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Emergence of syntax and word prediction in
an artificial neural circuit of the cerebellum

Keiko Ohmae 1,2 & Shogo Ohmae 1,2

The cerebellum, interconnected with the cerebral neocortex, plays a vital role
in human-characteristic cognition such as language processing, however,
knowledge about the underlying circuit computation of the cerebellum
remains very limited. To gain a better understanding of the computation
underlying cerebellar language processing, we developed a biologically con-
strained cerebellar artificial neural network (cANN) model, which implements
the recently identified cerebello-cerebellar recurrent pathway. We found that
while cANN acquires prediction of future words, another function of syntactic
recognition emerges in the middle layer of the prediction circuit. The recur-
rent pathway of the cANN was essential for the two language functions,
whereas cANN variants with further biological constraints preserved these
functions. Considering the uniform structure of cerebellar circuitry across all
functional domains, the single-circuit computation,which is the commonbasis
of the two language functions, can be generalized to fundamental cerebellar
functions of prediction and grammar-like rule extraction from sequences, that
underpin a wide range of cerebellar motor and cognitive functions. This is a
pioneering study to understand the circuit computation of human-char-
acteristic cognition using biologically-constrained ANNs.

Language comprehension is a vital cognitive function that supports
human communication and knowledge acquisition, however, the
underlyingmechanisms at the level of neuronal activity within specific
brain circuits remain largely unexplored. Artificial neural networks
(ANNs) provide an invaluable tool to examine how the brain processes
language, because there are no established animal models and only
limited data from invasive recordings in humans. While recent AI
advancements have led to ANNmodels that attempt to replicate brain
functionality, these models do not adequately account for biological
constraints. For instance, neocortical models for language processing
based on the transformer algorithm1–3, which are widely used in
language-processing AI like ChatGPT, deviate from actual brain phy-
siology. This is because the transformer-based models lack artificial
neurons and process a sentence as a single unit rather than a sequence
of individual words. Thus, creating biologically-constrained ANN
models is essential to elucidate the computational processes of brain
circuits involved in language processing.

Language comprehension after word recognition requires coop-
eration between the left neocortical language area and the right lateral
cerebellum (right Crus I/II)4–17. The cerebellum has a large capacity for
plasticity, and interestingly, according to recent observations that
childhood damage to the right cerebellum causes more permanent
and severe language deficits than adult damage18–21 and that the right
cerebellum is activated during learning of new language tasks16,22,23,
cerebellar language acquisition is considered to support subsequent
acquisition in the neocortex15,18,19. To understand the origins of lan-
guage functions in the neocortex, it is crucial to understand the lan-
guage processing mechanisms in the cerebellum at the circuit
computation level. Here, we examine how language functions emerge
in an ANN model that is biologically-constrained by the known con-
nectivity and inputs/outputs of the cerebellar circuit (cANN).

Sentence comprehension involves recalling the meanings of
words and combining them appropriately based on grammar to
compose the meaning of the sentence. During this process, twomajor
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language functions have been linked to the right lateral cerebellum:
The first is (1) next-word prediction4,6–10, which supports faster and
more accurate sentence comprehension by placing input words in a
predictive context (particularly in noisy environments)1,6,8,10,24–27.
Although neural activity related to this function has alsobeen reported
in neocortical language areas1,3,24, more substantial evidence including
causality has accumulated for the cerebellum6–9. The second function
is (2) grammatical processing, especially syntactic recognition of
subject–verb–object (S-V-O) information5,11–13,17,28. These two language
functions reflect two more general cerebellar functions that support a
variety of cognitive functions. One is prediction of external
events4,5,10,15,29–32, and (1) next-word prediction is a language case of this
general function6–8,10,15,26. The other is rule extraction from the
sequence of events11,13,33, and (2) syntactic recognition is a language
case of this function11,13,34. Although the two general functions underlie
various cerebellar cognitive functions4,10,15,29,32 (see Discussion), it
remains unclear how these different functions are realized in a cere-
bellar circuit with a uniform cytoarchitecture. To address this gap in
knowledge, elucidation of the underlying network dynamics by ANN is
needed15. Therefore, in the context of language processing, we tested
whether a single circuit architecture can support both general func-
tions, thereby shedding light on the general circuit computation of the
cerebellum.

Here, we found that the cANN can acquire prediction in language
(i.e., next-word prediction) through training, and simultaneously rule
extraction from sequences (i.e., syntactic recognition) can also be
acquired spontaneously in the middle layer of the same circuit. This
suggests that two general functions of the cerebellum, prediction and
rule extraction from sequence, can be captured by a single circuit
computation of the cerebellum. This also suggests a potential ther-
apeutic approach for language dysfunction, in which training in word
prediction leads to improvement in syntactic comprehension.

Results
The cerebellar ANN model as a next-word prediction circuit
We started by assessing whether the biologically-constrained cANN
could learn next-word prediction. Our cANN contains three layers—an
input layer (granule cells), amiddle layer (Purkinje cells), and anoutput
layer (nuclei neurons), and the cANN consists of a conventionally
reported feedforward pathway and a recently identified recurrent
pathway (brown, blue pathways in Fig. 1b, respectively). The recurrent
pathway contains indirect35–37 and direct output cell-input cell path-
ways. The direct pathway is known as the nucleocortical pathway38–44,
that has been demonstrated to be essential for prediction in the
cerebellum38,41,45. The cANN circuit also incorporates the climbing fiber
pathway (gray, Fig. 1b) which delivers prediction errors to the
cerebellum6,10,29,46–48. Based on physiological observations that the
prediction signal generated by Purkinje cells after a cue event is per-
sistent until the actual event occurs38,49–52, we assumed that the pre-
diction signal of Purkinje cells in the cANN is persistent until the next
word (see Discussion). This persistent prediction signal maintains the
recurrent signal, allowing it to be integrated with the next word.
Additionally, the circuit output signal is also maintained and can be
compared with the correct answer signal of the actual next word, to
compute the prediction error signal.

Wedesigned the inputs/outputs of the cANN (Fig. 1b) according to
previous proposals for the next-word prediction circuit of the cere-
bellum as in Fig. 1a6–8,10,26. Based on the sparse coding theory of the
input cells (i.e., granule cells), we assumed that words were repre-
sented by sparse coding in the input cells: each of the 3000 cells was
randomly assigned to one of 3000 words and hence the input signal
contained no semantic or grammatical information at all (see below).
To facilitate the investigation of information processing in this net-
work, we assumed that the correct answer signal (correct answer =
actual next word in Fig. 1b, gray) was encoded by the same 3000-

dimensional sparse coding as in the input cells, so that the correct
answer signal contained no syntactic information at all (see below).
Because the dimensionality of the output cells is theorized to be the
same as that of the correct answer signal29,53–55, we set the number of
the output cells as 3000. Through the training of cANN, the activity
intensity of each output cell can indicate the likelihood of the corre-
sponding word being the next word (percentages in Fig. 1b). Solely for
performance evaluation purposes, we selected the five output cells
with the strongest activity and the corresponding five words as
the prediction candidates for the next word. Additionally, to replicate
the anatomical convergence fromPurkinje cells to theoutput cells (i.e.,
the number of Purkinje cells > that of the output cells), we created and
examined another cANN with this biological convergence (see below).

For learning, the correct information for the next word was
delivered to the circuit word by word and the synaptic weights were
updated to reduce the prediction error, in line with the learning rule of
the cerebellum (Fig. 1b, gray)10,56,57.

Training the cANN with sentences (e.g., from classic novels) sig-
nificantly improved the prediction error and the correct prediction
rate (Fig. 1c, d). At the very early stages of training, the correct pre-
diction rate jumped from 0% to about 17% (Fig. 1d, gray arrowhead),
and at this point the prediction was based on the words that appeared
most frequently in the training sentences, regardless of the identity of
the immediately preceding word (Supplementary Fig. 1a, b). Then, the
correct rate slowly increased to about 40%, where it plateaued; here,
the cANN achieved correct prediction rates higher than chance
regardless of the frequency of occurrence of the target word (Sup-
plementary Fig. 1f), and the cANN made different next-word predic-
tions after each of the two instances of “the” in a sentence (Fig. 1e, gray
boxes), indicating that the circuit utilized words prior to the immedi-
ately preceding word.

Next, to replicate the finding from human cerebellar research7,8,
we examined whether the cANN could predict the noun after a verb.
For the sentence “Themanwill sail [verb] the boat [noun]” used in the
previous research, together with two similar sentences, the cANN
predicted the correct next words and synonyms (Figs. 1e, 2a, b, black
boxes). Predicting the noun after a verb had a lower correct rate
(median, 22.9%; interquartile range (IQR), 21.0%–23.4%) than the
overall prediction rate (38.3%; 37.8–38.6%), possibly because verbs
often have a large number of potential nounpartners (e.g. partners of
“eat”). By contrast, predictions were more accurate for other word
types after a verb (for prepositions: 60.0%, 56.7–63.3; object pro-
nouns: 56.5%, 52.2–60.9). The cANNalsomadeproper predictions for
other word types, such as nouns after prepositions (43.0%,
42.1–45.6), and adjectives after “be” verbs (27.5%, 25.0–30.0). From
these results, we conclude that the cANN is able to function as a next-
word prediction circuit, although the correct rate varies with the
word type.

To investigate the mechanism of information processing, we
examined the role of the Purkinje cells, where the feedforward signalof
a newly arriving word and the recurrent signal containing the previous
word information are integrated (Fig. 1b). When we visualized the
word-by-word transition of Purkinje cells activity in the sentences
using principal component analysis (PCA), three different instances of
“the” generated different activity patterns in the Purkinje cells (Fig. 2c,
the1, the2, the3). Since the Purkinje cells are the only element of the
circuit upstream of the output cells responsible for predictions, these
differences areessential for generating different predictions (Fig. 2a, b,
gray and black boxes). When the recurrent input was blocked, the
activity in the Purkinje cells became identical for all three instances of
“the” (Supplementary Fig. 1c), and the impaired cANN no longer pro-
duced different predictions (Fig. 2d), indicating that only the imme-
diately preceding word is encoded. More generally, the prediction of
the noun after a verb was dramatically degraded in the impaired cANN
(correct rate, 2.1%; IQR, 1.1–2.1%).
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Fig. 1 | Local circuit model of a cANN to reconstruct cerebellar language
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way (brown) and a recurrent pathway (blue). The climbing fiber pathway (gray
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error (c; cross entropy;median and IQR) and percentage correct predictions (d) for
20 cANNs trained on next-word prediction. Inset, magnified view of the early
learning period (gray interval). e Predictions (five candidate words) for the two
instances of “the” in a sentence by a well-trained cANN. Correct predictions are
highlighted in red, and synonyms are in orange.
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The cANN model as a syntax-processing circuit
There is little-to-no evidence as to how the inputs/outputs should be
designed for another cANN dedicated to syntactic processing15 (Fig. 1a).
For the cerebellum to assist the neocortex in language acquisition, the
cerebellum must acquire language processing abilities that the neo-
cortexhasnot yet acquired. Inspiredby thepotential of themiddle layer
of recurrentANNs58–60, we investigatedwhether subject–verb–object (S-
V-O) syntactic information could emerge within the next-word predic-
tion circuit of the cANN, whose input signals contain no syntactic
information. Indeed, the cANN reliably predicted objective case pro-
nouns after a verb (Supplementary Fig. 1d, e), suggesting that the pre-
dictions reflect S-V-O information. Since the Purkinje cellsmay integrate
new and past words according to S-V-O structure, we visualized the
activity of the Purkinje cells by PCA (Supplementary Fig. 2a) and by
linear support vector machine (Fig. 3a). We found that S words were
clustered andwell separated fromV-Owords (blue circle), regardless of
the number of words forming the subject (black trace). The separation
of S words from V-O words (96.1%; 95.7–96.6; nonlinear support vector
machine), V words (96.0%; IQR, 95.7–96.5), and O words (95.8%;
95.4–96.1) was highly accurate (visualized in Supplementary Fig. 2b).
Since syntactic information is not included in the correct answer of the
next word (confirmed in Fig. 3d, right), these results indicate that the
Purkinje cells in the word prediction circuit are capable of extracting
highly accurate SVO syntactic information independent of external
information. Importantly, even for the same word, the cANN can dis-
tinguish when the word appears as a subject (e.g., “the” as a part of a
subject, blue arrowhead in Fig. 3a) and when it appears as an object

(“the” as a part of object, yellow arrowheads), ensuring that it has S-V-O
recognition capability. Thus, to our surprise, syntactic processing does
not require a dedicated circuit (Fig. 3b). This may be why the conven-
tional approach of assuming a dedicated circuit as in Fig. 1aworkedwell
for next-word prediction, but not for syntactic processing15.

To investigate how syntactic information emerges in the cANN,
we compared the syntactic information along the feedforward path-
way (Fig. 3d). We confirmed that the input cells contain no syntactic
information at all, and found that syntactic information was pre-
dominantly extracted in the Purkinje cells and was degraded in the
output cells (p < 0.001 for any of S, V, and O, Wilcoxon signed-rank
test; visualized by distorted distributions in Supplementary Fig. 2c),
probably because their direct task is next-word prediction. Further-
more,when the recurrent signal wasblocked, the separation of S andO
dropped sharply, revealing the importance of the recurrent signal for
processing syntactic information (Fig. 3e).

Examining the extent to which S-V-O syntactic information is a
primary piece of information in Purkinje cells, we found that the
dimensions used for S-V, V-O, and S-O separation by the support vector
machine were all similar to the major dimensions of PCA space in terms
of direction (Fig. 3c) and information content (Supplementary Fig. 2d, e).
This indicates that S-V-O syntactic information is the primary informa-
tion represented by the activity of Purkinje cells.

Further biologically-constrained cANN variants
We developed three new cANN variants incorporating further biolo-
gical constraints and assessed their performance. In the first variant,
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the recurrent pathway was designed according to the cerebellar
anatomy, where connections from Purkinje cells to output cells are
convergent, and connections from output cells to input cells are
divergent. We set the number of output cells to 48 and the number of
input cells to 192 in the recurrent pathway, so that Purkinje cell signals
are compressed and decompressed through this pathway. Given that
plasticity has been reported for various connections in the
cerebellum61, we assumed plasticity in the recurrent pathway. This
cANN variant acquired the equivalent language functions to the ori-
ginal cANN (median of correct prediction rates, 36.5%; median of
syntactic separation accuracy, S, 93.4%, V, 95.1%, O, 95.0%; n = 4). This
demonstrates the robustness of cANN’s language functions despite
cell number variations in the recurrent pathway.

The second cANN variant, with inhibitory-restricted Purkinje-
output connections, also achieved equivalent language functions
(median of correct prediction rates, 36.8%; median of syntactic
separation accuracy, S, 94.8%, V, 96.2%, O, 95.5%; n = 8). This demon-
strates cANN’s robustness regarding sign of connection between the
Purkinje cells and the output cells, suggesting that such constraints do
not hinder information processing. This aligns with the physiological
observation that, although Purkinje cells have only GABAergic con-
nections to the output cells, they can both inhibit and disinhibit the
output cells by increasing anddecreasing theirfiring rates (i.e., the sign
of the downstream signal is not limited).

In the original cANN, the distribution of the synaptic weights of
input-Purkinje connection resembled a normal distribution (Fig. 4a). If
considering the greater-than-zero portion of the weights (w>0; black
in Fig. 4a) as the weights of parallel fiber-Purkinje cell synapses (i.e.,
direct excitatory input cell-Purkinje cell connection), this distribution
closely aligns with the physiological distribution of parallel fiber-
Purkinje cell synaptic weights, which can be approximated by a half of
a normal distribution62,63. However, a sharp peak with zero synaptic
weight (w =0; silent synapses) was observed in the physiological data
but not in the cANN. Therefore, we created the third cANN variant
combining excitatory-limited input-Purkinje projections (imitating
direct projection) and inhibitory-limited input-Purkinje projections
(imitating indirect projection via molecular layer interneurons). This
cANNvariant also achieved comparable language functions (medianof
correct prediction rates, 37.0%; median of syntactic separation accu-
racy, S, 94.5%, V, 96.6%, O, 95.5%; n = 4). Interestingly, the distribution
of the excitatory-limited synapses exhibited the peak of silent synap-
ses, closer to the physiological observation (Fig. 4b). These findings
demonstrate the robustness of the cANN functions to stringent bio-
logical constraints, while highlighting the need for such constraints to
replicate circuit details such as synaptic weight distributions.

Convergent cANN with the biological Purkinje-output
convergence
Weexamined the performance of another cerebellar cANNmodel with
an anatomical constraint of convergence of the Purkinje-output
connection40,64 and a physiological constraint of population coding

of the output cells57. To this end, wemodified the original cANN circuit
(Fig. 1b) to have only 16 output cells in the feedforwardpathway so that
the activity pattern of the 16 output cells represents a single word by
population coding. Then, the modified circuit predicts only a single
word at a time, unlike the original cANN which could probabilistically
predict multiple candidate words. To enable the output of multiple
word candidates, based on the physiological observation that the
cerebellum has amodular structure which allows for the simultaneous
generation of multiple outputs, we treated this modified circuit as one
module and created a new cANN model with 10 modules in a row
(Fig. 5a). Since parallel fibers, projections from the input cells to Pur-
kinje cells, are known to pass across many modules, we assumed the
input cells are shared between themodules. This new cANN is referred
to as a “convergent cANN”, while the original cANN is referred to as a
“non-convergent cANN”.

For learning, based on the cerebellar theory that enables multiple
modules to cooperate and achieve a complex function (MOSAIC
model)32,54,64,65, after each prediction, the prediction error signal was
given solely to the module with the closest prediction to the correct
answer (=the actual nextword). Based on the cerebellar theory that the
output cells and the correct answer signal should have the same
dimensionality29,53–55, the correct answer was set to be represented in
16 dimensions. To represent the correct answer of 3000 words in 16
dimensions, we assumed a compressed word representation in which
similar words (e.g., ship and boat) are represented by similar signal
patterns, as observed in the neocortex66, which is the source of the
correct answer signal10,26,29. To facilitate comparison with the non-
convergent cANNmodel, the following analysis focused on the top five
modules in terms of prediction accuracy at the final training stage (see
Methods). Training the convergent cANNs with the training sentences
(e.g., from classic novels), once again, significantly improved next-
word prediction (Fig. 5b, c). The correct prediction rate using the top 5
modules was 26.4% (median; interquartile range (IQR), 25.7%–27.1%,
n = 10; Fig. 5c, blue; 33.6% by 10 modules), indicating that the con-
vergent cANNs can also acquire next-word prediction. Because the
learning of themodules occurs independently, one after another, each
convergent cANN module had only 1/10 of the learning opportunities
compared to the non-convergent cANN, which may have resulted in
lower prediction accuracy. In the example sentences (Fig. 5d, top),
three different instances of “the” generated different activity patterns
of Purkinje cell signals (Fig. 5d, the1, the2, the3), which led to different
proper predictions. Specifically, after “the1” for “man”, a representative
convergent cANN predicted “general”, “prince”, “roll”, “same”, and
“kind”; after “open the2” for “gate”, it predicted “post” and “door”; and
after “read the3” for “book”, it successfully predicted “book” and
“press”. In total, the correctprediction rate of the noun after a verbwas
16.0% (median; IQR, 14.9–17.0%), which was slightly lower than that of
the non-convergent cANNs. In contrast, the correct prediction rate of
prepositions after verbs was 65.0% (median; IQR, 60.8–66.7%), slightly
higher than that of the non-convergent cANNs. These results indicate
that the convergent cANN has the capability to make different proper
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predictions according to context, although the prediction accuracy is
slightly lower depending on the word type than the original non-
convergent cANN.

We then examined the capability of syntactic processing in the
Purkinje cells of the convergent cANN and found that signals for
subject, verb, and object words were highly clustered and well sepa-
rated (Fig. 5e). Comparing syntactic information along the feedfor-
ward pathway (Fig. 5f), we found that syntactic information was not
above the chance level in the input layer, peaked at the Purkinje layer
(S, 94.9%, V, 93.8%, O, 92.6%; almost equivalent to the non-convergent
cANN), and was significantly degraded in the output layer (p <0.01 for
any of S, V, and O, Wilcoxon signed-rank test). Although the correct
answer signal contained a small amount of syntactic information
(Fig. 5f, right), the Purkinje cells in the convergent-cANN acquired a
higher level of syntactic information, indicating that the convergent
cANN has the capability to extract syntactic information beyond all
external inputs. The important conclusion here is that our cerebellar
models can acquire two cerebellar language functions, regardless of
the dimensionality or the coding format of the output cells.

Discussion
Anatomical and physiological support for the cANN
Our cANN is highly consistent with a wealth of anatomical and phy-
siological knowledge. This new model effectively accounts for the
cerebellar language functions by incorporating the recently identified

recurrent pathway into the feedforward circuit, which is the funda-
mental structure of the conventional cerebellar circuit models.
Regarding the recurrent pathway, numerous reports have demon-
strated the existence of the vital part of the pathway, the output cell-
input cell projections (that contain the direct projection39–43 and
indirect projections through the pontine or red nuclei35–37), and its
functional significance on the cerebellar prediction38,41,45. The recur-
rent pathway has also been implemented in cerebellar modeling67.
Consistent with this growing evidence for the significance of the
recurrent pathway, we found that the pathway is essential for pre-
dicting the next word in a sentence and processing syntactic infor-
mation in the cANN. We assumed that the Purkinje cell signal which is
the source signal of the recurrent pathway is persistent until the next
word arrives, based on the physiological observation that the pre-
dictive signal in Purkinje cells persists from the cue event until the
actual event targeted for prediction occurs38,49,50. This persistent pre-
dictive signal enables the recurrent signal to last until the next word,
preparing for integration with the next word information of the feed-
forward pathway. The time interval between words in natural speech
and reading is approximately 300 milliseconds (200 words per min-
ute), which aligns well with the reported time scale of predictive signal
persistence in the Purkinje cells (over 500ms)38,49–52.

Building on these factors, our cANN has advanced the traditional
cerebellar circuit model in two key aspects. First, while the cerebellum
has been modeled as a feedforward circuit63,68–74, the cANN
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incorporates the recurrent pathway (Supplementary Fig. 3). The
recurrent pathway is essential for two language functions, and its
removal, whether before or after training, leads to significant impair-
ment of these functions (Supplementary Figs. 1 and 3e). Second, in
contrast to traditional cerebellar models based on the two-layer per-
ceptron model where Purkinje cells are viewed as the output layer
(Supplementary Fig. 3), the cANN treats Purkinje cells as the inter-
mediate layer57. This redesign allows the Purkinje cells to engage in
processing similar to that observed in the intermediate layers of ANNs
of modern AI, such as feature extraction and data compression. Spe-
cifically, when the output layer of the cANN learns to predict the next
word, the extraction of syntactic information becomes achievable in
the intermediate layer. Moreover, to utilize this cerebellar syntactic
information in other brain regions, such as the neocortex, an output
pathway for the information in the intermediate layer is required.
Based on our current anatomical and physiological knowledge, we
propose two candidate output pathways that can be tested in future
circuit studies (Supplementary Fig. 4a).

With respect to learning, the cANN utilizes prediction error-based
learning, a method frequently employed in ANN models of the brain.
Although this type of learning is widely used, the cerebellum is a rare
region where its application is physiologically plausible75. The cere-
bellum is clearly considered to learn basedonprediction errors inboth
motor and cognitive processing10,29,40,46,76. The cANN incorporates the
inferior olive-climbing fiber pathway, which calculates and conveys
prediction errors to the cerebellum (Fig. 1b). In prediction error cal-
culation, there is no need for a retentionmechanism for the prediction
signal until the next word arrives, since the persistent predictive signal
of Purkinje cells ensures that the circuit output persists. Also, a series
of studies indicate that the cerebellum can learn more flexibly than
classical cerebellar learning rules44,46,47,61,77–82. In particular, based on
experimental findings and proposals that synaptic weights of Purkinje
cells and cerebellar nucleus neurons are updated in the direction to
reduce prediction error, our cANN updated synaptic weights10,56,57.

Furthermore,we created cANNvariants (including the convergent
cANN) with further biological constraints, demonstrating the robust-
ness of the two cerebellar language functions of the cANN. Together,
our cANN is multilaterally consistent with our biological and physio-
logical knowledge about the cerebellum and is capable of reproducing
high-level cognitive functions of the brain.

Significance of a common computational basis for the two
functions
Because the cerebellum has a uniform cytoarchitecture4,15,40,44,83–85,
much conventional research has been directed toward elucidating the
common circuit computation underlying all cerebellar functions.
Although many descriptive ideas have been proposed, none have yet
successfully explained all the diverse functions of the cerebellum15. For
example, the internal-model theory states that the cerebellum is a
predictive simulator of the external world. This theory can explain
next-word prediction by replacing the external world as the prediction
target with sentences and viewing the cerebellum as a sentence
simulator6–8,10,15,26. However, explaining syntactic processing with the
predictive functions of the theory is difficult and requires other ideas
such as sequence processing11,13,33.

Recognizing the limited reach of descriptive ideas to the common
circuit computation, Diedrichsen, Ivry, and colleagues emphasized the
need for a more abstract concept, like the network dynamics of neu-
rons, to explain cerebellar computation15. Responding to precisely this
need, we here demonstrated that the network dynamics visualized by
the cANN can capture the common circuit computation underlying
two major language functions. Considering next-word prediction as a
language case of cerebellar prediction function (i.e., internal-model
function of the cerebellum) and syntactic processing as a language
case of sequence-processing function, we can conclude that a single

computational concept—the computationofour cANN—canunify both
types of cerebellar general function, at least in language processing.
The following general cerebellar computational mechanisms are indi-
cated: (1) prediction-type (i.e., internal-model-type) circuits have
inputs/outputs and error-based learning consistent with previous
proposals (i.e., the circuit receives a series of events, produces pre-
dictions for one-step future events, and is trained by prediction
errors)6–8,10,25,26,29, (2) the recurrent signal is essential for long time-step
dependent predictions, (3) sequence-processing-type circuits,
depending on all the elements of the prediction-type circuits, spon-
taneously emerge upstream of the predictive output neurons. In
summary, while traditionally the cerebellar internal model is con-
sidered to output predictive information about future events (Fig. 6,
red), our cANN indicates that the internalmodel additionally processes
sequences of events (i.e., extracting structural feature from past event
sequences), representing another important, yet previously over-
looked, output from the upstream stage of the internal model’s pre-
dictive output (Fig. 6, blue).

Predictions by internal models are essential for various functions
frommotor control to cognition4,5,10,15,29–32, and sequence processing is
also of broad importance; for example, the motor sequences for tool
use in humans have a hierarchical grammar-like structure (called
“action grammar”)86,87. Therefore, we propose that the circuit com-
putation of our cANN is the generalized basis of the cerebellar com-
putation that underlies a wide range of motor and cognitive functions.

Differing roles of the neocortex and cerebellum in language
function
The neocortex and cerebellum are tightly interconnected and coop-
erate to achieve sophisticated functions such as language
processing5,10,14,15,29,76,88–94. However, it remains unclear how the func-
tions of the two regions differ and how the roles are shared. When
combined with clinical findings about language disorders, our cANN
provides insights into the differing roles of the neocortex and cere-
bellum. Although the cerebellar role is limited in adults15,95 and so the
language functions of the cerebellum are considered subordinate to
those of the neocortex, in children, cerebellar language disorders
cause permanent and severe deficits18–21, including agrammatism,
suggesting that the development of the neocortex requires cerebellar
support15,18,19. The ability of the cANN to extract syntactic information
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independently from the neocortex suggests that syntactic information
is sent from the cerebellum during development. If the neocortex can
associate S-V-O information with the words themselves to produce
information such as word class, this process gradually becomes self-
sustaining, consistent with the clinical observations. Segmenting sen-
tences according to S-V-O information may allow the neocortex to
process sentences more efficiently96 (hierarchical processing, Supple-
mentary Fig. 4b, c). Considering that the cerebellum supports the
development and maturation of other cognitive functions of the
neocortex10,15,97,98, the developmental importance of sequence pro-
cessing by the cerebellummay generalize to other cognitive functions
in addition to language processing.

Human-characteristic cognition revealed by biologically con-
strained ANN models
ANN models can be categorized according to whether they comply
with biological constraints, and if the functions they realize arehuman-
characteristic cognitive functions, for which neuronal data are very
limited (e.g., language processing, logical thinking, or social proces-
sing). Until now, no brain circuit model has been developed to fulfill
both criteria: adhering to biological constraints and performing
sophisticated human-characteristic cognitive functions. However,
many models exist which fulfill one or the other demand.

For non-human-characteristic functions (including less complex
cognitive functions), numerousANNmodels havebeenproposed,with
some adhering to biological constraints and others not. Biologically-
constrainedANNshavebeendeveloped for regions like the cerebellum
and basal ganglia, realizing various basic sensorimotor functions
including decision-making68–73,99–101. ANNs that do not account for
essential biological constraints, such as circuit connectivity between
cell types, have been created for the cerebral neocortex using simple
recurrent neural networks (e.g., three-layer recurrent neural
network)102–105 and for the visual cortex utilizing deep-learning
circuits106,107.

For higher-level cognitive processing such as language, far fewer
ANNs have been proposed, and none of them are biologically con-
strained. Namely, models of neocortical language processing are
based on language-processing AI circuits, which deviate from actual
brain anatomy and physiology (e.g., transformer, LSTM)1–3,108. In con-
trast, the cANN is designed based on the cerebellar local circuit and
successfully realizes language functions of the brain area. This is a
pioneering proposal of a biologically-constrained brainmodel capable
of human-characteristic cognitive functions.

Future directions
We anticipate a prominent trend in neuroscience towards the devel-
opment of biologically constrained ANNs to investigate human-
characteristic cognitive functions, that are challenging to study in ani-
mal experiments. This study using cANN is a pioneer in such research.

Biologically constrained ANNs also have potential for clinical
applications. The following insights gleaned from the findings of the
cANN serve as an example. According to previous studies, when two
functions share a circuit, training one function can improve the other,
even in language functions86,87. Our findings predict that training in
predicting the next word will improve the ability to process sentences
with complex syntax, leading to the development of training in lan-
guage processing and rehabilitation of language dysfunction.

Much remains to be elucidated about the grammatical processing
performedby the cerebellum.Exploring the cANN’s capacity beyondS-
V-O syntactic processing, including its potential for word class recog-
nition (suggested by Supplementary Fig. 2a) will offer valuable insight
into cerebellar grammar processing.

Interestingly, the convergent cANN, which incorporates the fur-
ther constraint of convergence in Purkinje-output connection into the
original cANN, differs substantially from the typical circuit design of

language-processing AI. Typical AI designs use compressed word
representations containing semantic information for input and the
sparse one-hot word representation for output. This input format aims
to boost output accuracy by providing additional information at the
input stage, in contrast to the output format, which is designed to
facilitate listing multiple next-word candidates and accommodate
sentences with various grammatically correct branches. Conversely,
the convergent cANN employs sparse coding for input and a com-
pressed word representation for output. This design can be inter-
preted as aiming to learn information-rich output from information-
poor input, proposing a novel brain-inspiredAI circuit. Future research
is anticipated to uncover the potential of this circuit design.

Methods
Simulation environment
Codewaswritten in Python and executedwithGoogle Colab (Pro). The
source code is available on GitHub (https://github.com/cANN-NLP/
NLP_codes).

Circuit design of cANN
The cANN was created with Google’s deep learning libraries, Tensor-
Flow and Keras (version 2.9 and 2.11). To replicate the local circuitry of
the cerebellum, the cANN comprised three layers—an input layer
(granule cells), a middle layer (Purkinje cells), and an output layer
(cerebellar nuclei neurons)—with a recurrent pathway from the output
layer to the input layer (Fig. 1b; Apps and Garwicz, 2005; Houck and
Person, 2014; Ankri et al., 2015; Houck and Person, 2015; Gao et al.,
2016; Raymond andMedina, 2018; Ohmae et al., 2021). In addition, the
cANN implemented the climbing fiber pathway which is known to
deliver prediction errors to the cerebellum in both motor and cogni-
tive functions (gray, Fig. 1b) (Ito 2008, Nat Rev; Sokolov et al. 2017,
Trends Cogn; Moberget et al. 2014, JNS). According to cerebellar
learning theory that the cerebellum learns to align its output (predic-
tion) very faithfully with the correct answer signal (Doya, 2000, Curr
Opin; Ito 2008, Nat Rev), and that the representation of cerebellar
output and correct answer signal have the same dimensions (Kawato
1999,CurrOpin; Kawato et al. 2011,CurrOpin), the output layer and the
correct answer signal were set to have the same dimensionality. Then,
the prediction error is calculated by subtracting the prediction from
the correct answer signal.

The next-word prediction circuit was designed according to pre-
vious proposals, wherewords are fed sequentially into the circuit then,
at each step, the circuit outputs a prediction of the next word, and
information about the correct word information is given used as a
teaching signal to improve futurepredictions. In addition to the circuit
connectivity, this biological constraint on the inputs given to the cir-
cuit is also critical for simulating the acquisition of function, because,
in general, the difficulty of learning is determined by the information
supplied in the input signals, including error signals.

Integration of information between the feedforward and recur-
rent pathways occur as follows: When a sentence begins, the Purkinje
cells receive information about the first word from the feedforward
input cells and send their activity to the recurrent pathway (and to the
feedforward output pathway). Because the Purkinje cell signal is per-
sistent, the recurrent-input cell signal also persists until the
feedforward-input cells receive the second word. The Purkinje cells
then integrate both signals (i.e., the second word from the
feedforward-input cells and the first-word information from the
recurrent input cells) and transmit their new signal to the recurrent
pathway. In this way, the Purkinje cells sequentially integrate a newly
entered word with the previous words. We assumed that the feedfor-
ward and recurrent input cells aredistinct cell populations because the
cerebellum has an enormous number of granule cells in the input layer
and individual cells receive only a small number of inputs (on average,
only four).
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To facilitate the investigation of information processing in this
network,we assumed thatword representation is coded sparsely in the
input layer and the correct answer signal (each of 3000 words is
represented by one of 3000 cells; e.g., one cell encodes ‘I’ and another
cell codes ‘the’). Then, the immediately preceding word, which is the
input to the circuit, and the correct nextword (for prediction error) are
represented by an activity state in which only one cell is 1 and the rest
are 0 (known as a one-hot representation). Theoretically, this repre-
sentation is known to contain no information associated with the
word, such as the syntax ormeaning of the word (confirmed in Fig. 3d;
cosine similarity is 0 for all word pairs); this allowed us to study the
learning and information processing of cANNs in an environment
where there is no information supplied externally other than word
information.

The 3000 words represented by the 3000 cells were the 3000
most-frequentwords in the training sentences. All the otherwords that
appeared less frequently were grouped together as “unknown words”
and assigned to the 3001st cell. For thepredictionof thenextword, the
word encoded by the most active output cell denoted the first pre-
diction candidate. Note that in the analysis, even if a prediction of
“unknown” was correct, it was not considered a correct prediction of
the next specific word so was excluded from the calculation of the
correct prediction rate. The correct prediction rate is the percentage
ofmatches between the top five prediction candidates and the correct
next word (i.e., this selection of the five candidates was done for ana-
lysis purpose only).

Circuit connections denoted by arrows in Fig. 1b implement
F(Wx+b). For connections fromNpresynaptic cells toMpostsynaptic
cells, x is an (N x 1) vector representing the activity of the presynaptic
neurons,W is an (MxN)matrix representing the synapticweights from
the presynaptic neurons to the postsynaptic neurons, b is an (M x 1)
vector representing the spontaneous activity of the postsynaptic
neurons, and F is the function that converts the neuron’s input to its
output (firing frequency) using the leaky Rectified Linear Unit (leaky
ReLU; y = x, if x >= 0, and y = α * x, ifx < 0). For F from the input cells to
the Purkinje cells and the output cells to the input cells, α =0.14, and
for F from the Purkinje cells to the output cells, α = 1.0. If alpha is 0, the
input/output of the neuron is highly nonlinear; if alpha is 1, the input/
output is perfectly linear (y = x). Although alpha could be modified
quite flexibly to train the circuit, the cerebellum was assumed to be
quite linear with Purkinje cells and output cells having high sponta-
neous firing rates (i.e., linear computing; Raymond andMedina, 2018).
Sinceno functionally significant learninghasbeen reported at this time
for synaptic weights from the Purkinje cells to the recurrent output
cells and from the recurrent output cells to the recurrent input cells,
synapticweights were assumed to be for relaying information (i.e.,W =
the identity matrix).

The prediction output was compared with the desired output of
the true next word (i.e., the ground truth) to calculate the prediction
error (E), using the following formula:

Prediction error = cross entropyðT, softmax Oð ÞÞ ð1Þ

where T is the ground truth of the next word in the one-hot
representation and O is the activity of the output cells. The softmax
function normalizes the outputs so that the sum of the outputs is one
and converts them to probabilities (P), and the cross entropy is the
information of the difference between T and P:

Pi = softmax Oi

� �
= exp Oi

� �
=
X

expðOiÞ, for i = 1, . . . , 3001 ðindex of cellsÞ
ð2Þ

E= cross entropy T,Pð Þ=
X

Ti log Pi

� �
= log Pj

� �
ð3Þ

forTi = 1 (i = j) andTi = 0 (i≠ j),where j is the index corresponding to the
next word. The prediction error was used to update synaptic weights
on the input (i.e. dendritic) side of the Purkinje cells and the output
cells (Fig. 1b, gray; Aizenman et al. 1998; Sokolov et al. 2017). Encour-
aged by recent discoveries and proposals suggesting stochastic gra-
dient descent of synaptic updates (i.e., in the direction to reduce
prediction error) in the cerebellum (Bouvier et al. 2018; Shadmehr
2020), we assumed a gradient-descending update:

Wij =Wij � ε
∂E
∂Wij

ð4Þ

where W represents the synaptic weights and ε is the learning rate.
To make the recurrent pathway more powerful, the number of

recurrent input cells could be increased, but increasing the number to
more than 192 did not improve the accuracy of word prediction or
classification of the syntactic information. This suggests that more
sentences are needed to train a greater number of synapses.

Circuit design of convergent cANN
Following the anatomical convergence of Purkinje-output connection,
we designed the convergent cANN, in which we set the number of the
feed-forwardoutput cells to 16. Basedon the cerebellar learning theory
mentioned earlier that the representation of cerebellar output and
correct answer have the same dimensions, we assumed that the cANN
received 16-dimensional correct answer signal. To represent the cor-
rect answer of 3000 words in 16 dimensions, we employed a com-
pressed word representation, akin to that in the neocortex (Huth et al.
2016, Nature). Concretely, we adopted the 100-dimension word
representation, made by Stanford University group’s GloVe algorithm
and Wikipedia text dataset (glove-wiki-gigaword-100), and reduced
the 100 dimensions to 16 using PCA. Consequently, each word was
represented as a unique 16-cell activity pattern (a point in 16-
dimensional space, fixed throughout the training). The candidate
predicted by the 16 output cellswas defined as thewordwhose activity
pattern is closest to that of the output cells (≈, in Fig. 5a). Since the 16
output cells of one module can output only one word as a prediction,
10 modules were arranged in parallel with a shared input cell layer to
replicate the modular structure of the cerebellum. For learning, based
on the cerebellar learning theory of how multiple modules cooperate
to achieve a complex function (Jacobs et al. 1991; Wolpert & Kawato,
1998;Wolpert et al. 1998, Trends Cogn Sci; Haruno et al., 2001; Kawato,
Ohmae, et al. 2021), we set only themodule with the closest prediction
to the correct answer receives the prediction error signal (gray solid
line, Fig. 5a). Although only one module learns after each prediction,
with training on a large number of predictions, all modules should
have the chance tomake thebestprediction and receive theprediction
error (due to this, each convergent cANN module had only 1/10 of
learning opportunities compared with the original non-convergent
cANN, which may had resulted in slightly lower performance of the
convergent cANN).

In the analysis, we examined the five candidate words of the
convergent cANN to compare with the original cANN. To obtain the
five candidates, we opted for training the 10-module cANN and
selecting the five best-performing modules, as this design resulted in
higher prediction accuracy than training the 5-module cANN and using
all five modules. This difference in performance is attributed to the
numerous grammatically correct branches in sentences (e.g., various
adverbs and verbs can follow a subject) that five modules were
inadequate to encode. The top five modules were selected based on
prediction accuracy during training (in the last 1/8 lap). The differences
in prediction accuracy between modules were highly consistent
between training data and validation data.
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Circuit training
Twenty cANNs were trained independently. To train the cANNs, we
used 88711 sentences from the Gutenberg Corpus (novels such as
Moby-Dick, Alice in Wonderland, etc.) and the Brown Corpus of the
Natural Language Toolkit (NLTK, version 3.8). Sentences that were too
short (fewer than three words) or contained toomany unknowns (four
or more) were excluded. Next-word prediction was terminated at the
16th word if the sentence was too long. 90% (79444) of the sentences
were used for training and the remaining 10%were used to evaluate the
prediction performance during training. Training was terminated
when the prediction performance plateaued (at the end of the eighth
lap of the 79444 sentences).

Data analysis
For the 20 cANNs, themedianwas used as the representative statistical
feature and the interquartile range (25th and 75th percentiles) was
used for the error bars, in all cases except where noted. To analyze the
performance of the cANNs at next-word prediction and syntactic
processing after training, we used relatively simple sentences from
online sites (https://sentencedict.com/; https://lengusa.com/; https://
www.rong-chang.com/nse/) because the novels in the NLTK corpus
contain many sentences that are not syntactically common (e.g.,
conversational calls). We selected 190 sentences containing verbs that
the cANNs could handle (i.e., verbs included in the 3000 encoded
words). We added the sentence “Theman will sail the boat,”whichwas
used by Lesage and colleagues to examine language processing in the
cerebellum (Lesage et al. 2012), and the similar sentences “Themanwill
read the book” and “Themanwill open the gate.”All test sentences are
available in a text file, named as test_sentences.txt, on GitHub (https://
github.com/cANN-NLP/NLP_codes). In the training sentences, “read”
and “open” appeared more frequently than “sail” (82 occurrences of
“sail”, 214 of “read”, and 317 of “open”).

The correct rate for next-word prediction was defined as the
probability that one of the first to fifth candidate words would match
the correct next word (ground truth). We selected up to the fifth
candidate because that is the standard for the Google deep learning
libraries used in this study (keras.metrics.TopKCategoricalAccuracy)
and is also the standard in recent AI language processing. To examine
the contribution of the recurrent signal, the recurrent signal was
blocked by setting the synaptic weight from the recurrent-input cells
to Purkinje cells to 0.

To analyze the dynamics of activity of the 192 Purkinje cells,
1328 words in the 190 sentences were fed sequentially into the
cANN, and we measured the corresponding 1328 activity states in
192 dimensions of the Purkinje cells. To visualize the transition of
Purkinje cell activity in a sentence, the 192 dimensions were
compressed into two or three dimensions that maximally pre-
served the variance of the 1328 points, using principal component
analysis (PCA; Python’s online source-code library, scikit-learn
1.2). To evaluate the accuracy of classification of S-V-O syntactic
information in the neuronal activity, we measured the percentage
separation of S vs. V/O, V vs. S/O, and O vs. S/V with a nonlinear
support vector machine (radial basis function kernel, scikit-learn
1.2). For this, 90% of the 190 evaluation sentences were used to
determine the support vector and the remaining 10% were used to
obtain the classification accuracy (%); this process was repeated
256 times to obtain the average accuracy (%). To visualize S-V-O
syntactic information in Fig. 3a, we used the dimensions of the
linear support vector machine, which are best suited for S-V, V-O,
and O-S separations (coordinates of vectors orthogonal to the
hyperplane best suited for the separations, obtained by svm.coef_
of scikit-learn). In the comparison of the optimal dimensions of
the linear support vector machine with the PCA dimensions
(Fig. 3c), the similarity index was calculated as the squared dot

product of the unit vectors representing the dimensions (squared
was used because the sum of the 192 dimensions is one).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
No experimental data was generated in this study. The simulation data
generated in this study have been deposited in the Open Science
Framework database (https://osf.io/bwpnk/?view_only=7a9ae0981c
2e4f8a921161dda9d079bd). The values of the data points displayed
in this study are provided in the Supplementary Information/Source
Data file. Source data are provided in this paper.

Code availability
Codes were written in Python and executed with Google Colab (Pro).
The source codes are available on GitHub (https://github.com/cANN-
NLP/NLP_codes; https://doi.org/10.5281/zenodo.10257296)109.
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