli is not sufficient for their representations to be
distinguished within these regions19, although this may also reflect
limitations of sensitivity of fMRI at lower field strengths.

The angular gyrus, which appears here as the other most promi-
nent region representing internally generated results, is a location
different from those known to show numerosity selective neurons in

monkeys and topographic numerosity maps in humans15,34. Indeed, in
our paradigm, the angular gyrus ROIs were among the ones showing
the least stimulus-evoked responses, contrasting with the other
regions around the intra-parietal sulcus. The angular gyrus area is also
known to be characterized by the absence of general visual topo-
graphic organization as found inmoremedialparts of the intra-parietal
cortex, and it corresponds to the part of the parietal cortex having
undergonemost expansion in humans compared tomacaques40,41. It is
further considered a high-level integration zone with the greatest
distance from sensory input regions which is at least partially over-
lappingwith parts of the so-called “defaultmode network”42,43. Perhaps
due to the latter proximity, the angular gyrus region is not among
those regions generally observed to be overall activated during
numerical as opposed to non-numerical tasks in fMRI studies4. Rather,
when angular gyrus involvement was found in calculation tasks in
humans, this has often been found to be specific to the operation, such
as multiplication over subtraction, or been interpreted as related to
different demands in verbal fact retrieval in the specific tasks
compared2,44,45. An interpretation based on verbal retrieval appears
unlikely for the findings here given the nature of our task and stimuli,
and given the type of discrimination performed, which is between
numbers rather than with respect to a control task with potentially
differing retrieval demands, and is disentangled from the effect of the
operation per se. Another situation where the angular gyrus has been
found to be overall activated is when comparing numerical symbols
relative to non-symbolic numerical stimuli46–48, as well as for digits

behavioural Weber frac�on

de
co

di
ng

 p
er

fo
rm

an
ce

a c **

b

-0.1
0

0.1
0.2

IPS1 MIP LIPv VIP

-0.1
0

0.1
0.2

IP0 IP1 IP2 LIPd

-0.1

0
0.1
0.2

PGp PGs PGi PFm

0.2 0.4 0.6

-0.1
0

0.1
0.2

7AL

0.2 0.4 0.6

7PC

0.2 0.4 0.6

AIP

0.2 0.4 0.6

PFt

Fig. 4 | Multivariate decoding analyses testing for shared representational
spaces between stimulus-evoked and internally generated result representa-
tions. A Visualization of all ROIs in the parietal lobe. ROI delineation, colors, and
labels are based on the Human Connectome Project (HCP-MMP1) parcellation30

shown here on the flattened cortical average surface. B Illustration of analysis:
within each subregion, the performance of a multivariate decoder to predict the
logarithm of numerosity for either the sample or result was tested after training on
either the sample and results and the same as well as every other possible time bin
(10 bins of the shown matrix). Decoding performance was measured by a correla-
tion score (Fisher z transformed Pearson correlation between real and predicted
labels). Average cross-decoding performance between sample and result for each
subject was then assessed within the time window of interest outlined in white

corresponding to the periods where stimulus-evoked sample activity and internally
generated result activity were hypothesized to be most prominent, respectively.
The example data shown are the across-subject averages from the middle intra-
parietal (MIP) ROI. C Pearson correlations across subjects (n = 17) between cross-
decoding performance and behavioral Weber fractions for comparing the probe
number with the internally generated result for all parietal subregions. Only in
subregion MIP a significant negative correlation (Pearson r(15) = −0.8,
pFDR = 0.0035, ** indicating corrected significance across all parietal and frontal
ROIs combined at pFDR <0.01)was found, indicating thatbetter cross-decodingwas
associated with more precise behavioral numerical discrimination in the task (and
thus, likely amore correct internal result representation). Source data are provided
as a Source Data file.
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compared to letters and scrambled characters during mere viewing49.
The latter result has been interpreted as reflecting the symbols’ con-
ceptual identification, also compatible with findings showing pre-
ferential recruitment during conceptual (magnitude) as opposed to
perceptual (color) judgments on numerals50. None of these studies,
however, has gone beyond overall activation differences to demon-
strate discrimination between symbols of different numerical magni-
tudes in this region.

Of note, before the introduction of functional imaging into the
toolkit of cognitive neuroscience, the angular gyrus has already been
established as a crucial substrate for mental calculation by
neuropsychology51–53. Localized lesions to this area are known for
yielding the Gerstmann syndrome of impairments, comprising acal-
culia, finger agnosia, agraphia, and right-left disorientation. Some
authors52 have proposed that the co-occurrence of these and further
impairments in, e.g., mental rotation could have as a common
denominator an impairment of visuospatial resources for manipulat-
ingmental images.Our results allowus to further qualify the functional
role of this region, pinpointing its contribution in the context of cal-
culation as representing individual quantities that are internally gen-
erated rather than other task-related components such as the
operation per se. Interestingly, beyond the numerical domain, the
angular gyrus was also found in other work to distinguish between
newly learned multisensory objects, reflecting the learned concepts
independently of their uni-modal sensory characteristics54. This sug-
gests that this region’s location on the top of multiple sensory pro-
cessing hierarchies predisposes it to manipulate mental images of a
rather abstract nature, which are detached from the specifics of the
sensory inputs.

Beyond the results of the searchlight analysis, which reveal where
numerical information is strongest across subjects when considering
relatively locally restricted patterns, our complementary regions of
interest analyses showed that representations of sample and results
numerosities at an intermediate spatial scale are co-localized and
relatively widespread, especially in the lateral prefrontal cortex. In the
parietal cortex, co-localized information was detected in a few addi-
tional regions in the IPS that had not been observed in the searchlight
analysis. This raises the question of whether and where the two dif-
ferent types of quantities are coded within a shared representational
space. Indeed, our cross-decoding analysis between sample and result
numerosities indicated that the only region where a shared code is
likely based on our data was one region (MIP) on themedial wall of the
IPS, where cross-decoding was not sufficiently significant across sub-
jects to survive multiple comparison correction, but strongly sig-
nificantly correlated with the behavioral precision for comparing the
result with the probe numerosity presented at the end of the trial. This
finding suggests that in this region, representations are indeed shared
between sample and result, but that detectability with our methods
was limited by the extent to which subjects computed the correct
result.

The precise region where the above-mentioned result was
obtained appears to be close to the location where topographic
numerosity responses were first described13. The region is named
MIP in the parcellation scheme applied here, reflecting the hypoth-
esis of a possible correspondence with the medial intra-parietal area
(or so-called parietal reach region) in macaques55. On the other
hand, we note that this ROI, to a large extent, overlaps with fieldmap
IPS2 according to a different probabilistic atlas based on visual
topography56. This indicates that it could also correspond to (part
of) the equivalent of the lateral intraparietal area as suggested by
others57. While disambiguating the precise correspondence is
beyond the scope of our study, of interest for our interpretation
here is the fact that both MIP and LIP are regions that are involved in
sensorimotor integration with the effector corresponding either to
the arm or the eye58, as part of which these regions are thought to

implement coordinate transformations59 to compute the direction
and / or amplitude of movements. It has been hypothesized that the
same neural machinery might be involved in numerical computa-
tions during mental arithmetic60. Previous studies have found that
different types of numerical operations (such as addition versus
subtraction or subtraction versusmultiplication) performed on non-
symbolic or symbolic numerical stimuli evoke dissociable activity
patterns in the human LIP equivalent61,62, but what was lacking was a
demonstration of the representations of numerical outcomes actu-
ally being generated within these regions. In this context, our results
provide a crucial missing link in support of the important role of
sensory-motor regions in numerical computations. It is noteworthy
that a shared representational space in our study was not observed
in further regions beyond the ones on the medial wall of the IPS, in
spite of the fact that the angular gyrus ROIs and many lateral pre-
frontal ROIs contained information on both the sample and result
numerosities. While we cannot rule out limitations in sensitivity
underlying this absence of significant generalization of decoding, it
is possible that these higher-level regions, due to being more
detached from sensory inputs, maintain sample and result repre-
sentations in separate subspaces tomaximize efficient coding of the
task-relevant information and avoid mutual overwriting of the in-
and outputs of the computation.

In sum, exploiting the enhanced signal-to-noise ratio provided by
ultra-high-field fMRI in combination with an original paradigm, our
study reveals a representation of internally generated quantities dur-
ing mental computations, most strongly in higher-level regions on top
of the sensory processing hierarchies and different from those known
to be most strongly distinguish perceived quantities. Furthermore,
regions along the medial wall of the IPS were the only ones to
demonstrate some degree of shared representational space between
the in- and outputs of the mental computation, identifying them as
possible candidates for the initial generation of numerical outcomes,
which should be further confirmed by methods with better temporal
resolution. While the generalization of decoding performance sug-
gests that perceptual and internally generated contents share some
aspects of their cortical representation in these regions, another
remaining question beyond the capacity of the imagingmethods used
here concerns how precisely these representations co-organize along
the cortex and/or across cortical depth. It would be an interesting
challenge for further studies to explore with ultra-high spatial resolu-
tion (potentially at even higher field strength) whether sample and
result numerosities differentially recruit different cortical laminae,
similar towhat hasbeen found for bottom-up and top-downgenerated
representations in early sensory cortices63,64. The results reported here
were obtained duringmental manipulation of non-symbolic numerical
quantity in an approximate calculation task. In how far some of the
regions observed here would also be relevant to encode results of
precise symbolic calculation, and what would be the role of different
strategies employed (e.g., explicit manipulation of quantity versus
retrieval from verbal memory) in the precise form that such result
representations can take, will be important remaining questions for
future studies.

Methods
Participants
18 healthy volunteers (25.9 ± 6.9 years old, of which 9 weremale and 9
were female, according to self-report) were included in the study. One
male participant was excluded due to not properly understanding and
following task instructions while in the scanner (pressing the response
button erratically during the sample or probe period). The study had
been approved by the regional ethical committee (Comité de protec-
tion des personnes [CPP] Ile de France VII, Hôpital de Bicêtre, No. 15-
007), and all participants gave written informed consent before
participating.
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Data acquisition
Functional images were acquired on a SIEMENS MAGNETOM 7T
scanner with whole-body gradient and a 1Tx-32Rx head coil (Nova
Medical, Wilmington, MA, USA) as T2*-weighted fat-saturation echo-
planar image (EPI) volumes with 1.5mm isotropic resolution using a
multi-band sequence65 (https://www.cmrr.umn.edu/multiband/, multi-
band [MB] = 2, GRAPPA acceleration with [IPAT] = 2, partial Fourier
[PF] = 7/8, matrix = 130× 130, repetition time [TR] = 2 s, echo time [TE]
= 22ms, echo spacing [ES] = 0.64ms, flip angle [FA] = 68°, bandwidth
[BW] = 1832Hz/Px, phase-encode direction anterior » posterior). Cali-
bration preparation used Gradient Recalled Echo (GRE) data. 68 obli-
que slices covering the occipito-temporal, parietal, and frontal cortex
were obtained in ascending interleavedorder. Before the experimental
runs, two single volumes were acquired with the parameters listed
above but with opposite phase encode directions to be used for dis-
tortion correction in the later analysis (see “Image processing and data
analysis”). T1-weighted anatomical images were acquired at 1mm iso-
tropic resolution using an MP2RAGE sequence (GRAPPA acceleration
with [IPAT] = 3, partial Fourier [PF] = 6/8, matrix = 256 × 256, repetition
time [TR] = 5 s, echo time [TE] = 2.84ms, time of inversion [TI] 1/
2 = 800/2700ms, flip angle [FA] 1/2 = 4°/5°, bandwidth [BW] = 240
Hz/px).

Stimuli and procedure
Visual stimuli wereback-projected onto a translucent screen at the end
of the scanner bore and viewed through a mirror attached to the head
coil. Participants held two response buttons in their left and right
hands. Each trial started with the fixation cross turning green and a
400ms presentation of a cloud of simultaneously presented visual
items (sample: 6, 12, 24, or 48 dots) from which participants had to
extract their numerosity. This was followed by a visually presented
symbolic cue, appearing 2 s after the initial sample display for 400ms,
instructing participants about the operation to perform on the sample
numerosity (multiplication/division by two/four). After that, partici-
pants had to maintain the internally generated result of the operation
in memory over a prolonged delay period until another set of dots
(probenumerosity) appearedon the screen. Participantswere asked to
perform a comparative judgment on the probe with respect to their
internally generated result by pressing the left button when the probe
appeared smaller and the right button when the probe appeared lar-
ger. Probe numerosities varied from the correct result of each given
operation by one of 8 ratios (0.5, 0.667, 0.8, 0.909, 1.1, 1.25, 1.5, and 2),
allowing us to estimate participants’ just noticeable difference (JND)
on a log scale (Weber fraction). Given that all smaller and larger probe
ratios appeared with equal probability for each possible result, the
detected result representation cannot be systematically affected by
response selection confounds before probe appearance. The SOA
between sample and probe number was 12 s on the majority of trials
(standard trials), and was unpredictably shortened (randomly drawn
from a uniformdistribution ranging from5.4 s to 9.6 s) on 20% of trials
(catch trials). These catch trials were included to encourage subjects to
perform the computation immediately and maintain the result repre-
sentation ready for a potential comparison throughout the delay
period.

The clouds of dots presented black items on a mid-gray back-
ground, which could appear within a circular field area of either 6 or 8
visual degrees diameter for all numerosities. Sample and probe
numerosity were always presented in different field areas to minimize
the possibility of using dot density to perform the task. The size of the
dots was adjusted so that the total luminance was approximately
equated across numerosities. Individual dot sizes were picked from a
uniform distribution whose mean varied with the numerosity. Each
half of the distribution overlapped with a consecutive numerosity.

Calculation paradigms inevitably yield some form of correlation
between the results and either theoperation or the sample. In our case,

the 4 numerosities, 2 operations, and 2 operands were used to create
10 trial types/conditions (Fig. 1), ensuring that the operation was
equally correlated with the sample and result, respectively. Two stan-
dard trials of each of these 10 conditions appeared within a given
experimental run, which in addition contained 4 catch trials (not
included in the analysis). All subjects completed between 6 and 8 runs
(of ~8min duration each).

Image processing and data analysis
EPI images weremotion-corrected and co-registered to the first single-
band reference image using statistical parametric mapping software
(SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/-spm12/). The
single-band reference images of the two initial volumes acquired with
opposite phase encode directions served to estimate a set of field
coefficients using top-up in FSL 5.0 (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FSL), which was subsequently used to apply distortion correc-
tion (apply_topup) to all EPI images. Cortical surface reconstruction of
the anatomical image and boundary-based registration of single band
reference images to each subject’s cortical surface, as well as aminimal
amount of surface-constrained smoothing (FWHM= 2mm) for noise
reduction, were performed in Freesurfer 6.0 (https://surfer.nmr.mgh.
harvard.edu/). The preprocessed EPI images (in subjects’ native space)
were entered into a general linear model, using a finite impulse
response (FIR) set with 10 bins of 2 s (=1 TR) width tomodel responses
to standard trials separately for the 10 experimental conditions, aswell
as an additional condition corresponding to all catch trials. The six
motion parameters were included in the GLM as a covariate of no
interest. An AR(1) model was used to account for serial auto-correla-
tion, and low-frequency signal drifts was removed by a high-pass filter
with a cutoff of 244 s.

Pattern analysis testing for separable representations of the dif-
ferent components of the calculation task was performed using a
representational similarity analysis approach in CoSMoMVPA (http://
www.cosmomvpa.org/)66, with as input a single set of FIR estimates per
condition and subject, obtained from a GLM concatenating the runs
within-subject, also see16,67. In addition to the movement parameters,
this GLM contained a separate constant for each run to account for
offsets between runs. Searchlight analysis in each individual subject’s
volume space was performed for each of the 10-time points (FIR bins)
after the sample, using a spherical ROI with a radius of 3 voxels.Within
the searchlight sphere, voxel-wise scaling was applied by subtracting
the mean across conditions, and neural representational distance
matrices (RDMs) were created by computing the correlation distance
(1—the Pearson correlation across voxels) between activity patterns
associatedwith all possible pairs of the 10 conditions.TheneuralRDMs
were then entered in a multiple regression with four predictor RDMs
encoding the differences between the 10 conditions in terms of the
sample and probe numerosities (log scale), operations, and operands.
All distance matrices were z-transformed before estimating the
regression coefficients. These analyses yielded as output a set of beta
estimate images (corresponding to the effects explained by the 4
predictor RDMs on the neural RDMs for all searchlight center loca-
tions) for each time bin.

Beta images of individual subjects were then projected onto their
cortical surface for group analyses (using Freesurfer), performed on
each one of three-time windows of interest corresponding to early
(average of bin 1 and 2), middle (average of bin 3 and 4) and late
(average of bin 5 and 6) parts of the trial delay period (all before the
probe numerosity appeared on the screen). Equivalent pattern ana-
lyses were also performed at the scale of multiple subregions of the
parietal and lateral prefrontal cortex, as defined by a multimodal
parcellation scheme in standardized cortical surface space30. The
analysis focused on a set of 16 subregions, each within the parietal and
prefrontal cortex (see Fig. 3 for the different regions’ locations). More
specifically, the included subregions’ labels were: PFt, AIP, 7PC, 7AL,
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PFm, PGi, PGs, PGp, LIPd, IP2, IP1, IP0, VIP, LIPv, MIP, IPS1 for parietal
cortex, and 8Ad, i6-8, 9-46d, a9-46v, 46, p9-46v, 8Av, 8 C, p47r, IFSa,
IFSp, IFJa, IFJp, 47l, 45, 44 for prefrontal cortex. Regional labels in
normalized cortical surface space were projected back into each
individual subject’s volume space to create regions of interest. Pre-
liminary analyses kept left and right hemisphere ROIs separate, which
were then merged after observing no significant interactions between
any effects for the predictors of interest and hemisphere in anANOVA.

Multivariate decoding analysis testing for cross-prediction
between sample and result numerosities was performed on the same
set of regions of interest as mentioned above in scikit-learn (https://
scikit-learn.org/stable/)68 using linear support vector regression (SVR)
with regularization parameter C = 1. This analysis was performed on
run-wise FIR beta estimates of the 10 conditions in each subject,
implementing a cross-validation loop that left patterns of one run out
for testing in each cycle and training on the remaining ones in an
equivalent way for all the comparisonsmentioned below. The decoder
was trained on data that were voxel-wise z-scored across conditions,
with continuous labels reflecting the z-scored logarithm of number
(either of the sample or the result). The prediction performance on the
left-out test data was evaluated by a correlation score (Fisher-z trans-
formed Pearson correlation coefficient between real and predicted
labels). This procedure was applied either within the sample or result
numerosities, but most importantly, to predict the sample from the
result and vice versa, where in addition, the train and test data could
come from all possible combinations of the 10 FIR bins, yielding a
10 × 10matrix of decoding generalization performance. Since analyses
using a flexible, parameter-rich FIRmodel tend to yield noisy estimates
for individual bins, we focused on averages of multiple cells in these
matrices, which reflected our prediction that in case of a shared
representational space, cross-decoding of numerosity should be
observed between time points reflecting for the sample the typical
peak of the stimulus-evoked response, and for the result later periods
during the delay where the stimulus-evoked responsewas expected to
have diminished and mostly the memorized result representation to
remain. In detail, for the sample, this comprised bins 2–4 (corre-
sponding to 2–8 s post-stimulus onset), and for the result, bins 4–6
(corresponding to 6–12 s post-sample onset), with the additional
constraint that the combinations of bins retained needed to be non-
overlapping for sample and result and separated by at least 1 bin in
between them (see Fig. 4 for illustration).

Statistical analysis
Group analysis of the multivariate searchlight representational simi-
larity analysis in surface space was performed using two-tailed t-tests
against 0 across the subject-wise beta estimates for each predictor.
Correction for multiple comparisons was performed at the cluster
level using permutation methods as implemented in Freesurfer (5000
permutations, pFWE < 0.05, with a vertex-wise cluster forming thresh-
old of p <0.01). Equivalent analyses with two-tailed t-tests against 0
across subjects were conducted in the ROI analysis on the subject-wise
beta averages for each ROI. Multiple comparison correction was per-
formed using the Benjamini & Hochberg method for the correction of
false discovery rate (FDR) across all 32 subregions (frontal and parietal
combined) and both time windows (middle and late combined).

For the ROI cross-decoding analysis, the values entering two-
tailed t-tests against 0 were the subject-wise Fisher-z-transformed
decoding scores for the time window of interest defined in the section
above. Multiple comparison correction was based on FDR across all
32 subregions (frontal and parietal combined). Correlation analysis
across subjects between subject-wise decoding scores and measures
of behavioral performance (just noticeable difference/Weber fraction)
was performed using Pearson correlation and the associated sig-
nificance test, with FDR-based multiple comparison correction across
all subregions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The functional imaging data (individual subjects’ first-level fMRI
models, anatomical images, and ROI images) generated as part of this
study have been deposited in an Open Science Framework database
(https://osf.io/2tnrz/). Source data plotted in the figures are provided
with this paper. Source data are provided with this paper.

Code availability
The analysis code used in this study (representational similarity and
multivariate decoding analysis) is available via the Open Science Fra-
mework (https://osf.io/djftw/).
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