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Magnon thermal Hall effect via emergent
SU(3) flux on the antiferromagnetic
skyrmion lattice

Hikaru Takeda 1 , Masataka Kawano2 , Kyo Tamura1, Masatoshi Akazawa1,
Jian Yan 1, Takeshi Waki 3, Hiroyuki Nakamura 3, Kazuki Sato4,
Yasuo Narumi 4, Masayuki Hagiwara 4, Minoru Yamashita 1 & Chisa Hotta 5

Complexity of quantum phases of matter is often understood theoretically by
using gauge structures, as is recognized by the Z2 and U(1) gauge theory
description of spin liquids in frustrated magnets. Anomalous Hall effect of
conducting electrons can intrinsically arise from a U(1) gauge expressing the
spatial modulation of ferromagnetic moments or from an SU(2) gauge
representing the spin-orbit coupling effect. Similarly, in insulating ferro and
antiferromagnets, the magnon contribution to anomalous transports is
explained in terms of U(1) and SU(2) fluxes present in the ordered magnetic
structure. Here, we report thermal Hall measurements of MnSc2S4 in an
applied field up to 14 T, for which we consider an emergent higher rank SU(3)
flux, controlling the magnon transport. The thermal Hall coefficient takes a
substantial valuewhen thematerial enters a three-sublattice antiferromagnetic
skyrmion phase, which is in agreement with the linear spin-wave theory. In our
description, magnons are dressed with SU(3) gauge field, which is amixture of
three species of U(1) gauge fields originating from the slowly varyingmagnetic
moments on these sublattices.

Quantum phases of matter are very often complex and require math-
ematical ingenuity to clarify the nature of emergent phenomena. One
famous example is the bound states of kinks that appear as gapped low
energy excitations of the seemingly simple Ising spin system in
CoNb2O6, which turned out to follow an emergent E8 exceptional Lie
algebra symmetry1 based on the integrable field theory2. Indeed, there
are several other cases that effective theories explaining the low-
energy excitations of interesting quantum phases are not the simple
bosonic or fermionic quasi-particles but are those subject to gauge
fields. In the Kitaev model, the spin-1/2 degrees of freedom separate
intoMajorana fermions and fluxes of an emergentZ2 gauge field

3. The
half-quantized thermal Hall conductivity reported in α-RuCl3 is argued
to fit the picture of being carried by these auxiliary fractionalized

Majorana fermions4–7. In thepyrochlore systems, quantumfluctuations
transform a spin ice state to a U(1) spin liquid phase characterized by
the emergent lattice electrodynamics with U(1) global gauge sym-
metry. The masked pinch point singularities of inelastic neu-
tron scattering experiments on Pr2Zr2O7 is considered relevant to this
state hosting a monopole excitation8.

When one refers to the gauge fields in material solids, they are
quantummechanical as there is always a redundancy in the description
of phases of wave functions of the related particles. While these gauge
fields do not break their symmetries in the way that the lattice sym-
metries do at the phase transitions, the related gauge-invariant quan-
tities can play another important role. For example, the effect of spin-
orbit coupling of electrons or non-coplanar structured magnetic
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moments can be well described as an emergent U(1) gauge field. This
gauge field represents the fictitious magnetic field which bends the
motion of charges and yields an anomalous Hall effect9–12. There, the
quantized Hall resistance is explained by the gauge-invariant quantity
referred to as a Chern number. In metallic chiral magnets such as
MnSi13,14, the conduction electrons feel an emergent gauge field as they
travel through the spatially varying spin texture, which gives a good
interpretation of the topological Hall effect15,16.

Magnons in insulating magnets are dealt as simple bosonic exci-
tations but can also carry a U(1) gauge; the thermal Hall effect in fer-
romagnetic insulators17 was the first to report the anomalous transport
of magnons due to U(1) gauge field. Theories showed that the anti-
symmetric Dzyaloshinskii–Moriya (DM) spin exchange interactions or
non-coplanar structures of ordered moments can be represented by
the gauge field that bears the Berry curvature in themagnon bands18–21.
Furthermore, in the insulating versions of skyrmions, GaV4Se8

22, the
magnon thermal Hall effect is explained by the U(1) gauge field23

similarly to the cases of metallic skyrmions.
One may thus expect a more abundant gauge structure to appear

as useful in the transport phenomena. However, even for simple two-
sublattice insulating antiferromagnets in noncentrosymmetric crystals
where the U(1) gauge picture is not applicable, it was only recently
recognized that there can be another route using the SU(2) gauge field
to describe the anomalous thermal Hall effect24–26.

Here, we report the experimental observation of the thermal Hall
effect in the three-sublattice antiferromagnetic skyrmion lattice (AFM-
SkL) realized in MnSc2S4. Our large unit cell spin wave theory calcu-
lations show that the heat carriers can be described as the magnons in
a complex SU(3) gauge field originating from the three sublattice
structure.

The AFM-SkL is a new class of skyrmion, recently discovered in a
spinel compound MnSc2S4. As shown in Fig. 1a, the Mn2+ (S = 5/2) ions
form a diamond lattice27,28 and undergo three successive magnetic
transitions in a zero field, starting at T ≤ TN = 2.3K from a modulated
collinear phase to an incommensurate phase and finally showing a
helical magnetic long-range order below 1.6K29,30. Interestingly, the
phase above TN is a correlated paramagnet, which can be described as
a classical spiral-spin liquid, having highly degenerate manifold of
states with a series of continuouswave numbers forming surface in the
reciprocal space29,31.When amagneticfieldB is applied along the [100],
[110], and [111] directions, the helical phase transforms to the triple-Q
phase at around B = 4–6 T. Combining the neutron scattering experi-
ment and Monte Carlo simulation, the triple-Q state in B ∥ [111] is
identified as an AFM-SkL phase, which consists of three sublattices
approximately forming a 120°-types of antiferromagnetic order. The
structure shown in Fig. 1b is a cross-section of the diamond lattice
forming a triangular lattice and stacking in the [111]-direction with six-
fold periodicity (64 sites per triangular lattice layer, Ns = 384 sites per

B || [321]

a

b

c d
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Fig. 1 | Antiferromagnetic skyrmions in MnSc2S4 and its thermal conduction.
aDiamond lattice formedbyMn2+ ions (red circles) inMnSc2S4. The two [111]-planes
marked in blue are parallel to each other and include Mn2+ ions belonging to dif-
ferent sublattice of the bipartite diamond structure. Inside the plane these ions
forma triangular lattice. Themagneticunit cell of AFM-SkL consists of six triangular
layers. b Schematic figure of the AFM-SkL state in MnSc2S4 viewed along the [111]
direction (left-bottom panel), where the spins on three different sublattices are
shown in different colors, and the unit cell on that layer including 64 sites are
shown. Spins ononeof the sublattices forming a ferromagnetic skyrmion lattice are
extracted on the right panel, and its hexagonal unit is shown in more detail on the

top panel. c Magnetic field B versus temperature T phase diagram of MnSc2S4.
Broken lines are phase boundaries determined by the neutron diffraction
measurements30. Filled circles and squares are the peaks and dips of κxx for field
direction B ∥ [321], while crosses are those for B ∥ [111]. d Field dependence of
thermal conductivity κxx normalized by its value at B =0T at T ≤ 2 K. The arrows
indicate the positions of peaks and dips, plotted in panel (c). e Field dependence of
κxy/T in the magnetically ordered phases. The shaded area represents the AFM-SkL
phase29,30. All the data points in the normalized κxx and κxy/T are the ones averaged
over the field-up and field-down measurements, and the error bars are the max-
imum deviations of the data from the averages.
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unit cell). Each sublattice forms a triangular SkL, which can be well-
explained theoretically within the classical framework32–34.

Results
Phase diagram
We performed thermal transport measurements on the single crystals
of MnSc2S4 using the setup shown in Supplementary Note 1A. The
detailed analysis of the field, temperature, and sample dependences
are presented in Supplementary Note 1B–E. Figure 1c shows the B–T
phase diagram of MnSc2S4 at low temperature. The data points indi-
cate the location of peaks and dips in the field dependence of the
thermal conductivity (κxx) for two different field directions, B ∥ [321]
and B ∥ [111], shown in Fig. 1d. They are not much sensitive to the field
direction, and show good agreement with the phase boundaries of the
AFM-SkL phase obtained previously by the neutron diffraction
experiment for B ∥ [111]30. Although the temperature dependence of
κxxdoes not show a clear anomaly at TN (see Supplementary Fig. 3), the
field dependence has distinct upturn and downturn, which are more
visible for lower temperatures and disappear at T ≳ TN. The good cor-
respondences of these features with the phase boundaries indicate
that κxx is strongly influenced by the magnetic ordering.

Thermal Hall measurement
Figure 1e shows the field dependence of thermal Hall conductivity κxy/
T atT ≤ 1 K for B ∥ [321] ofMnSc2S4. In the helical phase atB≲ 4 T, κxy/T
is suppressed to nearly zero or slightly negative values, which, how-
ever, shows an abrupt and substantial increase in entering theAFM-SkL
phase at around 4 T. Its amplitude is overall suppressed at the lowest
temperature0.2 K,which is usual for the thermalHall conductivity that
relies on thermallydriven bosonic excitations. At above ~8 T,where the
previous theory predicts a fan phase, κxy/T becomes suppressed but
remains positive and finite.

Linear spin wave theory with a large unit cell
Unlike the standard insulating ferro or antiferromagnets, whether and
when the thermal Hall conductivity becomes finite in SkL is not well
understood. The spin-wave calculation for Néel type (ferro)-SkL on a
triangular lattice is performed for a model with Heisenberg and DM
interactions and single-ion uniaxial anisotropy35–37, while they did not
consider the transport properties. The thermal Hall effect observed in
the ferromagnetic Néel SkL in GaV4Se8 is studied by the phenomen-
ological U(1) gauge theory, showing a good agreement with the
experimental data22. However, their Chern number and the Berry
curvature contradict those of the spin-wave theory. Indeed, the Berry
curvature depends much on the details of the Hamiltonian and the
inter-band transition, and accordingly, the same SkL structure does
not necessarily yield the same Berry curvature. In such a case, the
simplest U(1) gauge theory may not be sufficient.

For these reasons, we seriously perform a spin-wave theory by
taking advantage that the microscopic lattice model that reproduces
well the experimental observations in MnSc2S4 are derived based on
the Monte Carlo simulation30, which is given as

H =
X
r,δl

Jl
2
Sr � Sr +δl

+
3
2
Jk
X
r,δ1

ðSr � δ̂1ÞðSr +δl
� δ̂1Þ

+A4

X
r,μ = x,y,z

ðSμr Þ
4 � gμB

X
r

B � Sr :

ð1Þ

Here, S = 5/2, (J1, J2, J3) = ( −0.31, 0.46, 0.087) K are the Heisenberg
exchange interactions, and δl (l = 1, 2, 3) are the corresponding vectors
representing the first, second, and third neighbors in the diamond
lattice (δ̂l is the unit vector). The anisotropic coupling constants are
set to J∥ =0.01 K and A4 = 0.0016K (in unit of temperature)30.

Themagnon dispersions in an applied field are shown in Fig. 2a, b
for the helical and fan phases and in Fig. 2c, d for AFM-SkL phases for

two different field directions. The nth magnon bands are colored by
the Berry curvature ΩðnÞ

xy they carry. The thermal Hall conductivity is
evaluated by integrating ΩðnÞ

xy as38,

κxy = � k2
BT
_

Z
BZ

d3k

ð2πÞ3
XNs

n = 1

c2½f ðεnðkÞÞ�ΩðnÞ
xy ðkÞ, ð2Þ

where f ðεÞ = 1=fexpðε=kBTÞ � 1g is the Bose distribution function,
c2½x�=

R x
0 dt½fð1 + tÞ=tg�2, and the integration is carried out over Ns-

bands in the first Brillouin zone (see Fig. 2).
The calculated field-dependence of κxy is shown in Fig. 2e. It

remains small in the helical phase, reflecting the observation in Fig. 2a
that ΩðnÞ

xy has finite contributions on part of the magnon bands, while
they are both positive and negative on nearby branches which mostly
cancel out. If we perform the calculation by setting J∥ = 0, this small
contribution disappears and κxy =0 is obtained (see Supplementary
Fig. 7a). This is because such an anisotropic bond-dependent exchange
interaction can be the source of the Berry curvature39.

Contrastingly, for AFM-SkL phase, ΩðnÞ
xy takes overall large values

throughout the whole magnon bands, particularly, a large negative
value on the lowest branch when B ∥ [111]. This explains why κxy
abruptly increases in entering the AFM-SkL phase. In further increasing
the field, the calculated κxy has peaks at 5 and 7 T for B ∥ [111] and at
around 5.5 T for B ∥ [321]. The fieldB ∥ [111] is perpendicular to the SkL
plane and has a larger effect thanB ∥ [321]; themagnon bands at ε ≳0.5
K are much dense and κxy are larger.

In the fan phase above 7 T, κxy almost disappears, since ΩðnÞ
xy (see

Fig. 2b) is mostly small except near the zone boundary. This does not
explain a finite, almost field-independent κxy in the experiment. It
should be noted that the energy scale of B ≳ 8 T is comparable to or
higher than the temperature at which the correlated para-
magnetic phase appears at zero field characterized by the coexistent
magnetic correlations of several different periods29. This competition
may transform the system into slightly different types of orderings or
another liquid state. Namely, the statemay not be the fan phase, which
is beyond the description of Eq. (1). Apart from this issue, the con-
sistency of theory and experiment at B≲ 8 T is sufficient to confirm
that AFM-SkL phase yields substantial and stable κxy >0.

Examination of the thermal conductivity
In magnetic insulators, the carriers contributing to thermal transport
can be phonons andmagnons. Here, we clarify experimentally that κxx
has indeed a substantial contribution from magnons (κmag

xx ) on top of
phonons (κph

xx ). Figure 3a shows the field dependence of κxx at T > TN to
be compared with Fig. 1d at T ≤ TN. The positive magnetothermal
conductivity observed at lower fields for T < TN becomes negative
above TN.

The major effect of the magnetic field on the present system is to
vary the magnon gap. In our theoretical calculation, when the system
remains within the same phase the overall shape of the magnon bands
does not changemuchwhile both the bandwidth and the gap vary (see
Supplementary Fig. 7). As shown in Fig. 2e, the magnon gap first
decreases toward zero in approaching the helical-to-AFM-SKL phase
transition point slightly below4T, then increases againon entering the
AFM-SkL phase, and closes at another transition point near 7 T. In
general, an decrease of magnon gap increases κmag

xx since the number
of excited magnons that depends on the Bose distribution function
increases. This can in turn suppress κph

xx , supposing that there is a
sufficiently large amount of scattering of phonons by the magnons.

For this reason, the positive magnetothermal conductivity
observed at T < TN in decreasing the gap inside the helical phase is the
feature attributed to an increase of κmag

xx . In the AFM-SkL phase, κxx
shows a slight decrease, which should be because of the re-opening of
themagnongap, in addition to adecreaseof κph

xx by the extra scattering
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effect of phonons by magnetic skyrmions as suggested in the case of
ferro-SkL in GaV4Se8

22.
In our experiment at T = 3–8K, there is a negative magne-

tothermal conductivity observed up to 8 T (Fig. 3a), which shouldbeof
magnon origin. It is known that a negative magnetothermal con-
ductivity of κph

xx is caused by a resonance scattering of phonons with
spins40. In that case, its field dependence scales with B/T, taking the
minimum value when the Zeeman energy matches the thermal energy
scale, B ~ 4kBT, at which the phonon distribution reaches the max-
imum.However, the fielddependenceof κxx clearly does not scalewith
B/T (Supplementary Fig. 4). Therefore, we speculate the origin of the
negative magnetothermal conductivity to be the magnetic excitation
from a experimentally reported correlated paramagnet at finite tem-
perature consisting of a manifold of states showing specific diffuse
signature in momentum space29, which is beyond the present theore-
tical treatment. We further mention that magnons are good quasi-
particles known to have a long lifetime at low temperature41–43, and
they suffer resonance scattering with phonons only at high energies
where the magnon branches cross the phonon ones. The positive
magnetothermal conductivity at high fields is due to the enhancement
of κph

xx caused by the suppression of magnetic fluctuations by the
magnetic field.

We finally note that phonons are unlikely the origin of the thermal
Hall effect, although κph

xx is substantial in the AFM-SkL phase. For a
thermal Hall effect of phonons, the temperature dependence of κxy is
known to scale with that of κxx as observed in severalmaterials44–46. It is
clearly not the case for MnSc2S4 as shown in Fig. 3b; whereas κxx/T
monotonically decreases as lowering T, κxy/T shows a peak at around

TN/2. This supports themagnon origin for the thermal Hall effect in the
AFM-SkL phase.

Discussion
We first discuss the correspondence of the experiment in Fig. 1e and
the theory in Fig. 2e forB ∥ [321]. The common features are captured as
follows; at 0.2 K, κxy remains small and structureless, while for 0.5, 0.7,
and 1 K, there is a single peak at around 5.5–6T and the amplitudes no
longer differ much for different temperatures. To understand these
features, we want to know up to how many levels counted from the
bottom the magnons are excited to give major contributions to κxy
(Supplementary Fig. 8). At 0.2 K, from among totally 384 magnon
bands, the lowest 24 levels corresponding to the energy window of up
to 2 K are the major excitations for κxy, while at 0.5 K, the excitation
goes much higher. This means that the dense magnon band structure
of skyrmions up to very high energies plays a crucial role in the mag-
non transport. Accordingly, although the magnon gap increases
toward 5 T and then decreases with a field, κxy is not sensitive to the
degree of magnon gap. The nontrivial distribution of ΩðnÞ

xy up to the
high energy determines the field dependence of κxy.

Indeed, the importance of dealingwith precise spin-wavemagnon
bands derived from the individual spin Hamiltonian is clear even for
the simple ferromagnetic Néel SkL phase of GaV4Se8

22. Although the
phenomenological U(1) gauge theory gives κxy in good agreement with
the experimental data, the corresponding Chern number contradicts
those obtained by the spin-wave theory35,36 at the lowest two magnon
bands. The inconsistency naturally arises since phenomenological U(1)
gauge theory employs the oversimplied hopping Hamiltonian of

Fig. 2 | Theoretical calculations of the magnon bands and the thermal Hall
conductivity. a–dMagnon bands obtained by the spin-wave theory for the helical
phase at B = 2 T (Nc = 16 site unit cell, B ∥ [111]), the fan phase at B = 8 T (Nc = 16,
B ∥ [111]), and the AFM-SkL phase atB = 4 T (Nc = 384,B ∥ [111] and [321]). Reciprocal
space is shown in the inset. Magnon bands are shown with the color density plot of

the Berry curvatureΩðnÞ
xy at each k-point. e Field dependent κxy/T for T =0.2, 0.5, and

0.7, 1 K from the linear-spin-wave theory using the same condition as panels (a–d).
Field direction is taken as B ∥ [111] and [321]. The bottom panel shows the magnon
gap (solid line) and the gap at Γ-point (broken line).
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bosons with the U(1) Peierls phase, which does not reflectmany details
of the original spin Hamiltonian, e.g., dropping off the particle-non-
conserving terms. Let us illustrate this point through the derivation of
the U(1) gauge in the ferro-SkL23,47; the slowly varying magnetic
moment is expressed by a single field operator ŝðrÞ, and the standard
Heisenberg Hamiltonian on a triangular lattice with lattice spacing a is
taken the continuum limit by Ŝi ! νŝðrÞ with unit cell volume
ν =

ffiffiffi
3

p
a2=2;

HFM
eff ∼ 3Jν

Z
d2rŝtðrÞ 1 +

a2

4
∇2

� �
ŝðrÞ: ð3Þ

The bosons are introduced by the Holstein–Primakoff transformation
as

ŝðrÞ∼
ffiffiffiffiffiffi
S
2ν

r
ðbr + b

y
r ÞexðrÞ � iðbr � by

r ÞeyðrÞ
� �

+
S
ν
� by

rbr

� �
ez ðrÞ,

ð4Þ

where the unit vectors eμ(r)(μ = x, y, z) form a local orthogonal coor-
dinate, with ez(r) ≡m(r) pointing in the direction of the ordered local
moment specified by the angles (θ(r),ϕ(r)) (see Fig. 4a). Substituting
Eq. (4) to Eq. (3) and taking the lowest-order derivative of eμ, which

drops off the particle-nonconserving terms like brbr, we obtain

HFM
eff ∼6Jν

Z
d2r by

r ∇� iAðrÞð Þ2br , ð5Þ

where a fictitious U(1) vector potential AðrÞ= � cosθðrÞ∇ϕðrÞ is gen-
erated by the variation of angles θ and ϕ (see Fig. 4a). When we put it
back to the bosons bi on lattice sites, we obtain HFM

eff ∼ JS
P

i,jUijb
y
i bj

with the U(1) gauge field given as Uij = expði R rj
ri
dr � AðrÞÞ.

For the intuitive understanding of the origin of thermal Hall
effect, the underlying gauge structures play a crucial role as sum-
marized in Fig. 4b. For ferromagnets, a gauge-invariant quantity is a
flux ϕ that is generated from the U(1) gauge field when themagnons
hop around the closed loop as, U12U23U34U41 = eiϕ. This flux works as
internal field and bends the motion of magnons, yielding κxy ≠ 0.
However, in the square or trianglular lattices, the adjacent loop,
ðU12U230U3040U401Þ* = e�iϕ, generates the same amount of flux with
opposite sign, and since this flux pattern is invariant under the
symmetry operation of time reversal ϕ→ −ϕ combined with the
translation by one lattice spacings, the contributions of the fluxes
cancel out and yield κxy = 019. Because of this no-go theorem for
edge shared lattices, the thermal Hall effect was allowed only in
pyrochlore and other corner shared lattices19.

However for antiferromagnets, the SU(2) flux can be gener-
ated as another gauge-invariant quantity. On a square lattice
(Fig. 4c), the modulation of spins on the two magnetic sublattices
are independently represented by the field operators and the
corresponding two species of magnons are introduced, which are
regarded as those of up and down pseudo-spins. Similarly to fer-
romagnets, even when each magnon feels the fictitious U(1) gauge
field created on the corresponding sublattice, its effect cancels
out. Whereas if there exists an anti-symmetric exchange coupling
or the canting of moments due to magnetic fields they work as
“pseudo-spin-orbit coupling” between the two species of mag-
nons, represented in the form of SU(2) gauge field24–26. In analogy
with the SU(2) hopping of Rashba electrons of semiconductors48,
this gauge field allows a nonzero thermal Hall effect on a square
lattice antiferromagnet25. Let us choose a translation-invariant
gauge field T ij = e

iΘα as a natural representation with 2 × 2 matrixΘx

and Θy for the hopping in the + x- and + y-bond directions,
respectively. Due to the non-commutativity of the SU(2) gauge
field, we find T 12T23T34T41 � eiΦ�σ = eiΘx eiΘy e�iΘx e�iΘy ∼ e�½Θx ,Θy � with
Pauli matrices σ at the lowest order which gives the gauge invar-
iant SU(2) flux ∣Φ∣. This time, the flux in the adjacent plaquette,
T 12T230T3040T401 � e�iΨ �σ ∼ e+ ½Θx ,Θy �, givesΨ ≃Φ. This means that the
net flux is no longer zero and cannot be eliminated by any sym-
metry operation, namely the time reversal symmetry is broken,
which is the reason for having κxy ≠ 0. The SU(2) magnon thermal
Hall effect is not established yet in experiment, however, a thermal
Hall effect observed in an antiferromagnetic phase of the Kitaev
candidate material, Na2Co2TeO6, might be related, which needs to
be scrutinized in further studies49.

For the three-sublattice antiferromagnets, there exist at least
three field operators ŝ‘ðrÞð‘=A,B,CÞ that describe the spatial
variation of moments (Fig. 4e), and the corresponding magnons
form three-component pseudo-spins. In the present AFM-SkL,
these sublattices equivalently generate U(1) gauge fields as
A‘ðrÞ= � cosθ‘ðrÞ∂μϕ‘ðrÞ, which we actually calculated as shown in
Fig. 4e. The fictitious U(1) fields shown as density plots are given as
bz
‘ ðrÞ= ∂xAy

‘ ðrÞ � ∂yA
x
‘ ðrÞ (see Supplementary Note 2D for details of

calculation). The locations where m(r) points in the z-direction
(θ = 0, π) serve as vortex centers of Aℓ(r) and generate large bz

‘ ðrÞ.
Now if the three U(1) gauge fields are decoupled, their effect cancel
out on the whole. However, there naturally arises a coupling that

b

a

Fig. 3 | Field and temperature dependence of the longitudinal thermal con-
ductivity. a Field dependenceofκxx(B) normalizedby the zero-fieldvalue aboveTN.
bTemperature dependence of κxx/T and κxy/T (inset) in the AFM-SkL phase (6.0 and
6.5 T) obtained by the dilution refrigerator (DR) (T < 3 K) and the variable tem-
perature insert (VTI) (T > 3 K)measurements. The error bars for κxy/T aremaximum
deviations of the data from the averaged data on the field-up and field-down
measurements.
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converts them to the SU(3) gauge field. We start from the simplest
Heisenberg Hamiltonian by discarding the magnetic anisotropy
terms of Eq. (1), which does not deteriorate the context;

HAFM
eff ∼

Jν
2

Z
d2r

X
‘,‘0

ŝt‘ðrÞ 1 +
a2

4
∇2

� �
ŝ‘0 ðrÞ: ð6Þ

Using the three Holstein–Primakoff bosons bℓ(r) with indices ℓ =A, B,C
added to Eq. (4), we reach the following effective Hamiltonian for the
AFM-SkL,

HAFM
eff ∼

Z
d2rΦyðrÞ FðrÞa2∇2 +

X
μ= x,y

GμðrÞa∂μ

" #
ΦðrÞ, ð7Þ

where ΦyðrÞ= ðby
A,bA,b

y
B,bB,b

y
C ,bCÞ and F(r) and Gμ(r) are 6 × 6

matrices consisting of eμ‘ � eμ‘0 and eμ‘ � ∂μeμ‘0 , respectively, with ‘≠ ‘0.
The diagonal elements of Gμ(r) are proportional to the U(1) gauge
fields Aℓ(r) in Fig. 4e. Despite the simple form of Eq. (6), a sub-
stantial off-diagonal elements in Gμ(r) exist and transform the
three U(1)’s to the SU(3) gauge field. Let Ψ†(r) be the operators

obtained by the unitary transformation to Φ†(r) that diagonalizes
F(r), where we find the form

HAFM
eff ∼

Z
d2rΨyðrÞ

X
μ= x,y

I3× 3∂μ +TμðrÞ
� �2

� τx
" #

ΨðrÞ, ð8Þ

where Gμ(r) is converted to the 3 × 3 matrix Tμ(r) that serves as a high-
rank vector potential or the SU(3) gauge field, as we find from the
analogy with Eq. (5).

We point out that the in-plane uniform 120°magnetic ordering no
longer creates a U(1) gauge field, neither an SU(3) gauge field, and has
κxy =0. Therefore, although the SU(3) gauge field itself remains a fic-
titious object, its non-commutativity forces the gauge-invariant SU(3)
flux to break the time reversal symmetry combined with lattice sym-
metry and thus plays a key role to understand why the AFM-SkL has a
nonzero thermal Hall effect.

The SU(3) gauge has been a theoretical object for describing the
interactions of quarks or gluons in particle physics, and not much has
been discussed in condensedmatter, particularly in experiment. While
the SU(3) symmetry can sometimes appear, e.g., in cold atoms50 and

c

o -0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2e

d

b

a

Fig. 4 | Illustration of how the gauge structures are linked to magnons.
a Schematic description of the ordered spin moments slowly varying in space. The
x, y, z-components of spin S(r) point toward (ex(r), ey(r), ez(r)) which form the local
coordinate with ez(r) =m(r) specified by the angle (θ(r),ϕ(r)). Gradient of ϕ(r)
generates a U(1) gauge field. b Relationships of underlyingmagnetic orderings, the
number of species of magnons that naturally describe the low energy excitations,
and the gauge structures that couple to magnons. The lower panels give the
description of theU(1) flux and SU(2) flux for two adjacent plaquettes on the square
lattice. TheU(1) gaugefield,Uij = e

iθij , with a Peierls phase, and theSU(2) gaugefield,
T ij = e

iΘij in the form of 2 × 2 matrix that mixes the two components on hopping
along i→ j bond. When magnons hop around the plaquette along the arrows, they
acquire a nonzero phase as gauge-invariant fluxϕ. For U(1) gauge fieldϕ and −ϕ on

adjacent plaquettes cancel out due to symmetry and give zero thermal Hall effect,
whereas the SU(2) gauge field leads to a nearly uniform flux Φ due to non-
commutativity and give finite thermal Hall effect. c Square lattice antiferromagnet
with two magnetic sublattices each generating the U(1) gauge field. When they
couple and form an SU(2) gauge field, we find nonzero thermal Hall effect. d Three
sublattice triangular lattice antiferromagnets and their three U(1) gauge fields
which can couple and form an SU(3) gauge field. e Vector potentials Al(r) repre-
senting the U(1) gauge field of l =A,B,C sublattice calculated for our AFM-SkL
structure, and the corresponding field bz

l ðrÞ. Left panel is the corresponding AFM-
SkL structure on the triangular lattice colored in red, green and blue for ℓ =A, B,C
sublattices, respectively.
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the SU(3) Heisenberg Hamiltonian may yield exotic phases51, the pre-
sent system would be the first to observe experimentally the phe-
nomena that directly reflect the SU(3) gauge structure in material
solids.

Methods
Experimental
Single crystals of MnSc2S4 were synthesized by the chemical vapor
transport method. We call two crystals with the shape of a thin plate
with [321] plane as sample#1 and [111] plane as sample #2. The thermal-
transport measurements were performed by the steady method by
using a variable temperature insert (VTI) for 2–60K and a dilution
refrigerator (DR) for 0.1–3 K. The heat current JQwas applied along ½�111�
(½2�1�1�) and the magnetic field B was applied along [321] ([111]) for the
sample #1 (#2). The detailed setup of the thermal transport measure-
ments is shown in Supplementary Note 1A, where we show that the
temperature slopewithin the sample is stablewithin fewpercent of the
sample temperature. The errors of κxx and κxy are evaluated from
systematic errors betweenmeasurements conducted under almost the
same condition (field-up and field-down measurements at the same
temperature). In the main text, we show the experimental data for the
sample #1. The amplitude of Δκxx(B) = κxx(B) − κxx(0) and κxy differ
between sample #1 and #2 consistently by a factor of 9–10, which is
safely attributed to the nonmagnetic contributions from phonons due
to sample quality. For the field dependence, we find that both samples
show essentially the identical results by incluing this factor (see Sup-
plementaryNote 1D), indicatinghigh reproducibility of our results, and
also confirming that the two field directions yield the same magnetic
phases.

Calculation
We performed a spin-wave theory for Eq. (1) for parameters where the
magnetic orderings of large spatial periods take place.We adopted the
magnetic structures of the helical and fan phases as mj / � sinðq �
r jÞe1�10 � cosðq � r j +ϕÞe110 +MeB with q = 3π/2(1, 1, 0) and ϕ = −π(fan)
and − 3π/2(helical). For AFM-SkL, mj /

P
l sinðql � r jÞel � cosðql � r j �

9π=8Þe111 +MeB with q1 = 3π/2(1, − 1, 0), q2 = 3π/2(1, 0, − 1), q3 = 3π/
2(0, 1, − 1), for el = ð�1,�1,2Þ,ð1,�2,1Þ and ð2,�1,�1Þ. The amplitude of M is
determined to minimize the summation of classical (Ecl) and quantum
corrections (Eqc). We perform a local gauge transformation to rotate
the local spins to z-direction, and apply a Holstein–Primakoff
transformation52 in the rotating frame, solving the resultant spin-wave
Hamiltonian representedby the 2Ns × 2Nsmatrix, wherewe takeNs = 16
for the helical phase and Ns = 384 for the AFM-SkL phase53. For more
details of the results, see Supplementary Note 2.

Data availability
The data that support the findings of this study are included in this
published article and Supplementary Information files. Sourcedata are
provided as a Source Data file. Source data are provided with
this paper.
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