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Usingbig sequencingdata to identify chronic
SARS-Coronavirus-2 infections

Sheri Harari1,2,4, Danielle Miller1,2,4, Shay Fleishon3, David Burstein 1,2 &
Adi Stern 1,2

The evolution of SARS-Coronavirus-2 (SARS-CoV-2) has been characterized by
the periodic emergence of highly divergent variants. One leading hypothesis
suggests these variants may have emerged during chronic infections of
immunocompromised individuals, but limited data from these cases hinders
comprehensive analyses. Here, we harnessedmillions of SARS-CoV-2 genomes
to identify potential chronic infections andused languagemodels (LM) to infer
chronic-associated mutations. First, we mined the SARS-CoV-2 phylogeny and
identified chronic-like clades with identical metadata (location, age, and sex)
spanning over 21 days, suggesting a prolonged infection. We inferred 271
chronic-like clades, which exhibited characteristics similar to confirmed
chronic infections. Chronic-associated mutations were often high-fitness
immune-evasive mutations located in the spike receptor-binding domain
(RBD), yet a minority were unique to chronic infections and absent in global
settings. The probability of observing high-fitness RBD mutations was 10-20
times higher in chronic infections than in global transmission chains. The
majority of RBD mutations in BA.1/BA.2 chronic-like clades bore predictive
value, i.e., went on to display global success. Finally, we used our LM to infer
hundreds of additional chronic-like clades in the absence of metadata. Our
approach allowsmining extensive sequencing data and providing insights into
future evolutionary patterns of SARS-CoV-2.

The evolution of SARS-Coronavirus-2 (SARS-COV-2) has been punc-
tuated by the periodic emergence of variants that are highly geneti-
cally divergent compared to the circulating variants at the time of their
emergence. Some of these variants were found to be more transmis-
sible than their predecessor variants, leading to patterns of rapid dis-
placement of one variant by another. Specific variants of concern
(VOCs) were designated by the World Health Organization (WHO)
when there was concrete evidence that a variant posed an increased
risk to public health. The nomenclature of SARS-COV-2 variants has
been challenging1; here we refer to VOCs mainly based on the Greek
letters assigned by PANGO2 and WHO1. When more precise nomen-
clature is necessary, we rely on the classification of Nextstrain clades3.

As of the end of 2020, a series of VOCs created patterns of global
displacement, namely Alpha, Delta, Omicron BA.1, Omicron BA.2, and
lastly Omicron BA.5. More recently, milder global changes have been
occurring, as at the time of writing there are multiple variants co-
circulating globally, and these variants are usually not dramatically
divergent compared to their predecessors.

Several hypotheses have been raised regarding the origin of
highly divergent SARS-COV-2 variants, namely, undetected circulation
in regions where sequencing is sparse, a zoonotic origin, and emer-
gence in chronically infected individuals (also called persistent or
prolonged infections). Notably, it is very hard to definitively prove any
of these hypotheses. The latter hypothesis has been gaining mounting
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support4–13, mainly due to the fact that different combinations of VOC
lineage-definingmutations, particularly in the spike gene, are observed
across chronic infections4,7,9,14.

Chronic infections are herein defined as infections where there is
evidence of actively replicating virus for more than 21 days, and often
such infections may last months or even more than a year14. To date,
chronic infections were found predominantly in immunocompro-
mised individuals suffering from one of four categories: hematologic
cancer, AIDS, transplant patients or autoimmune patients15–19. Chronic
infections should not be confused with long COVID where symptoms
persist but not necessarily active viral replication.

Notably, epidemiologic modelling of chronic infections and their
impact on global circulation has led to some contradictory results.
Earlymodels suggested that chronic infections would not likely lead to
variants that spread in the population, mainly due to the assumption
that chronically infected individuals tend to be isolated and rare20.
Isolationof patients is true in some settings but not in others, andwhile
the assumption of rarity is likely true, during the current pandemic,
rare events translate to large numbers. Importantly, more recent
modelling papers focusing on SARS-CoV-2, do support the possibility
that chronic infections may harbor variants that are infectious and
contribute to global spread21–25.

Despite the increased interest in chronic SARS-COV-2 infections,
our understanding of the dynamics of these infections and how they
correlate with global evolutionary patterns is limited and mostly con-
tingent on isolated case reports. Our and other previous meta-
analyses14,26 weremostly limited to the pre-VOC era and were based on
a small number of cases (but see27). We posit here that the ever-
growing database of millions of SARS-COV-2 genomes likely harbors
many sequences derived from chronic infections.We adopt a two-step
approach: first, utilizing phylogeny and sequencing metadata to
identify potential clades, and then employing language models to
analyze these clades and use the information to infer clades in the
absence of reliable metadata.

Notably, sequences are usually not explicitly identified as origi-
nating from chronically infected individuals or from the same person.
We reasoned that most often, sequences derived from chronically
infected individuals will display as monophyletic clades, i.e., all
sequences derived from the ancestral node of the clade are from the
same individual16,18,19 and share metadata (age/sex/location, and range
of dates). This reflects the following assumptions: (i) sometimes,
chronically infected individuals will be serially sampled and
sequenced, (ii) sequences derived fromthe same individualwill bevery
similar, and (iii) most chronically infected patients do not create
onward transmission chains14,27 (otherwise, the clade would not be
monophyletic). We accordingly mined a global phylogeny of over 11
million sequences and inferred 271 inferred chronic-like monophyletic
clades and a set of control clades derived from transmission chains. By
comparing chronic-like clades to controls, we were able to obtain
insights regarding the different evolutionary dynamics of chronic
versus acute infections.

Analysis of data at the scale described herein poses many chal-
lenges, including missing data and computational limitations.
Recently, language models have gained widespread popularity due to
their ability to tackle such large volumes of data and have impacted
research in diverse areas of biological sciences, including virology28–30.
To this end, we used language models to effectively capture the dis-
tinct mutational patterns exhibited by chronic-like clades in compar-
ison to control clades. This enabled us to identify mutations that
exhibit a stronger association with chronic-like clades. Finally, we used
this model to infer chronic infections, in the absence of metadata. Our
analysis allowed us to demonstrate that in-depth mining of the huge
volume of SARS-CoV-2 sequences is highly informative and that
chronic-like clades may sometimes hold predictive value for inferring
future evolution.

Results
We began by mining a phylogeny of over 11.7 million sequences of
SARS-COV-2 for monophyletic clades where all sequences share
homogenous metadata (defined here as location, age, and sex) and
where the sampling dates of the sequences span more than 21 days,
resulting in 271 chronic-like clades (also denoted as cases). Notably,
only ~25% of sequences (n = 2,929,351) bore valid metadata regarding
sex/age/dates and passed the sequence quality control we applied
(Methods). In addition, we constructed a set of positive and negative
control clades. The set of positive clades was composed of thirty-two
bona fide chronic infections derived from published case reports for
which sequencing, metadata and clinical information were available
(Methods). The set of negative control clades was generated by sam-
pling 15,163 monophyletic clades with mixed metadata (Methods)
(Fig. S1), to ensure that these cladesmost likely represent transmission
chains from acute infections. In the analyses below, when comparing
between cases and controls, we performed stratified sampling from
this set of controls to maintain identical sample sizes of n = 271, and to
maintain similar distributions of clade sizes and background variants
between cases and controls (Methods).

The 271 chronic-like clades were distributed across all the major
variants detected till September 2022 (Fig. 1a, Table S1) and originated
from a wide range of countries, with a small bias towards Europe
(Table S2). Average clade size was 4 sequences, and the average time
span was 55 days (Fig. S1). Of the 271 clades 182 (67.15 %) were 100%
concordant in metadata, and the remaining 89 (32.85%) were con-
cordant in over 75% of the metadata (Methods). We first set out to test
whether we could find evolutionary signatures that would suggest that
the set of chronic-like clades found herein are enriched for valid
chronic infections.

We compared basic demographic features of cases and controls,
namely age and sex.We found that on average chronic-like cladeswere
characterized by older age (p < 0.001, t-test), and a higher proportion
of males (p < 10−4, permutation test; Methods), as compared to the
control clades (Fig. 1b). This trend highly resembled the bona fide
chronic infections. This is in linewith a higher tendency for oldermales
to suffer from hematologic cancers, which represented themajority of
chronic infections in our previous study14. Additionally, these indivi-
duals are more likely to present with COVID-19 deteriorations or
hospitalizations31,32, possibly leading to a higher chance of being
sequentially sampled.

We addressed the possibility that our approach may capture
outbreaks that occurred in particular settings, such as in a school,
hospital or care home, which by chance may lead to concordant
monophyletic clades with same age/sex/location. First, we searched
for such clades during the early stages of the pandemic, by focusing
on sequences sampled till March 31, 2020. We surmised that the
probability of repeatedly sampling an immunocompromised indi-
vidual at this early stage was very low, andmoreover, ours and other
studies from this time-period intentionally sampled unrelated
individuals33. Thus, this would allow us to obtain a rough estimate of
the chance of observing a concordant clade. Out of 27,627
sequences with valid metadata and after quality control, zero
formed a concordant clade as defined herein (Methods); this is as
opposed to 1129 sequences forming our 271 chronic-like clades, out
of 2,929,351 sequences post quality control (i.e., sequence detec-
tion rate of 3.9 × 10−4). Of note, this is a small difference, and sam-
pling strategies varied between early and mid/late stages of the
pandemic, suggesting caution when interpreting this result. A sec-
ond sanity check that we performed, was to examine sequences in
the clades that neighbor our chronic-like clades. If chronic-like
clades were mostly derived from an outbreak in a high-age setting,
then neighboring clades would probably display higher ages as well.
However, our results show that neighboring clades show the same
average age as controls, which is lower than that of chronic-like
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clades (Fig. S2). Overall, this suggests that our chronic-like clades
are enriched for samples from the same chronically infected
individual.

Next, we compared the distribution of substitutions found in the
sets of bona fide chronic infections, chronic-like clades, and control
clades, in bins of 500 bases along the genome (Fig. 1d). The bona fide
chronic infections and chronic-like clades were both highly enriched
for spike mutations in the S1 subunit of the spike protein. Chronic-like
and bona fide share three of four enriched S1 bins, whereas controls
share only one enriched S1 bin with the other two categories; the
average number of S1 mutations per clade was significantly higher in
bona fide and chronic-like clades than in control clades (p<5 � 10�3,
Mann–Whitney U test; Supplementary text, Fig. S2). Previous research
has shown repeated selection observed in globally distributed
sequences at the S1 domain34, most likely for antibody evasion and/or
enhanced ACE2 binding. In contrast, the distribution of substitutions
along the control clades was mostly uniform, with the exception of
some enrichment in genes in the 3’ region of the genome, found across
all sets, and a small enrichment in the spikeN-terminal domain. Indeed,
it has been shown that many genes in the 3’ region of the genome are
under relaxed selection and tend to accumulate more mutations35.

Wewenton to analyze the tree topologyof the chronic-like clades.
When comparing inter-host to intra-host evolution, we expect more
ladder-like trees in the latter, reflecting adaptive evolution and step-
wise accumulation of beneficial mutations over time36. On the other
hand, acute infection transmission chains are expected to be char-
acterized by superspreading events that lead to a star-like phylogeny.
We focused on two features: the Sackin index of each sub-tree, and an
entropy-basedmeasure of each sub-tree (Methods), with higher values
of both indices for ladder-like trees and lower values for star-like trees.

In line with this assumption, we found that on average our chronic-like
clades bore a significantly higher Sackin index (p < 10−4, permutation
test, Fig. 1c) as well as a higher entropy value as compared to controls
(p < 10−8, Mann–Whitney test).

We present three examples of chronic-like clades (Fig. 2a–c) as
well as an illustration of a control clade (Fig. 2d). Aswedescribe herein,
many chronic-like clades exhibit rapid evolution, especially in the spike
gene. However, it is important to note that we also observed that in
some chronic-like clades there was not necessarily dramatic evolution
(e.g., Fig. 2c). This is in line with our previous report, where we
observed that chronic infections varied in their inferred rate of adap-
tive evolution14.

We next went on to examine the evolutionary divergence in the
chronic-like clades as compared to the controls (Methods). Notably,
this is a challenging endeavor as the clades we analyzed span a very
short time (ranging from 21 to 241 days), and sequences are not
independent due to shared ancestry. Moreover, sequences towards
the tips of the tree tend to be enriched with slightly deleterious
mutations (so called incomplete purifying selection)37. Nevertheless,
given the similar distributions of sizes and times across clades and
controls (Fig. S1), we considered that averaging the regression slopes
across a set of clades may allow us to compare trends between dif-
ferent sets of clades. We thus employed a simple linear regression and
regressed the number of mutations from the ancestral node, against
the calendar day, for all sequences in each clade. The average slope of
the regression lines was significantly higher in chronic-like clades as
compared to controls (p < 10−4, t-test), with average slopes corre-
sponding to 16.63 and 12.56 mutations per year, respectively
(Table S3). Reassuringly, the average slope in controls was in line with
estimates of divergence obtained previously across large sets of

Fig. 1 | Characteristics of chronic-like clades compared to control clades and
bona fide chronic infections. a The number of chronic-like clades stratified by
background variant. Pre-VOC refers to any variant that was dominant before the
emergence of Alpha. b Distribution of age and percentage of male/female shown
for control clades (n = 15,163), chronic-like clades (n = 271) and bona fide chronic
infections (n = 32). The central line of box defines the median value. The box itself
encompasses the interquartile range (IQR), with the lower and upper edges indi-
cating the 25th and 75th percentiles, respectively. On average chronic-like clades
were characterized by older age (p <0.001, two-tailed t-test), and a higher

proportion of males (p < 10−4, permutation test). c The distribution of average
Sackin index values over 10,000 repeated stratified sampling of n = 271 control
clades, with the orange circle representing the average Sackin index of the chronic-
like clades.dDistributions of substitutions along the SARS-CoV-2 genomeobserved
across all bona fide chronic infections, chronic-like clades, and control clades.
Substitutions are counted inbins of 500nucleotides. Ofnote, for clarity the y-axis is
not shared among the groups shown. Asterisksmark bins significantly enriched for
more substitutions using a one-tailed binominal test, after correction for multiple
testing (p <0.0001, following false discovery rate (FDR) correction).
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sequences from global transmission35. When focusing on synonymous
mutations, we did not find any significant differences between the
slopes of chronic-like versus control clades (p =0.37, t-test). However,
the average slope of non-synonymous mutations was significantly
elevated, with a value of 13.8 in the chronic-like clades compared to 7.7
for control clades (p < 10−10, t-test). This trend was exacerbated in the
S1 subunit of the spike protein, where a X2.5-X4.5 higher average slope
was found in chronic-like clades as compared to controls (Table S3).
Overall, these results are highly suggestive of adaptive evolution
occurring in the chronic-like clades.

We examined whether a specific VOC background was associated
with different patterns of evolution in the chronic-like clades. An
examination of the Sackin index did not reveal any differences among
the chronic-like clades from different variants (Fig. S3). However, we
noted that the regression slopes for non-synonymous mutations were
lower in Delta as compared to BA.1 chronic-like clades (p <0.05; one
way ANOVA with Tukey’s multiple comparisons test; Table S3). This
could not be explained by differences in clade size or span of sampling
dates (Fig. S1). We could not conclusively determine if a particular
genomic region is driving the differences between Delta and BA.1
(Table S3) (see discussion).

We next set out to predict the sets of mutations that are most
associated with chronic-like clades. This was quite challenging, since
we noted quite a lot of noise in both the sequencing data and in the
phylogenetic tree. In parallel to these problems, about 75% of
sequences bore unreliablemetadata, i.e., were labeled as “unknown” in
at least one of the categories sex or age, andwe reasoned thatmany of
these sequences may have been derived from chronic infections.
These challenges led us to adopt a deep learning approach that relied
on language models (LMs) suitable to deal with large, noisy, and
unlabeled data. Our goal was to design a classifier that would use the
mutationsmost associated with chronic-like clades for predicting case
from control sequences.

In our LM, “words” are mutations compared to the reference
genome sequence, and thus a given SARS-CoV-2 genome is a sequence
of words representing all its mutations as compared to a reference
genome (Methods).We beganby pre-training a BERTmasked LM38 and
learned the conditional probabilities associated with observing a
specific mutation within various mutational contexts. This allowed us
to account for differences stemming from the background variants
and timing (pre- or post-vaccination/convalescence). This is important

in part due to epistatic interactions among mutations, as observed
repeatedly for SARS-CoV-2, particularly in Omicron39–41.

Our LM model provided a numerical representation for each
mutation. Projecting these representations onto a two-dimensional
space allowed us to reassuringly verify that the model effectively
separated sequences into their respective Nextstrain clades
(Fig. S5, Methods). We next fine-tuned our pre-trained model to
perform a classification task of distinguishing cases from controls.
To test our classification process, we adopted a sequential cross-
validation approach based on the time of emergence and the
background variant (Methods). We found that the classifiers were
successful in distinguishing between cases and controls with an
average Area Under the Precision-Recall curve (AUPR) of 0.88,
weighted by clade size and the number of mutations in the clade
(Methods, Fig. S6).

To gain insight into the classifier’s predictions for the cases, we
employed LIME (Local Interpretable Model-agnostic Explanations)42, a
technique used to identify the “words” that have the greatest impact
on model predictions and the reliability of each such inference
(Methods). We focused on LIME scores higher than 0.05, which cor-
respond to the highest 75% quantile. Several interesting observations
emerged from this analysis. As expected, for most variants, non-
synonymous spike mutations were most predictive of belonging to a
chronic-like clade (Fig. 3a).

We noted that different variants were associated with different
mutations. For example, S:E484K that we originally observed in many
WT chronic infections, was associated with Alpha and Delta, but not
with Omicron backgrounds, where an S:E484A had been fixed as a
lineage-defining mutation. While only a few synonymous mutations
were detected by LIME, interestingly, thesewere associated withmany
different background variants (Fig. 3b). Moreover, all shared spike
receptor binding domain (RBD) mutations were associated with anti-
body evasion. Finally, we noted that a recent analysis based on global
prevalence along transmission chains, has shown that a large propor-
tion of mutations in SARS-CoV-2 are under purifying selection and are
predicted to have low fitness43. On the other hand, more than two
thirds ofmutations with LIME score >0.05were inferred as high-fitness
mutations (Fig. 3c; fitness >0.1). When focusing on the low-fitness
mutations, interestingly a few spike mutations came up, namely,
S:S371F, S:G476D, S:V597I, S:R685H, S:T1136I (Supplementary Data-
set 6). Moreover, two low-fitness mutations (ORF1a:T1638I, E:T30I)

Fig. 2 | Examples of chronic-like clades detected by our approach. a–c Depict a
chronic-like clades, where all sequences (tips) were presumably sampled from the
same individual. d Illustrates a control clade. Only non-synonymous mutations are

shown along the branches. In (a–c), mutations are color-coded based on their
association with the group of chronic-like clades, with stronger shades of orange
indicating a stronger association (see main text below on language models).
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were observed repeatedly against different variant backgrounds
(Fig. 3b). We elaborate on these in the discussion.

Next, we tested whether mutations associated with chronic-like
clades can predict successful mutations in future variants, i.e., variants
that emerged after the dates when the chronic-like clade was sampled
(see Fig. 4a).We focused on predictions derived fromBA.1/BA.2 clades
and on mutations in the spike RBD. As described above, this domain,
embedded in S1, tends to be enriched for immune-evasion mutations
and impacts ACE2 binding44–47. We used three measures to assess
“success” of a mutation in global setting: (i) strong convergence along
the phylogenetic tree, (ii) high global prevalence of themutations, and
as described above, (iii) high inferred fitness of mutation along trans-
mission chains43.

A set of 11 RBD mutations have been previously detected as
undergoing rampant convergent evolution since the emergence of
BA.248, most likely signifying they are adaptive mutations (Fig. 4b).
Six of these eleven positions (55%) were inferred with LIME scores
>0.05 in BA.1 or BA.2 chronic-like clades that preceded or coincided
with the date when these mutations began increasing in fre-
quency (Fig. S4).

We then performed the reverse analysis, which is essentially pre-
diction in hindsight: we counted a total of fourteen RBD positions that
bear mutations with LIME scores >0.05 in our BA.1/BA.2 chronic-like
clades (Fig. 4c). Six of these fourteen mutations (>40%) go on to
achieve a global frequency f > 30%, and nine mutations (64%) achieve
f > 1% (Figs. 4a, S4). A partially overlapping list of ten of these fourteen
RBD mutations (>70%) are inferred as high fitness mutations (fitness
>0.1) in a global setup. Finally, six of these fourteen (>40%) mutations
formpart of the convergentmutations described above. All in all, these
results suggest that chronic-like clades bear potential predictive value
for successful RBD mutations (see discussion).

Our results suggest that chronic infections speed up the prob-
ability and hence the rate of adaptive evolution. Across balanced sets
of equally sized clades, thereweremorenon-synonymousmutations in
chronic-like clades, particularly in the S1 domain of spike and in the
RBD (Fig. 1d, Table S3). Accordingly, it is possible that increasing the
viral population size in the community, which is akin to more trans-
mission chains, would lead to an increased probability of observed
beneficial mutations. To test this, we increased the sample size of
controls and tested the fractionof control cladeswhereweobserve the
list of convergent spike mutations in Fig. 4b. We found that a 10–20-
fold increase in the size of the controls led to equal probabilities of
observing these adaptive RBD mutations, likely associated with
immune-evasion, between controls and chronic-like clades (Fig. 4c).

Finally, we went on use the model to predict chronic-like infec-
tions from sequences with missing metadata (see Fig. S7 for general
statistics on these clades). To this end, we used the “words” (i.e.,
mutations) that we previously found as most strongly associated with
controls or chronic-like clades and searched for cladeswith the highest
probability of being derived from chronic infections. The number of
predictions naturally depends on the prediction score cutoff we define
(Fig. 5a). Given thatwedetected 271 chronic-like clades from25%of the
data that had reliable metadata, naively we expected three timesmore
such clades (~800) in the remaining 75%. A prediction score cutoff
between 0.6 and 0.7 resulted in such an estimate, and this was sup-
ported by an analysis of clades with partial metadata (p <0.05, per-
mutation test, Methods). We present two examples of clades inferred
with a prediction scorehigher than0.65 in Fig. 5b, c. Oneof these cases
is actually a bona fide chronic infection where sequences were sub-
mitted with missing metadata. This case was identified by directly
contacting the authors49 (Fig. 5c; Methods), and the second is a com-
pletely novel prediction.

Fig. 3 | Mutations associated with chronic-like clades. a Mutations that best
explain model predictions of chronic-like clades. Each panel depicts themutations
per a given background variant, with only those with an explainability score higher
than 0.05 (75th quantile) shown (y-axis). The x-axis represents the average LIME R2

score, indicating the prediction reliability. Dot size correlates with the number of
samples in which the word was observed. For clarity only mutations with an
explainability score higher than 0.1 are labelled, as well as those with a score higher
than 0.05 that recur across different background variants (b). The full list of
mutations is available in Supplementary Dataset 6. b Recurrent mutations asso-
ciated with chronic-like clades, across different background variants. All mutations
with an explainability score higher than 0.05 that appeared in at least two variants

were used for the intersection. Fitness is based on inferences derived from muta-
tions abundance across all globally circulating sequences43 and antibody escape is
based on inferences from deep-mutational scans using a variety of different types
of antibodies44,70. a, b Synonymous nucleotide substitutions are denoted by their
genomic position, whereas amino-acid replacements are denoted by the protein
name and amino-acid replacement. c Distribution of fitness effect values for all n
mutations with LIME scores higher than 0.05, shown for all genes in the genome
(but, accessory genes under little selection were omitted) in the upper panel and
for the spike gene in the lower panel. The dashed line represents fitness effect of
zero (indicating neutrality).
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Fig. 5 | Prediction of chronic-like infections in the absence of metadata and phylogeny. a The number of chronic-like clades inferred given different prediction
thresholds. b, c Two examples of clades inferred as chronic-like infections, with mutations driving the prediction color-coded as in Fig. 2.

Fig. 4 | Future adaptive RBD mutations forecasted by chronic-like clades.
a Timeline of the study data indicating the last date of sampling (dashed) line,
projected onto a phylogeny of SARS-CoV-2 derived from nextstrain.org3.
b Convergent RBDmutations that occurred in sub-lineages of Omicron circulating
since the summeror fall of 2022.Mutations are color-codedbasedon theirmaximal
association with the group of chronic-like clades, with stronger shades of orange
indicating a stronger association. X marks a mutation not detected. c All RBD
mutations found in BA.1/BA.2 chronic like clades with LIME scores >0.05 are listed.
The three right columns are measures of future global success of these mutations.

Max global prevalence refers to the maximal global proportion at which this
mutation was observed, at any time point in the pandemic (Fig. S4), fitness
effect range is based on inferences derived from mutation abundance across all
globally circulating sequences43, and convergence is described in the main text.
b, cWhen several mutations are listed (e.g., N460K/S) the color coding is based on
the maximal LIME score obtained. d The probability of detecting RBD convergent
mutations in chronic clades compared to their probability of detection in
increasingly large sample sizes of control clades.
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Discussion
In this work, we harnessed a very large volume of SARS-CoV-2
sequencing data and metadata to search for sequences that are likely
derived from chronic infections. Our approach relies on the idea that
there is deposition of viral sequences andmetadata from de-identified
individuals. In some cases, repeated sequencing is performed from the
same individual who may be chronically infected. We search for sig-
natures of such chronic infections by first directly mining a huge
phylogenetic tree andnext by usingdeep learning approaches that rely
on our first findings. We go on to show that the chronic-like clades we
find are enriched for high-fitness mutations, and that they allow to
some extent prediction of RBD mutations that are later part of circu-
lating strains.

There are some important limitations to the approach we put
forth. First, there is no realistic way that we can verify each of our
inferences of chronic-like clades. However, the analyses we show
herein suggest that this set of clades is strongly enriched for chronic
infections. Second, we most likely dramatically underestimate the
number of chronic-like clades: we do not account for chronic infec-
tions sampled less than three times, andwe do not account for chronic
infections with low-quality sequencing or absentmetadata. The lack of
metadata in ~75% of sequences calls for the establishment of a more
rigorous framework for standardizedmetadata submission.Moreover,
we do not account for chronic infections that lead to onwards trans-
mission. A recent paper detected onwards transmission in 3% of
chronic infections27. This is probably a lower bound of detection but is
consistent with the idea that there is low (but non-zero) probability for
onwards transmission from chronic infections. This does however
imply that we might be overlooking chronic infections with features
that allow such onwards transmission to occur, which may be of par-
ticular interest. We tested whether we could detect onward transmis-
sion in our data (Methods). However, the structure of the tree
(multiple polytomies) and lack of metadata make this exceptionally
challenging, and thus future work is necessary to detect onwards
transmission from chronic infections.

We interpret the results we found with regards to chronic-like
clades. Interestingly, we found a lower rate of non-synonymous
divergence in Delta as compared to BA.1. We could not conclusively
pinpoint which gene or genomic region was responsible for this dif-
ference; we noted a borderline insignificant p-value for the spike gene
(p = 0.1, ANOVA, p =0.06, Tukey test; Table S3). Moreover, it was not
clear whether the difference was driven by a higher rate of adaptive
evolution in BA.1 chronic infections, possibly due to increased use of
monoclonal antibodies, or due to an inherently lower rate of adaptive
evolution in Delta chronic infections. The latter would be interesting,
as Delta is the only VOC that lacks the N501Ymutation, which has been
shown to form epistatic interactions that enable multiple additional
antibody escape mutations39–41. Most of our Delta chronic-like clades
were between May 2021 and March 2022, when vaccination and con-
valescence rates varied widely across the globe, and this may have
impacted the probability of antibody escape mutations. However, we
do not have enough data to shed more light on this finding.

We goon to discuss the features of themutationsmost associated
with chronic infections (Fig. 3a). The strongest signal was most often
derived from non-synonymous spike mutations that have been shown
to promote antibody evasion and possibly also ACE2 binding, but was
also driven bymutations in other genes (Fig. 3b). Interestingly, someof
the mutations that come up in chronic-like clades are very low fitness
mutations, and we suggest this may represent either different selec-
tion pressures and/or epistatic interactions that emerge during
chronic infections. For example, the low-fitness S:G476D is always
accompanied in our chronic-like clades by S:G446V, on a Delta back-
ground, suggestive of epistasis. On the other hand, the two low fitness
mutations E:T30I and S:R685H have been found during passaging of
the virus in different types of cells26,50,51, suggesting they confer an

advantage in different tissues or under different conditions in the cell.
Finally, ORF1a:T1638I (nsp3:T820I) is a low fitness mutation most
commonly associated with all variant backgrounds in our chronic-like
clades (Fig. 3b), andwas found tobe associatedwithHLA-A*01:01-allele
restricted escape fromCD8 +T-cells52. If so, it is possible that it may be
advantageous on the backgroundof certainHLAbackgrounds butmay
be disadvantageous on other backgrounds, which could explain the
absence of this mutation in the global phylogeny. Alternatively, it may
have a different negative impact on transmission.

Our results highlight that adaptive evolution is enhanced during
chronic infections as compared to evolution along transmission
chains. This may be due to several non-mutually exclusive reasons:
higher selective pressures, large viral population size, and the ability to
cross fitness valleys through epistatic interactions among mutations21.
Regardless of the reason, we show here that chronic-like clades hold
somepredictive power regardingmutations that later becomeglobally
successful. Of note, the correlation we find does not impose causality,
i.e., we do not claim that the clades derived fromchronic infections are
direct predecessors of emerging variants. We further note that many
successful mutations are missed out in chronic-like clades, and many
predictions do not pan out. For example, mutations at positions
S:E340 and S:P337 are rarely observed in global sequencing data, yet
are strongly associated with escape from therapeutic monoclonal
antibodies53,54. They may be less relevant in the context of a more full-
blown immune response. All in all, this suggests that combining dif-
ferent approaches (e.g.,30,44,55,56) may allow obtaining a more accurate
and precise predictive set of mutations.

The analysis of sequencing data often heavily relies on phyloge-
netic methods and models that are quite computationally expensive.
As the volume of biological sequence data continues to increase (for
example, over 4million SARS-CoV-2 sequences were deposited during
the last year), language models are emerging as valuable tools30,57,58.
We have put forward the idea of using language models and deep
learning to infer mutations associated with chronic infections, and
further showasaproof-of-concept that themodels canbeused to infer
chronic-like clades in the absence ofmetadata and even in the absence
of a phylogeny. In an era of ever-growing pathogen sequencing, we
envisage thatmonitoring chronic-like clades, in conjunctionwith other
approaches, may be a valuable tool for predicting key driver
mutations.

Methods
Sequence dataset curation and pre-processing
We accessed the GISAID database59–61 on September 17th, 2022 and
downloaded a total of 13,165,623 SARS-COV-2 sequences with their
associated metadata. We began by employing stringent quality
control and used an initial filtering step based on Nextclade version
2.562, which scores sequences based on a series of comprehensive
criteria. We used all Nextclade defaults but changed the mixed sites
threshold to 30. We also excluded from these criteria the “private
mutations” criterion since we considered private mutations may
very well characterize chronic infections. Sequences with a final
quality score of “bad” or “mediocre” were removed from our ana-
lysis, while only those labeled as “good”were retained. Additionally,
we removed sequences with ambiguous or conflicting dates (miss-
ing/partial dates, or a submission date earlier than collection date).
We manually curated the age and sex metadata fields, resolving
conflicts resulting from reporting in languages other than English.
We considered ages below one year as one year old and maintained
age ranges as provided (e.g., two samples labeled as age 10–19 were
considered as samples of the same age). Samples where metadata
was missing or corrupted were labeled with “unknown” in the
relevant field. Overall, these steps resulted in a reduction of
approximately 11% of the original number of sequences and yielded
a final dataset of 11,717,404 sequences.
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Phylogeny-based inference of chronic-like clades
We used a global SARS-CoV-2 phylogenetic tree that is constantly
updated with sequences added to the GISAID database. The tree was
reconstructed using theUShER algorithm63 andwaskindly providedby
Angie Hinrichs on August 25th, 2022. The mutational path of each
sequences is also included with the UShER tree, and includes for each
sequence the step-by-step mutations that occurred from the root of
the tree till each leaf, based on ancestral sequence reconstruction63.
We used this tree to identify “chronic-like” clades, defined as clades
potentially derived from an individual with a chronic SARS-COV-2
infection:

Formally, we define a “chronic-like” group M in the tree T as a
groupof sequences s1, . . . ,sn

� � 2 T thatmeets the following criteria:M
defines a monophyletic clade with at least n = 3 leaves but no more
than 40 leaves; all si 2 M share the precise same location, the
sequences s1, . . . ,sn

� �
span at least 21 days, and 75% of the sequences

in M share the same age and sex (excluding “unknown” samples).
Notably, we relaxed the last assumption from 100% to 75%, after
extensive manual testing that revealed that in many cases sporadic
sequences were included in the clade either erroneously or correctly
but with missing metadata. We recovered sequences with ambiguous
dates that were excluded in the initial quality control if they were part
of a candidate clade (e.g., a sequence excluded since it was reported as
February 2021 and was re-included if the chronic-like clade spanned
this month).

Given the high proportion of data with an “unknown” label, we
extracted additional clades to be further tested if they are “chronic-
like”, using our LMdescribed below.We define an unknown groupU in
the tree T in the same manner as defined above, except that both age
and sex are unknown. This yielded 18,760 clades.

Control clades
Finally, we define a control group C in the tree T as a group
C = s1, . . . ,sk

� � 2 T that meets the following criteria: 3≤ k ≤40, all si 2
C share the same location, the sequences s1, . . . ,sk

� �
span at least

21 days, yet we ensured that the ages and sexes differ, i.e., at least four
different combinations of age and sex exist in the group. This yielded
15,163 clades.

Due to the large difference in sample size between the cases and
controls, we used bootstrapping to control for sample size. Specifi-
cally, we performed stratified sampling with replacement of n = 104

subgroups from the control group, each sized 271 (identical to the
number of chronic-like clades), stratified by the Nextclade clade to
allow for similar background variant distribution. This approach
allowed us to calculate average values for the control clades across
different measures described below.

Bona fide chronic infections
We relied on our previous publication that includes n = 27 chronic
infections14,49 and added on sequencing data from n = 5 Omicron
chronic infections49 (data was obtained by directly contacting the
authors).

Assignment of mutations to clades
We set out to find the within-clade evolution of each of the chronic-
like clades that we inferred. Notably, the UShER mutational path
reports nucleotide mutations and lacks indels whereas the Next-
clade annotation includes amino-acid replacements and indels.
Therefore, for each clade (chronic-like or control), we first extrac-
ted the set of all mutations from the sequences using Nextclade
mapping62. Then, we intersected these data with the UShER muta-
tional path and removed from this set all mutations that occurred
up to the ancestral node of each chronic-like clade. We included the
mutations on the branch leading to this. At this stage we also
excluded indels from this analysis since they were not included in

the UShER mutational paths. Of note, all mutations in this manu-
script are reported with respect to the ancestral Wuhan-Hu-1
reference genome sequence (GenBank ID NC_045512).

Position masking
Similar to previous work14,35,43,64, we masked all lineage defining muta-
tions from the analysis since we noted that some sequences were erro-
neously assigned with the reference sequence nucleotide, presumably
when sequencing coverage was low and bioinformatics pipelines made
automatic erroneous assignments. To this end each sequence was
assigned a clade based on Nextclade, and lineage-defining mutations
were based on https://github.com/neherlab/SC2_variant_rates/blob/
master/data/clade_gts.json35. Additionally, we masked mutations flag-
ged as problematic positions in this table (https://github.com/W-L/
ProblematicSites_SARS-CoV2/blob/master/problematic_sites_sarsCov2.
vcf). Finally, wemasked the two positions upstream and downstream of
each masked position described above.

Binned distributions
To compare the distribution of mutational counts between the
chronic-like clades and controls, we divided the entire genome into
500-position long bins, denoted as bini, where bini includes all muta-
tions observed in positions ½i � 500,i � 500+ 500Þ. We used a binomial
test to identify bins significantly enriched for mutations.

Sackin index
We extracted the sub-tree for each clade using the UShER
platform63, and calculated the Sackin index65 as a measure of tree
imbalance using Python’s dendroPy framework66. Other indices
were assessed (e.g., B1, Treeness) and deemed inappropriate for the
task at hand.

Entropy-based tree imbalance metric
We quantified tree balance using entropy of the node distribution
across the hierarchy within a tree. The entropy calculation involves
analyzing the distribution of nodes among tree levels, with lower
entropy values indicating greater balance andhigher values suggesting
increased imbalance. Formally, the proportion of nodes in each level is
given by pi =

n
N jn 2 Ti

� �
, where N is the total number of nodes in tree

T, and Ti is the i-th level of T. For a tree T we obtain the normalized
Shannon entropy H Tð Þ= �P

ipi logpi, by
H Tð Þ
logN.

Onward transmission from chronic-like clades
Weused the following approximation to assess thenumberof potential
transmission chains originated by chronic infected individuals. Given
the 271 chronic-like clades we look for the ancestor of the clade in the
tree and examine whether a direct descendant of the ancestor shares
the same metadata as the chronic-like clade inspected. This will be
served as the candidate set. More formally we define TC as the subtree
containing only clade C and Ti

C as the subtree containing the ancestors
up to level i, such that, T 1

C will mark the subtree containing clade C, its
ancestor and all of its descendant etc. Ti

C will be considered as a
potential onward transmission if a sequence with the same metadata
(sex, age, location) is found in fsjs 2 Ti

C ,s=2TC ,jTi
C j<5000g and for each

clade we select mini≤ 3 T
i
C ,T

i
C is transmitted. We define the chronic-like

clade nearest neighbors as all the sequences in the selected sub-
tree fsjs 2 Ti

C ,s=2TC ,jTi
C j<5000g.

Linear regression for within clade mutation accumulation rate
We used an ordinary least-square (OLS) linear regression model to
assess the slope of each chronic-like and control clade. For a given
clade, we obtained for each sequence the number of within-clade
mutations and regressed the number of mutations per sequence
against date. OLSwasperformedusing the python statsmodels version
0.13.567.
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Language model for mutation representation
To create a corpus of all mutations in the data, we used the set of
sequences described above and constructed “sentences” comprised of
“words” (tokens), each representing a mutation relative to the refer-
ence sequence. We included only mutations in coding regions and
used the mutation annotation by Nextclade. Non-synonymous muta-
tions were represented by the gene where they occurred and the
associated amino acid replacement (e.g., S:D614G), while synonymous
mutations were represented by the genome location and associated
nucleotide change (e.g., C3067T). Deletions and insertions were also
included and were represented as obtained by NextClade (e.g., 27871
for a deletion, 20:GGA for an insertion)62. For each sample in the
GISAID dataset, a sentence was constructed to encompass all the
mutations present in that sample. These mutations were sorted based
on their genomic location to ensure a coherent representation within
the sentence.

We limited the model vocabulary to mutations that appeared at
least 45 times in the dataset, to allow for a reasonable vocabulary size
of 38,000 unique tokens. Next, we trained a BERT model38 from
scratch on the task of masked language modeling to generate a
numerical representation for each sample in the dataset. We excluded
sequences that were selected as chronic-like clades, control clades,
and clades with unknown metadata that were used later for classifi-
cation and prediction. This resulted in a dataset of
10,646,407 sequences. We used 90% of the data for training and the
remaining 10% for validation.

For tokenization, we applied a custom BERT tokenizer from the
Hugging Face library68 that splits sentences into tokens based on
whitespace. We set the sentence length limits to be between 5 and 160
words. During training, the masking probability was set to 0.2, with a
per-device training batch size of 10 and a validation batch size of 64.
We used gradient accumulation steps of 8, which resulted in the final
training batch size of 640 and a validation batch size of 512. Themodel
was trained with the default optimizer AdamW69 for two epochs with
an initial learning rate of 1e-5. The bestmodel was chosen based on the
minimal evaluation set loss.

The model was trained on a single NVIDIA RTX A6000 GPU with
48G RAM and 8 CPUs, taking a total of 48 h.

Chronic-like clade classification
We used our pre-trained BERT model to classify chronic-like clades
versus controls. Each clade was represented by a sentence that inclu-
ded all of the clade’s corresponding mutations. Specifically, clade ci
was represented by the sentence si = {“m1 m2 …mn” |mj ∈ S(ci)}, where
mj is a mutation (token) and SðciÞ denotes all sequences within clade ci.
To ensure consistency, mutations were sorted based on their genomic
location.

To prevent potential confusion between lineage-defining muta-
tions that occurred in the past and their subsequent appearance in
chronic clades, all lineage-defining mutations according to the Next-
clade variant were removed. Masking of problematic positions/muta-
tions was performed as described above.

The classification process was performed based on VOC chron-
ology, utilizing three distinct folds. The dataset was divided into five
main groups: pre-VOC, Alpha, Delta, BA.1 and BA.2, along with the
remaining variants. For the non-pre-VOC variants, we considered the
preceding variants for training and tested on the relevant variant
(Table S1).

To ensure a balanced representation of the control data, a down-
sampling technique was applied. Initially, the control clades were fil-
tered based on the Sackin index, including only those with a value
lower than 1.44 (corresponding to the average of control clades
inferred herein, Fig. 1). The objectivewas to intentionally select control
clades that are most likely derived from transmission chains and
unlikely to have derived from a chronic infection. Following the initial

sampling, we performed an additional round of down-sampling down
to n = ~270 control clades, to ensure that the Nextstrain background
variants and clade size are balanced across the set of controls and
chronic-like clades.

To optimize the classification process given the relatively small
sample size, we modified the BERT for Classification architecture
obtained from Hugging Face. Specifically, we froze all embedding
and encoder layers, allowing changes only to the last layers
responsible for pooling and classification. The training procedure
encompassed 30 epochs, and for each fold, the model with the
lower evaluation loss was selected (Fig. S5). Throughout the training
phase, a batch size of 64 was employed, while a batch size of 32 was
used for the evaluation set. To assess the performance of each
model, we utilized two metrics: ROC AUC and AUPR (weighted by
clade size and the number of mutations).

Classifier performance assessment using partial
metadata clades
We focused on clades with partial metadata, specifically those with
either the same age and 75–100% unknown sex or the same sex and
75–100% unknown age (total of 79 clades). Additionally, we included
control clades (total of 5305 clades), which were excluded during the
original classifier training and predictions. Focusing on the Omicron
fold, which offered the most extensive data, we utilized a trained
classifier to estimate the probability of a clade being chronic-like. To
investigate whether clades with partial metadata are more likely to be
classified as chronic-like, considering they exhibit greater meta-data
agreement, we conducted a permutation test on the percentage of
clades surpassing a specified threshold. Given the limited sample size
of the partial metadata group, we generated the background dis-
tribution using the control clades. Specifically, we randomly sampled
n = 79 clades while controlling for clade size, repeating this process
10,000 times. Subsequently, we computed the empirical one-sided p-
value to determine the likelihoodofobserving the actual proportion of
partial metadata clades compared to the control background dis-
tribution. The permutation test was conducted using a 0.6 threshold,
as the number of predictions exceeding thresholds of 0.7 and higher
was very small.

Model explainability
Local Interpretable Model-Agnostic Explanations (LIME)42 was applied
to understand the underlying reasoning behind how the classifier
inferred chronic-like clade. In each test fold (Alpha, Delta, BA.1,BA.2),
we identified the top 10 mutations with the highest LIME scores for
each clade. These scores were aggregated by introducing a mutation
score per background variant, denoted as SvðmÞ, which sums the LIME
scores across all samples within variant v’s test set. This aggregation
approach enhances the significance of mutations that consistently
appear across multiple samples, reinforcing their predictive potential.
Additionally, as LIME fits a regression line per clade in order to gen-
erate inferences, the R2 serves as a measure of result reliability, and
here it was was averaged across clades.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study have been deposited in
the Zenodo database under accession code https://doi.org/10.5281/
zenodo.10338988 (https://doi.org/10.5281/zenodo.10338988). These
include the 13,165,623 sequences and metadata originally obtained
from GISAID on September 17, 2022, EPI_SET_230725to (https://doi.
org/10.55876/gis8.230725to), and available on Zenodo as supplemen-
tary dataset 7. The data of this study further include the chronic-like
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and control clades identifiers, mutations, and sub-trees derived from
the global phylogeny. They also include language model raw corpus
files, trained models, and all predictive mutations for the chronic-like
clades groups. The full description is available in the Supplementary
information and in the Readme file on Zenodo.

Code availability
All models used for training and scripts used for analysis are available
in the repository https://github.com/Stern-Lab/chronic-covid-mlm.
The paper code release is also available in the Zenodo database under
accession code https://doi.org/10.5281/zenodo.10339153 (https://doi.
org/10.5281/zenodo.10339153).
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