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Giant intrinsic photovoltaic effect in one-
dimensional van der Waals grain boundaries

Yongheng Zhou1,7, Xin Zhou 2,3,7, Xiang-Long Yu 4,5 , Zihan Liang1,
Xiaoxu Zhao 3, Taihong Wang 1, Jinshui Miao 6 & Xiaolong Chen 1

The photovoltaic effect lies at the heart of eco-friendly energy harvesting.
However, the conversion efficiency of traditional photovoltaic effect utilizing
the built-in electric effect in p-n junctions is restricted by the Shockley-
Queisser limit. Alternatively, intrinsic/bulk photovoltaic effect (IPVE/BPVE), a
second-order nonlinear optoelectronic effect arising from the broken inver-
sion symmetry of crystalline structure, can overcome this theoretical limit.
Here, we uncover giant and robust IPVE in one-dimensional (1D) van derWaals
(vdW) grain boundaries (GBs) in a layered semiconductor, ReS2. The IPVE-
induced photocurrent densities in vdW GBs are among the highest reported
values compared with all kinds of material platforms. Furthermore, the IPVE-
induced photocurrent is gate-tunable with a polarization-independent com-
ponent along the GBs, which is preferred for energy harvesting. The observed
IPVE in vdW GBs demonstrates a promising mechanism for emerging optoe-
lectronics applications.

In a non-centrosymmetric material, light-matter interactions can gen-
erate a finite DC photocurrent under homogeneous illumination in
absence of external bias and spatial inhomogeneity. This photovoltaic
effect, governed by the intrinsic symmetry properties of materials, is
referred to the intrinsic photovoltaic effect (IPVE) or bulk photovoltaic
effect (BPVE)1–4. Hence, the unique physics of IPVE offers an effective
approach to surpass the Shockley-Queisser limit in traditional photo-
voltaic devices1–9, which attracts growing attention recently. Initial
studies on IPVE mainly focused on ferroelectric insulators, such as
LiNbO3

2, BiFeO3
10 andBaTiO3

8,11. Later, researchers found that reducing
bandgap size and lowering dimensionality could further enhance the
efficiency of IPVE5–7,12–17. For example, the IPVE photocurrents observed
in narrow bandgap semiconductors (including one-dimensional/1D
WS2 nanotubes5) and Weyl semimetals with broken inversion sym-
metry are orders of larger than those in wide bandgap ferroelectric
insulators6,7,12–15. On the other hand, van der Waals (vdW) layered
materials meet all merits for IPVE investigations due to its low

dimensionality, tunable bandgap, flexibility, easy manipulation, and
rich species15–26. For example, strain-gradient-engineered MoS2 shows
a strong IPVE with photocurrent density over 102A cm−2, which is
comparable to that in 1D WS2 nanotube5,20; The external quantum
efficiency of 3R-MoS2 with spontaneous out-of-plane polarization
shows the highest reported value of 16%22; IPVE observed in the in-
plane strained 3R-MoS2 is over two orders of magnitude higher than
the unstrained one20; The non-centrosymmetric nano-antennas in
centrosymmetric graphene can result in artificial IPVE23–25; Moiré-
pattern in twisted bilayer graphene and WSe2/BP interface can lead to
the emergence of spontaneous IPVE21,26; Low-dimensional vdW struc-
tures such as quasi-1D edges of Weyl semimetal WTe2 can generate
strong IPVE-induced photocurrents, attributing to the strong sym-
metry breaking and low dimensionality of edges15; Robust IPVE-
induced photocurrents are observed in topological insulator mono-
layer WTe2

16. Here, we introduce an alternative low-dimensional sys-
tem, one-dimensional grain boundary (GB) with non-centrosymmetric
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crystalline structure, for IPVE investigations. Distinct from previous
IPVE systems, GBs widely exist in all kinds of materials. For example,
GBs have been uncovered in various vdW layered materials regardless
of their crystalline symmetry, including graphene27, MoS2

28, ReS2
29–33,

and MoSe2
34.

1 T′-ReS2 GBs are ideal for IPVE investigations due to following
reasons. (1) Anisotropic optical properties of ReS2 allow to identify
positions of GBs and subdomains simply using polarization-resolved
opticalmicroscopy; (2) GBs inReS2 havewell-defined structures free of
dangling bonds. In this work, we uncover strong and robust IPVE in 1D
vdW GBs in ReS2. Symmetry analysis and experimental results
demonstrate that inversion symmetry is broken near GBs, which
results in a DC photocurrent that propagates along GBs without any
voltage bias. We demonstrate that this IPVE-induced photocurrent is
gate tunable and possesses a pronounced polarization-independent
component. Furthermore, the IPVE-induced photocurrent densities in
1D ReS2 GBs are among the highest values compared with reported
material systems.

Results
Characterization of 1D vdW GBs in ReS2
Bulk 1 T′-ReS2 is a vdW semiconductor with a centrosymmetric crys-
talline structure under the inversion symmetric space group of P�135–38,
as demonstrated by the scanning transmission electron microscope
(STEM) image in Fig. 1a. Thus, IPVE is not allowed in thin-film ReS2. In
addition, we find an abundance of 1D GBs in ReS2. The in-plane
orientations, signified by the direction of Re chains, of the two
neighboring subdomains form a 120° angle (see Fig. 1b and Supple-
mentary Fig. 1), which aligns with prior STEM research findings30,33.
Figure 1c shows a top view schematic of ReS2 crystalline structure with
GBs. Here, we use A and B to represent two adjacent subdomains. BA
and AB GBs are denoted by “↑” and “↓” arrows, respectively. Using
polarization-resolved optical microscopy (see Fig. 1d, e and

Supplementary Fig. 2), we can clearly identify the positions of GBs in
ReS2 flakes due to the anisotropic optical reflection and different Re-
chain directions of subdomains. As shown in Fig. 1e, the ReS2 flake is
separated by multiple GBs (along the y-direction) and forms multi-
domain structures. Angle-resolved polarized Raman spectroscopy was
further performed to identify the crystalline orientations of ReS2
subdomains (see Fig. 1f). The intensity of Ag2 mode (212 cm−1) is max-
imum when the light polarization direction is parallel to the Re-chain
direction of ReS2

30,32,36. Raman result indicates that there is ~117° dif-
ference between Re-chain directions of two adjacent subdomains,
which is very close to the angle ~120° observed in STEM. The ~3°
deviation of Raman characterization is within the permissible range of
our instruments.

IPVE theory in 1D vdW GBs
The only symmetry present near GB regions is the two-fold rotation
along the y-directional axis. Expanded analysis in Supplementary
Note 1 and Supplementary Fig. 3 suggests that the GB region is char-
acterizedby a point group ofC2 and associatedwith a broken inversion
symmetry, resulting in nonzero second-order nonlinear light-matter-
interaction tensors σð2Þ

ljk ðw, q
*Þ, where w is the angular frequency of

incident light, q! is the wave vector and l/j/k represents x-, y-, or z-
directions. Under linearly polarized light, a finite DC photocurrent
density along l-direction can be generated (only consider the
q!-independent term)20,39

JLBPVEl =
1
2

X

j,k

χ ljkðE jEk
* + EkE j

*Þ ð1Þ

where χ ljk = σ
ð2Þ
ljk ðw,0Þ. Since JLBPVEl only depends on the intrinsic physi-

cal properties of materials, this effect is called IPVE or BPVE. Here, we
mainly focus on IPVE-induced photocurrent along GB (y-direction)
JLBPVEy . For incident light normal to the two-dimensional plane of ReS2
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Fig. 1 | Characterization of 1D van der Waals (vdW) grain boundaries (GBs)
in ReS2. a Atomic-resolution scanning transmission electron microscope (STEM)/
high angle annular dark field (HAADF) image of bulk ReS2, accompanied with a
lattice structure schematic. The blue and pink spheres in schematic represent the
Re and S atoms, respectively. The unit cell of ReS2 is delineated by awhite rhombus.
Scale bar is 1 nm. b The STEM/HAADF image of a ReS2 GB, indicated by a white
dashed line. There is 120° betweenRe-chaindirections of two adjacent subdomains.
Scale bar is 1 nm. Insets show Fourier transform patterns of two adjacent

subdomains with scale bars of 10 nm−1. c Top view schematic of lattice structures
near GBs. The inversion symmetry is broken near GBs. d, e Unpolarized (d) and
polarized (e) optical images of a ReS2 flake with subdomain structures. Two adja-
cent subdomains are marked by A (red) and B (blue), respectively. BA and AB GBs
are denoted by ↑ and ↓ arrows, respectively. Scale bar is 10μm. f Angle-resolved
polarized Raman spectroscopy results of Ag2 mode (212 cm−1) in A (red dots) and B
(blue dots) subdomains. The Re-chain directions of A and B subdomains are
denoted by red and blue arrows, respectively. Solid lines are fitting curves.
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flake (Ez = 0), JLBPVEy can be written as

JLBPVEy = χyxxjEx j2 + χyyyjEyj2 + χyxyExE
*
y + χyxyEyE

*
x ð2Þ

Equation 2 can be further simplified utilizing the rotation sym-
metry in GB region as shown in Fig. 1b (see Supplementary Note 2 for
details). Under rotation symmetry (x, y, z→ -x, y, -z),
JLBPVEy ðx, y, zÞ= JLBPVEy ð�x, y, � zÞ which makesχyxy =0. If we write
E = [E0sinθ, E0cosθ, 0], where θ is the angle between y-direction and
light polarization direction, then we have

JLBPVEy =
E0

2

2
ðχyyy � χyxxÞ cos 2θ+

E0
2

2
ðχyyy + χyxxÞ= JPol�dp

y + JPol�indp
y

ð3Þ

Here, JPol�dp
y and JPol�indp

y are the polarization-dependent and
polarization-independent terms, respectively. Furthermore, IPVE-
induced photocurrents along two adjacent ↑ and ↓ GBs should have
opposite directions restricted by their reversed orientations.

Experimental observation of IPVE in 1D vdW GBs
To study the IPVE in ReS2 GBs, photodetectors with channel parallel to
GBs are fabricated. Figure 2a shows the optical imageof a deviceunder
polarized white light (the angle between light polarization and y-axis is
~30°). The optical images at other polarized angles are shown in Sup-
plementary Fig. 2. The thickness of ReS2 flake is ~180 nm determined
by atomic force microscope (AFM) (see Supplementary Fig. 4). The ↑
and ↓ GBs are denoted by blue and red dash lines, respectively. The
detailed fabrication process can be found in the Method section. The
device shows linear current-voltage (Ids-Vds) characteristic, indicating a
good Ohmic contact between ReS2 and metal electrodes (see Sup-
plementary Fig. 5). A linearly polarized 532 nm laser with a diameter
around 3 μm was focused on the channel and short-circuit photo-
currents (Iph) were collected (the angle between laser polarization and

y-axis is ~30°). As shown in Fig. 2b, Iph(y) at pristine region (x =0μm)
shows ordinary shape with vanishing value in the middle of channel.
The finite photocurrents near electrodes can be attributed to extrinsic
photovoltaic effect, such as built-in Schottky junction between ReS2
and electrodes andphoto-thermoelectric effect. This indicates that the
pristine region of ReS2 does not support IPVE due to the preservation
of inversion symmetry. This observation is further confirmed in a
device based on ReS2 without GBs (see Supplementary Fig. 6). On the
other hand, we observed very robust photocurrents in the middle
regions of GBs with negative values at ↑ GB (along blue dashed line in
Fig. 2a) and positive values at ↓ GB (along red dashed line in Fig. 2a) in
sharp contrast to vanishing photocurrents in pristine regions. This
phenomenon is reproducible in other samples (see Supplementary
Fig. 7). Scanning photocurrent spectroscopy of total Iph further con-
firms the observation as shown in Fig. 2c. Moreover, we measured
photocurrent along x-direction Iph(x) at fixed y position (indicated by
the black dashed line in Fig. 2a). As shown in Fig. 2d, consistent and
robust valley and peak features are observed at ↑ and ↓ GBs, respec-
tively. The above results show excellent agreement with IPVE theory.

To further demonstrate the effectiveness of IPVE theory, we check
if a large polarization-independent photocurrent term JPol�indp

y exists in
ReS2 GBs. Figure 2e shows the polarization-resolved photocurrents in
middle of ↑ and ↓ GBs. The polarization-dependent term JPol�dp

y is
complicated since it is influenced by both anisotropic properties of
ReS2 domains and IPVE. Hence, wemainly focused on the polarization-
independent term JPol�indp

y . Besides, polarization-independent term is
more appealing for energy harvesting applications due to the unpo-
larized nature of sunlight. We further extract JPol�indp

y and show the
mapping results in Fig. 2f. The opposite directions of JPol�indp

y are
observed in ↑ and ↓ GBs, consistent with IPVE theory.

We then investigated the electrical tunability of IPVE in ReS2 GBs
using gate bias. Figure 3a shows a device based on few-layer ReS2 with
GBs. The thickness of ReS2 flake is 8 nm. The few-layer ReS2 photo-
transistor exhibits n-type characteristics (see Supplementary Fig. 8),
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Fig. 2 | Observation of intrinsic photovoltaic effect (IPVE) in 1D ReS2 GBs.
a Optical image of a photodetector with multiple domains under polarized white
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are marked by yellow regions. c Scanning photocurrent spectroscopy of total

photocurrent Iph. Incident laser is polarized along x-axis. The ↑ and ↓ GBs are
marked by blue and red dash lines, respectively.d Iphmeasured along x-direction as
indicated by the black dashed line in a. Valley and peak features are observed at ↑
and ↓ GBs, respectively. e Polarization-resolved photocurrents in middle positions
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y-axis. f Spatial distribution of the polarization-independent term JPol�indp
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consistent with previous reports38,40. Opposite directional photo-
currents are observed at ↑ and ↓ GBs (see Fig. 3b), showing good
agreement with other samples. Moreover, IPVE-induced photo-
currents can be effectively tuned by gate voltage with ~ 28% and 60%
enhancement from −40 to 40V for ↑ and ↓ GBs, respectively. To
understand this gate tunability of IPVE-induced photocurrent, we first
examine whether it simply originates from the tuned Schottky barrier
at metal-ReS2 interface which may affect the collection efficiency of
carriers. As shown in Supplementary Fig. 9, the 8 nm-thick ReS2 device
shows a good linear current-voltage characteristic at various gate
voltages, indicating a good Ohmic contact between ReS2 and metal
electrodes. Hence, if there exists Schottky barrier, it would be very low
which is unlikely to significantly affect the photocurrent intensities. On
the other hand, IPVE-induced photocurrents have two contributions
which are shift and ballistic currents6,19,20,41,42. Shift and ballistic cur-
rents strongly depend on the properties of nonequilibrium carriers
excited by polarized lights. Thermalization of nonequilibrium carriers
can be caused by electron-defect, electron-phonon, and electron-
electron interactions. At different gate voltages, electron concentra-
tion changes which probably affects the thermalization processes of
excited nonequilibrium carriers, such as their mean free bath length
and mobility, and hence affects induced IPVE photocurrent densities.
This is one plausible explanation. Further studies can be conducted to
fully understand this phenomenon.

We compared the strength of IPVE in ReS2 GBs with other mate-
rials. Although structures of ReS2 GBs are well defined, the effective
width of GBs, which denotes the active region with strong inversion
symmetry breaking for generating IPVE photocurrent, is unknown.
Here, we give a photocurrent density rangewhen effectivewidth varies
from 3 to 300 nm. As shown in Fig. 4, the photocurrent densities in
ReS2 GBs are comparable to those in 1D WS2 nanotube

5, strained 3R-
MoS2

19 and MoS2
20 and orders of magnitude higher than those in fer-

roelectric materials3,4,17,43,44.

Discussion
To better understand the giant IPVE photocurrent densities in ReS2
GBs and its underlying physical mechanism, the first-principles calcu-
lations of band properties are performed. Detailed information about
calculations can be found in the Method Section and Supplementary
Information (see Supplementary Figs. 10, 11). As shown in Fig. 5a, ReS2
near GBs has a lower conduction band minimum and higher valence
bandmaximum comparedwith those of pristine ReS2. In addition, GBs
have significant influence to the band structures of ReS2 near GBs
through introducing significant number of new states (see

Supplementary Figs. 10, 11). These new states might improve the light
absorption and enhance the IPVE photocurrent. Importantly, a
quantum-well structure is formed along x-direction (normal to GB
direction) due to lower conduction bandminimum and higher valence
band maximum near GBs as shown in Fig. 5b. This indicates that car-
riers generated near GBs tends to be caught into the quantumwell and
transport along GBs (carrier collection direction of electrodes) is more
preferred than other directions. This further enhances the IPVE pho-
tocurrent. Besides, the well-defined structures of GBs without any
dangling bonds and the indirect bandgap of ReS2 near GBs could fur-
ther suppress scatterings and recombination of photo-excited carriers
(see Supplementary Fig. 10). These arepossible reasons that lead to the
giant IPVE photocurrent density in ReS2 GBs. As shown in Supple-
mentary Fig. 12, we still can observe pronounced IPVE photocurrent at
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ReS2 GBswith channel length over 100 μm. In addition, we also studied
IPVE at ReS2 edges for comparison, since edges are non-
centrosymmetric with broken periodic structures. We fabricated and
measured three ReS2 samples in which we did not found detectable
IPVE-induced photocurrent at edges (see Supplementary Fig. 13). High
density of defect states at edges, such as dangling bonds,might induce
strong electron-defect scatterings and suppress the IPVE
photocurrent45.

Power- and wavelength- dependent photocurrents are measured
to further clarify the physicalmechanismof IPVE observed inReS2GBs.
As shown in Fig. 5c, the power-dependent photocurrent atGBs shows a
transition from linear to square-root dependence when power
increases which is consistent with the prediction of theoretical shift
current model and previous experimental reports5,19,20,42,46. We theo-
retically calculated the shift current in ReS2 GBs. Detailed calculation
process and discussion are shown in Supplementary Information (see
Supplementary Note 3 and Supplementary Fig. 14). As shown in Fig. 5d,
our shift current model shows good agreement with experimental
results at different excitation wavelengths. All above results suggest
that shift current dominates the photocurrent generation process of
IPVE in ReS2 GBs.

Finally, we conclude through discussing the distinctive aspects of
GB-induced symmetry breaking and its potential implications relative
to prior research. Firstly, GBs widely exist in all kinds of materials and
have a variety of configuration, which provides a capacious platform
for IPVE and physics investigations. Secondly, GBs are embedded in
bulk materials and there is no symmetry requirement for the crystal-
line structure of bulk material to induce symmetry breaking in GBs.
Thirdly, formation of the quantum-well structure makes GBs a good
1D/quasi-1D system for IPVE investigation which can effectively sup-
press carrier dissipation to other directions. Fourthly, compared with

edges45, GBs with well-defined crystalline structures are free of dan-
gling bonds. The reduced electron-defect scatterings in GBs with well-
defined structures might suppress scatterings of photo-excited car-
riers and enhance IPVE photocurrent. Lastly, structures and densities
of GBs can be generated and controlled through adjusting material
growth conditions47,48. Other approaches, such as external strain, can
also generate and control GBs in materials29. The ability to control
formation and structures of GBs is important for making efficient
optoelectronic devices. Hence, we believe the rich species and con-
figurations, well-defined 1D/quasi-1D structures, and potential con-
trollability make GBs a promising optoelectronic platform for novel
physics and device applications.

Methods
Sample preparation
ReS2 samples were prepared on silicon substrate coveredwith 300nm
SiO2 through standardmechanical exfoliationmethod. Angle-resolved
polarized optical microscope is used to identify GBs and domains in
ReS2. Electrodes (5/35 nm Cr/Au) were patterned via standard photo-
lithography process (MicroWriter ML3, Durham Magneto Optics Ltd).

STEM characterizations
The STEM/HAADF images were obtained using a JEOL ARM200F
equipped with a CEOS aberration corrector. The microscope featured
a cold field emission gun and was operated at an accelerating voltage
of 200 kV. The convergence angle was ~28mrad.

Optical characterizations
The devices were characterized using a semiconductor parameter
analyzer (FS-Pro) under vacuum (~10−6 mbar) at roomtemperature. For
short-circuit photocurrent measurements, 532 nm lasers were used as
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at ↑ (↓) GBs are represented by blue (red) solid lines and dots, respectively. Error
bars denote the standard deviation of the photocurrent measured at GBs.
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excitation sourceswith laser power of 200μW, respectively. The lasers
were focused by a 50×microscope objective lens (0.5 N.A.). The size of
laser spot with a Gaussian profile was ~3μm for 532 nm laser. Angle-
resolved polarized Raman spectroscopy was performed using a
532nm laser with a spectrometer (Andor SR-500i-D2). A linear polar-
izer and half-wave plate (Thorlabs) were used to adjust the orientation
of the laser polarization.

Theoretical calculation
Density functional theory (DFT) calculations for structure optimiza-
tion and electronic properties were performed using the Vinna ab
initio simulation package (VASP)49. Exchange-correction functional
was treated within the generalized gradient approximation of Per-
dew, Burke, and Ernzerhof50. The electronic wave functions were
expanded using a planewave basis set with an energy cutoff of
300 eV, and the tolerance for the total energy was <10−4eV. A
1 × 10 × 1 k-mesh was utilized for self-consistent calculations of the
supercell structure.

Data availability
Relevant data supporting the key findings of this study are available
within the article and the Supplementary Information file. All raw data
generated during the current study are available from the corre-
sponding authors upon request.
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