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Accelerating process development for 3D
printing of new metal alloys

David Guirguis 1,2 , Conrad Tucker 1,2,3 & Jack Beuth1,2

Addressing the uncertainty and variability in the quality of 3D printed metals
can further the wide spread use of this technology. Process mapping for new
alloys is crucial for determining optimal process parameters that consistently
produce acceptable printing quality. Process mapping is typically performed
by conventionalmethods and is used for the design of experiments and ex situ
characterization of printed parts. On the other hand, in situ approaches are
limitedbecause their observable features are limited and they require complex
high-cost setups to obtain temperature measurements to boost accuracy. Our
method relaxes these limitations by incorporating the temporal features of
molten metal dynamics during laser-metal interactions using video vision
transformers and high-speed imaging. Our approach can be used in existing
commercialmachines and can provide in situ processmaps for efficient defect
and variability quantification. The generalizability of the approach is demon-
strated by performing cross-dataset evaluations on alloys with different
compositions and intrinsic thermofluid properties.

Additive manufacturing (AM) can be considered one of the pillars of
the fourth industrial revolution. The industry has the potential to
play a major role in innovation processes and in the US and global
economy1. Metal AM is becoming essential in many industries,
including healthcare, aerospace, and defense, due to the benefits of
lead time reduction, enhanced production efficiency, part con-
solidation, and design freedom. Laser powder bed fusion (L-PBF) is
the most widely used technology for printing metal alloys. The
technology uses a high-power laser as an energy source to melt and
fuse powders in specific locations to form certain shapes, a recoater
then spreads a new layer of powder, and the process repeats until 3D
objects are formed.

The variability problem is the main obstacle that hinders the
reliability of the quality of printed parts and thus the potential for full
production. The mechanical properties and dimensional accuracy of
printed parts vary depending on the powder and machine used, the
scanning strategy, and the printing conditions2–4. The lack of repeat-
ability and uncertainty in quality has motivated many researchers to
better understand the process, the influence of decisive parameters,
and process-property relationships to find ways to control the quality
and microstructure properties of printed objects2,5–8. Moreover,

mapping process parameters into printing defects is essential to
determine the optimal process parameters for each type ofmetal alloy
and printing facility. Process development is typically performed by
trained laboratory technicians using ex situ facilities where printed
tracks are characterized9. The laser beam power and velocity are two
major machine parameters that directly control the laser energy den-
sity and, therefore, the stability of the molten pool of metal10,11. Addi-
tionally, adequate spacing between laser scan tracks should be
determined to address the variability and uncertainty in the width of
the printed tracks so that sufficient overlap between each pair of
melted and fused tracks can be achieved to prevent residual unmelted
powder. This type of defect can deteriorate themechanical properties
and reduce fatigue life12,13.

High-speed imaging by a laser at a fine spatiotemporal scale has
been used to monitor molten pools. Although this monitoring tech-
nique has been used in previous work, adopting it for in situ process
mapping is limited due to the poorly observable features14, low algo-
rithmic accuracy15, and the need to use a complex setup and installa-
tion to obtain temperature field measurements16,17, which may require
imaging alignment, calibration, and a special setup that needs to be
integrated with the scanning head of the 3D printing machine.
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In this work, we develop an in situ approach for designing an
accelerated and efficient process for 3D printing of newmetal alloys to
achieve melt-pool stability and address the variability problem. Based
on the advancement of knowledge in defect formation dynamics11,18–20,
we devise an approach to eliminate saturation in frames captured by a
high-speed camera to monitor the dynamic changes in a molten pool
and use temporal data to classify the process into different types of
defects by using state-of-the-art video vision transformers21 rather than
convolutional neural networks (CNNs) and traditional computer vision
approaches for static images15,22. This approach can enhance the
algorithmic accuracy to over 98%without the need to use an advanced
setup with high-cost pyrometers to extract the temperature field16,23.
Another important aspect for the deployment of in situ systems is their
generalizability to new alloys. Thus, we test our approach on metal
alloys that are not used to train the vision transformer model and
achieve a top-1 accuracy of up to 98%. In addition, to address the
variability problem, we generate variability process maps for molten
pool attributes to guide the determination of optimal hatch spacing.
The pipeline of our method is depicted in Fig. 1.

Results
Capturing melt-pool dynamics
We developed an off-axial imaging setup at the L-PBF facility of the
CMU Next Manufacturing Center, which consists of a high-speed
camera andmagnification lenses with optical filters attached to it. The
optical train is devised to block the wavelength that is associated with
most of the emissions of the plasma plume, i.e., ionized vapor, con-
densed particles, and plumes formed during printing. The plume
temperature alone can be higher than 3500K17,24. The representative
results of melt-pool frames captured for different printing regimes are
shown in Fig. 2. The videos are recorded at a high rate of 54,000 frames
per second to capture the high-frequency oscillation in the melt-pool

shape. The gradients of the melt-pool light emission are clearer than
those in frames captured by other direct imaging setups15,25,26. In
addition, the melt-pool geometric attributes are intuitively reasonable
and are matched with frames captured with setups calibrated for
temperature measurements and imaging setups with illuminated
scenes; see e.g., 27.

The melt pool becomes smaller but elongates as the scan speed
increases. However, melt pools captured in the lack-of-fusion regime
are very small with a low length-to-width ratio, as the energy density is
very low and the laser beam does not penetrate deeply into the
material. Although the captured melt pools are clearly distinct from
theplasma andplume, they are still observablewith high oscillations in
the keyholing regime. In the keyholing regime, owing to the high
energy density, the vapor plasma has a significantly high energy den-
sity and cannot be easily filtered out. Examples of videos for the four
regimes are presented in Supplementary Movies S1–S4. In the balling
regime, in agreement with the modeling study28,29, the molten pool
elongates and disconnects, leaving behind peaks in the track. A post-
processed frame extracted from a video of a P-V combination that is
known to be associated with the balling regime is shown in Fig. 2c.

To further investigate the dynamic changes in melt-pool shapes
that can be captured by the imaging setup, we analyzed the changes in
the maximum intensity of the captured melt-pool emissions and the
cross-correlation of subsequent frames. As shown in Fig. 3a–c, melt
pools with severe keyholing have the highest fluctuation range,
whereas tracks printed in conduction modes have more stable max-
imum intensity values. The keyhole fluctuation is typically character-
ized by fluctuations in the width and depth of the keyhole11,30–32. The
keyhole depth fluctuation is reported in previous studies as up to
approximately 10 kHz32. However, the intensity fluctuation is found to
have a higher frequency of approximately 8–17 kHz. Notably, the
intensity fluctuation does not directly represent the fluctuation in the
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Fig. 1 | Pipeline of the proposed in situ process development approach. A high-
speed imaging setup is used to monitor the dynamic changes in the molten pool,
and the spatio-temporal data is used to classify the process into different types of
defects and printing regimes using video vision transformers. The variability in the

morphological attributes of themolten pool is captured from the imaging data and
processing maps of variability, represented by the standard deviations, are con-
structed indicating the processing parameters that can result in a more stable
process.
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keyhole depth temperature because the emissions of the plasma
plume can block the view of the keyhole depth.

The temporal changes in the melt-pool shapes are qualitatively
analyzed by calculating the correlation coefficient between sub-
sequent frames. Box plots of the correlation coefficients calculated for
melted beads at different regimes are illustrated in Fig. 3d–f. To depict
how themelt-pool changes over time at different energy densities, the
average values are plotted in the power-velocity (P-V)map, as shown in
Fig. 3g–i.

Vision transformer model development
Transformers are state-of-the-art self-attention deep learning archi-
tectures for natural language processing. Vaswani et al. 33 demon-
strated that pure transformers without recurrent or convolutional
layers can overcome challenges, such as vanishing gradients in long-
range sequences and the inability to performoperation in parallel, that
other sequence modeling approaches face. Recently, ref. 34 demon-
strated the effectiveness of pure transformers in computer vision and
achieved outstanding results compared to the results achieved in
other studies on CNNs. ViTs have less image-specific inductive bias
than CNNs34. In addition, methods that embed input and slice videos
into nonoverlapping patches without embedding their positions can
make the input more suitable for the problem at hand.

The transformer layers consist of layer normalization, multi-
headed self-attention, amultilayer perceptron (MLP) of linearprojects,
and Gaussian error linear unit (GELU35)33,34. The captured videos are
postprocessed and divided into nonoverlapping 3D patches across the
temporal and spatial domains and then linearly projected along with
the positional embedding of the patches to the transformer encoder,
as depicted in Fig. 1. This method of extracting and feeding the
temporal-spatial information to themodel is called tubelet embedding
and was proposed by Arnab et al. 21.

Due to the small field of view of the high-speed camera and the
high scan speed of the laser, a limited number of frames are stored in
each recorded video. Thus, we implement regularization schemes to
efficiently deal with small amounts of data. Biases and layer weight
regularization are applied to theMLP of themultiheaded transformers
and the MLP head. Although data augmentation is powerful in boost-
ing the performance of transformers36, we rely instead on regulariza-
tion to preserve dynamic changes in themolten pool that are reflected
in the image intensity and changes in the geometrical attributes.

Process parameter mapping
The videos are classified into four categories: desirable regimes and
printing regimes with three different types of defects: keyholing, bal-
ling, and lack-of-fusion. Keyholing is deep drilling into the material
through vaporization, and it results in a deep vapor cavity37. Although
keyholing can occur in other printing regimes, in this context, we refer
to keyholing defects, which are characterized by unstable, deep, and
narrow penetration and can lead to enclosed pores inside the printed
parts. These cavities can result in cracks and thus can degrade the
fatigue life of the parts38. Another type of defect is balling, which is also
known as humping in welding literature39. In the balling regime, owing
to Plateau–Rayleigh instability and Marangoni flow, the melted tracks
exhibit a rough surfacewith a periodic ball cross-section shape and are
associated with undercuts at the corners. The last class of defects is
lack-of-fusion, where the energy density is not sufficient to fully melt
the powder, so unmelted powder and irregular gaps are observed
between the melted tracks. Examples of the four printing classes are
illustrated in Fig. 4.

We conducted single-bead experiments with different P-V
combinations, covering the four printing regimes, on stainless steel
SS316L, titanium alloy Ti-6AL-4V, and Inconel alloy IN718. To explore
the generalizability of the method, we performed a cross-dataset
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Fig. 2 | Imaging ofmolten pools captured at different printing regimes. Images
captured at 54,000 frames per second during printing of Ti-6Al-4V tracks in dif-
ferent processing regimes. a Keyholing (350W, and 600mm/s), (b) Stable (320W,

and 1200mm/s), (c) Balling (400W, and 1800mm/s), (d) Lack-of-fusion (150W,
and 1500mm/s).
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evaluation, where the model is trained on the recorded videos of one
alloy and tested on the videos others while the hyperparameters
are kept unchanged. The classification results of the training experi-
ment on SS316L alloy are listed in Tables 1 and 2. The top-1 and top-2
accuracies obtained by running inference on the IN718 alloy dataset
are96.63% and 100%, respectively, whereas the achieved accuracies on

the Ti-6AL-4V alloy data are 87.60% and 95.87%, respectively. The F-1
score, which is a combined measure of recall and precision of classi-
fication, ranges from 0.69 in Ti-6Al-4V balling to 1.0 in the case
of IN718.

The classification accuracy for the Ti-6Al-4V data is expected to be
lower than that of the IN718 alloy data. The Ti-6Al-4V alloy is observed
to emit a denser vapor plume in comparison to the other alloys. The
alloy elements of Ti-6Al-4V experience significant vaporization in
comparison to those of SS316L and IN71840. Moreover, Ti-6Al-4V has
lower thermal conductivity, higher absorptivity to laser radiation and
much different thermophysical properties from the other alloys41.

After classification, the classes of the P-V combinations are aver-
aged across the samples in the testing datasets and plotted to generate
process maps. The process maps42–44 or printability maps are maps of
the resultant printing outcome for the P-V combinations. Power and
velocity are the two main controllable processing parameters that

Fig. 3 | Quantification of molten pool surface dynamics. Left to right: IN718, Ti-
6Al-4V, and SS316L. a–c Normalized maximum intensity of melted tracks for dif-
ferent regimes. The maximum intensity values of the images are normalized with
zero mean and one standard deviation. d–f Correlation coefficients between

subsequent frames of recorded videos. g–i P-V map of melt-pool surface changes
depicted by the average mean values of the cross-correlation coefficients between
subsequent frames. The surfaceplots are generatedbyusing local linear regression.
Source data are provided as a Source Data file.

Table 1 | Results of defect and processing regime prediction
by training on SS316L and testing on IN718

Precision Recall F1-score Samples

Desirable 0.99 1.00 0.99 428

Keyholing 1.00 0.98 0.99 334

Balling 1.00 1.00 1.00 213

Lack-of-fusion 0.99 0.99 0.99 568
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determine the input energy density and therefore have a major influ-
ence on the dynamics of the molten pool and its stability8. Figure 5
shows the process maps generated by our in situ method with the
vision transformermodel. The processmaps generated by ourmethod
are found to be in good agreement with the maps generated after
ex situ characterization of printed beads (see Materials and Methods),
except for a misclassified point with high laser power in the balling
regime of Ti-6Al-4V.

Note, however, that there is no clear separation between these
classes45. Keyholing may occur in desirable tracks and coexist with
balling without forming pores. Moreover, balling can occur in shallow
melt pools29 as well as in melt pools with elongated keyholes46. For
instance, as shown in Fig. 5b, although the printed beads at 220W and
1400mm/sare very shallowandcan lead to lack-of-fusiondefects, they
are labeled in the current study as balling since beading is observed on

the track surface. The detailed training results on IN718 and Ti-6Al-4V
alloys are included in Supplementary Tables S1–S4. The validation
results and confusionmatrices are shown in Fig. 6. To test the influence
of random initiation, the experiments are repeated five times with a
different random seed and shuffled training data. Bar plots of the
classification accuracies are illustrated in Fig. 7. The experiments show
a significant influence of the initiation as the model is trained from
scratch and the training data are shuffled in each experiment. How-
ever, the accuracy values are still reasonably high.

The effect of the backbone capacity on the performance is illu-
strated in Fig. 8. Although the accuracy can be improved by
increasing the backbone capacity, sufficient temporal context is
necessary to extract meaningful patterns for the dynamics of the
melt pool. In this particular classification problem, the model dis-
tinguishes the same object and the same action but with different
topological shapes and dynamics. On the other hand, in most other
classification problems, the task is to classify different objects or
distinct actions.

To validate the performance of the method, experiments are
performed to compare the video vision transformer with other state-
of-the-art models. Two pretrained video vision transformer models,
ViViT-B21 and TimeSformer47, are compared with a deep convolutional
network (VGG16)48, a deep residual model (ResNet152)49, and a mobile
video network model (MoViNet-A1)50. As the results in Table 3
show, the video vision transformermodels outperform the CNN-based

Fig. 4 | Examples of the 3Dprinting regimes.Micrographs of sectioned beads and
top views of printed single beads that represent the four printing classes. a lack-of-
fusion (150W, 1500mm/s), (b) desirable (350W, 1200mm/s), (c) balling (400W,

1800mm/s), and (d) keyholing (350W, 600mm/s). The samples are printed in Ti-
6Al-4V.

Table 2 | Results of defect and processing regime prediction
by training on SS316L and testing on Ti-6AL-4V

Precision Recall F1-score Samples

Desirable 0.68 0.86 0.76 166

Keyholing 0.94 0.98 0.96 441

Balling 1.00 0.52 0.69 142

Lack-of-fusion 0.97 1.00 0.98 291
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models. The pretrained ViViT-B model has a more balanced perfor-
mance between the test datasets and achieves a classification accuracy
higher than 90%. Themodel configurations and training details can be
found in the Supplementary Method section.

To provide more insights into the method performance, we
visualize the t-SNE projection51, i.e., a technique used for the

visualization of high data dimensions, of the ViViT-B model features
in Fig. 9a. The figure illustrates separable melt-pool classes. The
attention map52 in Fig. 9b illustrates the mean attention weight over
the transformer heads after linear scaling. The map shows that the
dynamic features of the melt pool at the keyhole and the tail carry
more attention.

Fig. 5 | Process maps generated by the video vision transformer model. The
IN718 (a) and Ti-6Al-4V (b) maps are obtained by the model trained on SS316L,
whereas the SS316L map (c) is obtained by the model trained on IN718. The

percentages of correctly identified classes are plotted above the P-V datapoints.
The misclassified data point in the Ti-6Al-4V map is misidentified as desirable.
Source data are provided as a Source Data file.

Table 3 | Comparison of the classification accuracies (%) obtained by state-of-the-art convolutional neural network (CNN) and
transformer-based models

Training on Testing on VGG16 ResNET152 MovieNET-A3 TimeSformer ViViT-B

Ti-6Al-4V SS316L 83.30 87.48 81.96 88.80 90.24

IN718 82.50 90.72 82.99 92.36 94.48

SS316L Ti-6Al-4V 86.70 84.99 88.56 90.52 90.22

IN718 97.37 96.36 98.26 97.38 98.04

IN718 Ti-6Al-4V 88.37 90.12 93.67 95.54 94.36

SS316L 89.39 93.22 92.06 90.80 92.48

The mean values of the accuracies are reported and averaged over five independent training runs.
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The results of three model variants of ViViT-B21 are shown in
Supplementary Table S5. The three models are different in their
attention patterns and how the spatiotemporal information flows. The
spatiotemporal attention model has one transformer, the factorized
encoder model has two separate transformer encoders for spatial and
temporal tokens, and the factorized self-attention model has one
transformer as the first model, but spatial self-attention is computed
first followed by temporal self-attention21. The factorized encoder
model shows superior performance on most of the test datasets,
especially when trained on the Ti-6Al-4V alloy dataset, which is
observed to be more difficult for training, as shown above.

The influence of regularization is examined by running experi-
ments with the factorized encoder model of ViViT-B with and without
data augmentation steps of random horizontal flipping, random
cropping and stochastic layer dropout53. The results are shown in
Supplementary Table S6. The results highlight the importance of
regularization in training, as the performance is improved, especially
in the Ti-6Al-4V experiments.

Variability mapping
Variability in melt-pool morphologies can lead to dimensional incon-
sistency of printed features and a coarse surface finish. Moreover, it
can indicate heat accumulation and fusion defects, such as a dis-
continuities in melt tracks and spatter generation and powder
spreading defects. Therefore, selecting process parameters that lead
to a less variablemelt pool can enhance the consistency of the printing
outcome.

Following the creation of process maps for printability and defect
formation, we construct process maps for morphological variability.
Although the depth of themelt pool cannot be seen from the top view
of the machine bed, the width and area attributes are markers of
printing consistency54.

Powder single tracks are printed in Ti-6Al-4V alloy with a layer
thickness of 30 µm, a 100-µm laser spot diameter, and different pro-
cessing parameter combinations: laser powers of 200, 300, and 400W
and scanning speeds of 800, 1200, and 1600mm/s. The experiments
are conducted four times to account for variability in powder

Fig. 6 | Results of the cross-dataset evaluations. Results by training on IN718: (a)
training history, (b) confusion matrix of Ti-6Al-4V, (c) confusion matrix of SS316L.
Results by training onTi-6Al-4V:d traininghistory, (e) confusionmatrix of IN718, (f)

confusion matrix of SS316L. Results by training on SS316L: (g) training history, (h)
confusion matrix of IN718, (i) confusion matrix of Ti-6Al-4V. Source data are pro-
vided as a Source Data file.
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Fig. 7 | Results of independent runs with reshuffled datasets. Average percen-
tages of the top-1 and top-2 classification accuracies. The accuracy values are
averaged across five independent training runs with different random seeds and

data shuffling. The training datasets are randomly shuffled each run. The results
of all runs are illustrated with circles. Source data are provided as a Source
Data file.

Fig. 8 | Ablation analysis.Effect of varying thebackbone capacity on theprediction accuracy (a) and the numberof trainable parameters (b). Source data are provided as a
Source Data file.

Fig. 9 | Analysis of the transformermodel. a t-SNE51 of the ViViT-B features shows
separable melt pool classes. b attention map52 shows the mean attention weight
over the transformer heads after linear scaling. The map illustrates that the

dynamic features of the melt pool at the keyhole and the tail carry more attention.
Source data are provided as a Source Data file.
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spreading and to sufficiently analyzemelt-pool changes. After printing
the beads and collecting the data, ex situ analysis with a ZEISS Axio
Imager microscope was performed to measure the track width every
200 µm. The liquidus-solidus threshold in the captured videos is esti-
mated by correlating the actual bead’s mean width with the melt pool
captured by the camera.

The variability in melt-pool morphology represented by the
standard deviation of the melt-pool width and area is illustrated in
Fig. 10. As shown in the figure, a large standard deviation is observed

at high energy densities, where the melt pools are large and contract
as the energy density decreases. The percentage of the standard
deviation (Fig. 10b) also generally follows the same trend. Although
the width variability is not high, the variation in the melt-pool area is
significant. An explanation for this is depicted in Fig. 10. As observed
by the microscope, beads with balling can have smooth boundaries,
as the undercuts occupy the areas around the irregular humping
features at the center of the beads. Beads printed at 200W and high
velocities are found to have smooth boundaries and small standard

Balling zone: Less variability in melt-pool width but 
large variability in melt-pool area evidenced by the 
undercut around the irregular humps

Printed beads at 200 W and high velocity are found to 
be of smooth boundaries and very low width variability

Recommended 
EOS P-V

Low energy 
density

a

c

b

d

Fig. 10 | Process maps of melt pool morphological variability. The morpholo-
gical variability of Ti-6Al-4V alloy represented by the standard deviation of the
width and area of the melt pools captured by high-speed imaging at 54000 frames
per second. a Standard deviation ofmelt-pool width in µm.b Standard deviation of

melt-pool area in μm2. c Relative standard deviation of melt-pool width. d Relative
standard deviations of melt-pool area. Relative standard deviations are calculated
as the percentage of the standard deviation values to the arithmetic mean values.
Source data are provided as a Source Data file.
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deviations in the width. This finding is the same as the ex-situ
observations of the printed beads. An interesting finding is that the
recommended P-V combination by the machine manufacturer is at
the lowest area variability of the melt pool, which is an indication of
melt-pool stability.

Discussion
As demonstrated above,molten pool dynamics and shape changes can
be captured with a simple off-axial imaging setup. Vision transformers
with temporal embedding can enable in situ detection of melt-pool
defects and efficient process mapping for alloys that are different in
chemical composition and intrinsic thermofluid properties from the
material used in training. The processmaps generated by ourmethod,
along with the variability maps of molten pool attributes, can poten-
tially accelerate the qualification of printability and process develop-
ment for newly developed 3D printed alloys.

We show that incorporating the temporal features leads to
accurate prediction of process maps, as the dynamics of the process
are a major contributor to defect formation and the printing
regime20,30. Consistent with former observations15,54, balling mor-
phology and keyholing porosities may not be present in all frames or
vertical cross-sections of the printed beads. The balling defect is
known to be periodic, which strengthens our argument that indivi-
dual images are not sufficient to infer the printing regime of the
processing parameters. Moreover, clear melt-pool shapes and indi-
cations for the dynamics of defect formation can be captured in situ
by a simple off-axial monitoring setup without the need for calibra-
tion to obtain temperaturemeasurements ormodification of existing
printing machines. The pure transformer model with layer weight
regularization is found to be robust and generalizable to different
metal alloy datasets.

Results obtained from training on the Ti-6Al-4V data tend to be
inferior to those obtained from training on the other alloy datasets, as
the thermophysical properties of this metal alloy are significantly dif-
ferent from those of the other alloys41. Pretrained ViViT with data
augmentation results in an improved performance in the Ti-6Al-4V
experiments due to improved initialization and reduced variance.

The classification accuracies of the model are found to be high
enough to reconstruct the process maps of the testing alloys. How-
ever, the “keyholing” defect class is confused with the “desirable” class
in some instances. Thedesirable class consists of data points of printed
beads in conduction and keyholing regimes, as keyholing without
severe evaporation may not cause defects. The findings of this study
can be the basis for developing deep learning models with multilabel
classification.

Although the generalizability of the method is validated, its
expansion to real-time monitoring for process control has some
challenges and limitations, and further studies are needed to address
these limitations. First, the data transfer rate must be high enough to
match the recording rate needed to capture the high frequency
oscillations in melt-pool changes. Second, most commercial high-
speed cameras are designed to record short videos for limited periods.

Methods
Experimental setup
The high-speed imaging setup was built at the Mill 19 facility of the
CMU Next Manufacturing Center (Pittsburgh, PA). A Photron FAS-
TCAM Mini AX200 high-speed monochrome camera (Tokyo, Japan)
was used to capture the melt pool in real time at 54,000 frames
per second. The exposure time of the camera was manually adjusted
depending on the brightness level of the scene to avoid saturation
and blooming, i.e., exceeding the electric signal limit that the camera
sensor can handle55. The experiments were conducted with a
TRUMPF TruPrint 3000 laser powder bedmachine (Farmington, CT).
Argon gas was used with continuous circulation (an oxygen

concentration of less than 0.1%) to mitigate the plume intensity
above the melt pool. Small plates were used for the bare plate
experiments on Ti-6AL-4V, IN718, and SS316L from McMaster-Carr
(Elmhurst, IL). Gas-atomized Ti-6AL-4V powder (EOS Titanium Ti64
Grade 23 powder from EOS GmbH, Germany) was used in the varia-
bility study. The chemical compositions of thematerials can be found
in Supplementary Tables S7–S10. The numbers of samples, i.e., data
points, per track were different in different experiments, as the
number depends on the scanning velocity. A total of 1340 trackswere
printed for the three alloys used in the study. Each track was 6mm
long, and 1.5–2mmof the track ends were not captured. The samples
were sectioned using wire electrical discharge machining and
polished and etched according to the ASTM E407 standard. The
ex situ analyses were performed using a ZEISS Axio Imager micro-
scope (Oberkochen, Germany) for ground truth labeling and mea-
suring the width of the printed tracks.

Data processing
The recorded videos were processed using scaling and image regis-
tration. The frames were converted into grayscale arrays, and the
molten pools were registered to be in the same location along each
clip. The image intensity was normalized. For each video, the pixel
intensities were linearly scaled from zero to one, where one repre-
sented the maximum pixel intensity in the video. The size of each data
point was 80 × 160 × 15, which represents a temporal resolution of
18.5 μs and a spatial resolution of 6.3μm. Active contouring followed
by thresholding was used to measure the melt-pool attributes for the
attribute variability analysis.

Ground truth labeling was performed based on four classes: (1)
keyholing defects: when the keyhole penetrates deep enough into the
material with a probability to generate pores (the width to depth ratio
is less than 1.29,56 or if keyholing porosities are observed); (2) balling:
any track that exhibits peaks with a ball-like shape is classified as bal-
ling even if the track is shallow; (3) lack-of-fusion: when the printed
track is very shallow and no balling is observed; and (4) desirable: if the
track does not meet the criteria of the other classes. To ensure the
desirable printing class is free of possible defects, any defect mor-
phology observed in one of the printed tracks is sufficient to label the
P-V combination as belonging to this defect class.

Deep learning model
We use the video vision transformer ViViT21, which is a pure transfor-
mer model with tubelet embedding of the video clips (i.e., feeding
the model with nonoverlapping spatiotemporal information21).
The extracted information from the input contains both spatial and
temporal information of the melt pool as the laser travels. The spa-
tiotemporal attention model is used with the transformer encoder33,
which includes multihead self-attention and an MLP layer with layer
normalization and residual connections. The architecture of themodel
is illustrated in Fig. 1. The model has 12 transformer heads and 20
layers, and the MLP hidden dimension is 256. To mitigate overfitting,
we use the elastic net method57, applying L1 and L2 weight regular-
ization to the MLP layers. The calculations are performed in Tensor-
Flow. The transformer model was trained on a single NVIDIA Tesla
V100 DGXS GPU with 32GB. The number of training epochs ranges
between200 and500dependingon convergence, and thebatch size is
set to 128. The configurations of the benchmarking models can be
found in the Supplementary Method section.

Data availability
Data to support the findings and conclusions are included in the paper
and the Supplementary Information. Samples of the recorded videos
are included in the SupplementaryMovies.Other datasets are available
upon request from the corresponding author. Source data are pro-
vided with this paper.
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Code availability
The computer codes developed for this study are available from the
corresponding author upon request.
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