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Orchestrating chromosome conformation
capture analysis with Bioconductor

Jacques Serizay 1 , Cyril Matthey-Doret 1,2,3, Amaury Bignaud 1,2,
Lyam Baudry 1,2,4 & Romain Koszul 1

Genome-wide chromatin conformation capture assays provide formidable
insights into the spatial organization of genomes. However, due to the com-
plexity of the data structure, their integration in multi-omics workflows
remains challenging. We present data structures, computational methods and
visualization tools available in Bioconductor to investigate Hi-C, micro-C and
other 3C-related data, in R. An online book (https://bioconductor.org/books/
OHCA/) further provides prospective end users with a number of workflows to
process, import, analyze and visualize any type of chromosome conformation
capture data.

Chromosome conformation capture methods (3 C, 4 C, Hi-C, micro-C,
…) have become a prevalent approach to investigate the interplay
between DNA-related metabolic processes and the 3D folding of
chromosomes (e.g. gene regulation, chromosome compaction, DNA
repair and rearrangements1–5). Computational processing of HiC data
has also provided powerful and elegant solutions to several genomic
limitations, in particular allowing for robust genome scaffolding6–9.
Furthermore, the application of Hi-C directly to complex microbial
communities allows the characterization of whole microorganism
genomes, the identification ofmobile genetic elements such as viruses
and plasmids and their assignment to their respective hosts10–13, and
characterization of prophages activity14. International consortia have
emerged to orchestrate efforts to characterize chromosome con-
formation and nuclear organization across cell types, tissue samples
and species8,15.

Genome-wide chromatin conformation capture assays, such asHi-
C, micro-C or DNAse-C16–18, yield lists of pairs of interacting genomic
loci at a base-pair resolution (stored in pairs files, in which each record
describes a singlemeasured contact between twogenomic loci), which
can be further binned to a window of chosen size and stored in sym-
metric sparse matrix files (where consecutive columns/rows corre-
spond to consecutive genomicbins).Hi-Cdata specificities thus largely
differ from the typical 1D genomic file formats (e.g. ‘.bigwig‘ or ‘.bed‘
files).While a single ‘.pairs‘ file format has been formally defined by the
NIH 4D Nucleome Network19, three file formats have been indepen-
dently proposed to store binned matrix files, each generated by a

specific processing software. Hi-C Pro generates (i) sparsematrices as
three column (bini / binj / countij) text files and (ii) region files
describing genomic coordinates for each bin20, Juicer produces ‘.hic‘
files21 and ‘.(m)cool‘ files are generated by the distiller pipeline22. The
‘.hic‘ and ‘.(m)cool‘ formats are binary, multi-resolution, highly com-
pressed and indexed files and can rely on companion libraries
(respectively straw and cooler) to perform random access to a subset
of the data. Softwares are also developed to manipulate files in these
formats (Juicer tools, Juicebox and Juicebox Assembly Toolbox for
‘.hic‘ files and HiGlass, cooltools and coolpuppy for ‘.(m)cool‘ files23–27,
FAN-C for ‘.hic‘ and ‘.(m)cool‘ files28). These computational solutions
provide adedicated shell command line interface (CLI) or a PythonAPI.
However, they are not embedded in a larger, genomics-centric eco-
system. Other softwares, such as HiCExplorer, GENOVA, mariner or
HiCUP, also provide additional toolkits for Hi-C exploratory data ana-
lysis (EDA)29–31.

The Bioconductor project focuses on the development of R
packages to provide classes, methods and functions dedicated to
genomic datasets32–35. For this reason, Bioconductor has become the
reference ecosystem for in-depth genomics investigation (encom-
passing most genome sequencing methodologies, genome annota-
tions, single cell omics, multi-omics, etc). However, although core
methods exist to represent genomic interactions in R (defined by the
GInteractions class in the InteractionSet package36), and a few
packages exist to perform statistical analyses to Hi-C data (e.g.
comparing chromatin interaction frequency between samples with
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HiCcompare37), no standard chromosome conformation capture data
structure has been defined so far in R. Furthermore, data import
methods to parse Hi-C processed files in R are still lacking. Overall,
the lack of a unified methodology surrounding Hi-C data has limited
their integration in the powerful genomics-centric Bioconductor
ecosystem, particularly compared to other omics approaches. To
address these limitations, we formally defined a set of classes to
represent chromosome conformation capture data with Bio-
conductor, and developed a set of tools to process, parse, analyze
and visualize this type of data in R. Compared to existing solutions,
this approach allows the end user to leverage existing, powerful
genomics-centric methodology already implemented in Bio-
conductor. Here, we cover the key aspects of the chromosome
conformation capture analysis workflow and describe the packages
used at each step as well as interoperability features in R. We also
present an online book (https://bioconductor.org/books/OHCA/)
introducing the end user to the installation of the required packages,
their specific functionalities and several examples of complete
chromosome conformation capture analysis workflows.

Results
Data representation
The HiCExperiment package implements the ContactFile class (encom-
passing the CoolFile, HicFile and HicproFile classes) to connect to a

contact matrix stored on disk in one of these three formats (Fig. 1,
Fig. S1), supporting Hi-C, micro-C and other 3C-related data binned at a
fixed resolution. A ContactFile instance also lists the resolutions avail-
able in the matrix file and metadata relevant for biological analysis. The
importmethod provides random access to a ContactFile, to only import
relevant chunks of data from large Hi-C matrix files. This instantiates a
HiCExperiment object containing binned genomic contacts of interest
stored as GInteractions (Fig. 1). Raw counts and normalized contact
frequencies (if available) are automatically imported and stored in a list
of scores. Additional methods are available to move around the Hi-C
map (refocus), dynamically change its resolution (zoom), subset inter-
actions or add qualitative or quantitative metrics (using the standard ‘[‘
subsetting operator and the ‘$‘ column accessor), and set/get general
information related to the contact matrix (e.g. seqinfo, anchors, bins,
topologicalFeatures,metadata). TheHiCExperimentpackage also defines
a PairsFile class to efficiently import ‘.pairs‘ files in R as GInteractions.

All the classes implemented inHiCExperimentdirectly extend core
Bioconductor classes and generic methods, including BiocFile, Geno-
meInfoDb and GenomicRanges, ensuring seamless parsing, manipula-
tion and genomic representation of locally stored Hi-C contact
matrices in R. Importantly, a HiCExperiment object can be seamlessly
coerced as a GInteractions, a data.frame tabular object or a (optionally
sparse) matrix. This facilitates its interoperability and the integration
of Hi-C processed data with other pre-existing packages.

Fig. 1 | Overview of the ContactFile and HiCExperiment class. The HiCExperi-
ment package defines the ContactFile class, which acts as a pointer to a disk-stored
contact matrix in.(m)cool,.hic, or HiC-Pro formats, and the PairsFile class, a pointer
to a disk-stored tabular pairs file. Both ContactFile and PairsFile connections can be
parsed inRusing the generic import function. Importing aContactFile instantiates a

HiCExperiment object. The main functions and methods provided by the HiCEx-
periment packages to manipulate ContactFile, PairsFile and HiCExperiment objects
are written in bold, and the data structure returned by each function/method is
indicated between chevron. Interoperability with other R packages is possible
thanks to coercing methods provided by the HiCExperiment package.
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Thanks to ever-decreasing sequencing costs and improving
technology, the average size of chromosome conformation capture
datasets is continuously increasing, both in sequencing depth and in
resolution.HDF5-derived ‘.(m)cool‘ andbinary ‘.hic‘files both efficiently
store such large-scale data, and HiCExperiment objects instantized
from these file formats benefit fromefficient parsing libraries based on
C code, optimized for speed. Furthermore, because random access is
supported for these file formats, contact matrices can be partially
imported inR, allowingmanipulation of large datasets – suchasdeeply
sequenced micro-C datasets – even on personal laptops with standard
hardware configuration (e.g. 4 CPUs and 8–16 Gb RAM).

Data processing
Integrated workflows such as nf-core/hic, open2c/distiller-nf or
Juicer20,21,38,39 efficiently use high-performance computing (HPC)
environments to process chromosome conformation capture data.
The large number of indirect operations they perform (e.g. container
caching, sanitary check-ups and additional quality controls) results in a
significant overhead and an increase in storage and memory require-
ments. These largeworkflows are therefore less suitable for processing
on local workstations, where setting up dependencies is often cum-
bersome. The HiCool package was developed with these limitations in
mind. HiCool is an R package that automatically sets up a basilisk-
managed conda environment40 linked to hicstuff, a multipurpose
lightweight Hi-C processing Python library41. This environment allows
HiCool to align paired-end sequencing data to a genome reference,
parse them into a standard ‘.pairs‘ file, filter out invalid pairs42 and PCR
duplicates, bin them into multi-resolution balanced ‘.mcool‘ and ‘.hic‘
matrix files and automatically generate an HTML report of the pro-
cessing (Fig. 2a, b). The implementation of HiCool as a Bioconductor
package enables its efficient integration with other local Hi-C analysis
packages (Fig. S1), and unlocks access to genomic databases, e.g. to
automatically retrieve and cache cloud-hosted pre-built genome
reference indexes by using a genome ID string (e.g. “mm10”, “GRZc10”,
…), accelerating local Hi-C data pre-processing and direct import in R.

Hi-C visualization
The HiCExperiment object inherits methods from the core GInterac-
tions and GRanges classes to provide a flexible representation of Hi-C
data in R. The HiContacts package leverages these inheritances
to explore HiCExperiment objects, focusing on four main topics: Hi-C
visualization, contact matrix-centric analysis, interactions-centric
analysis and structural feature annotation (Fig. 2A, list of functions in
Table S1, interoperability illustrated in Fig. S1).

Hi-C exploratory data analysis is instrumental in generating
hypotheses, discovering patterns, and directly answering biological
questions. A generic plotMatrix function is provided in the HiContacts
package and can operate on HiCExperiment, GInteractions or standard
matrix objects, with extensive Hi-C-related customization options
(Fig. S2). These include singlematrix visualization (Fig. S2A, B), side-by-
side comparison of two matrices (Fig. S2C), visualization of ratio,
observed vs. expected (O/E) and correlation matrices (Fig. S2E–G),
support for horizontal Hi-C maps (Fig. S2G), annotation of structural
features and alignment with genomic tracks (Fig. S2F), and visualiza-
tion of aggregated matrices (Fig. S2H). All visualization functions
provided by HiContacts return ggplot objects that can be easily cus-
tomized, e.g. to change the scaling, range or hue of the colormapor to
add additional details or labels and generate publication-ready figures.

Contact matrix-centric analysis
In a Hi-C analysis workflow, a preliminary requirement is the normal-
ization of contact matrices. A well-established approach for matrix
normalization is the matrix balancing approach42,43. By default, HiCool
processing performs such normalization automatically, but the end
user may need to manually normalize existing contact matrices. The

HiContacts package implements the balancing of a HiCExperiment
object, calculating weight scores for each bin and adding a new nor-
malized score metric to each genomic interaction (Fig. 2a).

Several basic matrix operations can be applied to HiCExperiment
objects.HiContacts defines operators to subset ormergeHi-Cmaps, or
to subtract, divide or sum two Hi-C maps. HiContacts also provides a
random subsampling method of Hi-C interactions that preserves
sample-specific distance-dependent interaction frequencies.

Other calculations can be performed onHiCExperiment instances.
HiContacts can estimate the overall expected signal for an imported
contact matrix and compute the ratio of observed vs. expected (O/E)
interaction frequency (Fig. S2F). HiContacts can also compute corre-
lation matrices, to reveal a stereotypical plaid pattern in which inter-
actions are enriched between chromosome segments belonging to the
same compartment (AA or BB)18 (Fig. S2G).

Finally, an operation frequently performed when analyzing Hi-C
matrices is the aggregation of matrix snippets, e.g. matrix subsets
centered at all topological domain boundaries or all chromatin loops44.
The AggrHiCExperiment class stores and averages the Hi-C signal
across a set of snippets of interest. Because AggrHiCExperiment is an
extension of the core HiCExperiment class, it inherits all the methods
available to HiCExperiment instances, including visualization func-
tionalities (Fig. S2H).

Interactions-centric analysis
The proportion of cis (intra-chromosomal) and trans (inter-chromo-
somal) interactions per chromosome can be calculated with HiCon-
tacts to investigate the propensity of chromosomes to form
chromosomal territories with limited intermixing45 (Fig. S2I).

The chromosome-wide distance-dependent interaction frequency
(a.k.a. P(s)) and its slope are valuable metrics that can be used to infer
physical properties of individual chromosomes18,46. For example, in
yeast entering mitosis, there is a significant decrease in interactions in
the 20–30 kb range and a downward shift in the P(s) slope beyond this
range (Fig. S2J). These features have been successfully used to accu-
rately model the reorganization of the nuclear genomic content into
mitotic condensed chromosomes47–49. Distance-dependent interaction
frequency can also be summarized in scalograms (Fig. S2K): themedian
interaction genomic distance (±25%, or other quantiles specified by the
enduser) canbeplotted along a linear axis representing a chromosome
segment. This is oftenuseful for deciphering thebehavior of chromatin
interactions along chromosomes50.

Finally, on a smaller scale, one may also be interested in studying
interactions between an discrete viewpoint (a.k.a. bait) locus (e.g. a
single or cluster of regulatory elements) and neighboring genomic
features (e.g. other regulatory elements, gene bodies, repeats, etc).
Profiles of contacts between such a viewpoint and the rest of the
genome, sometimes referred to as virtual 4 C plots, can be computed
withHiContacts (Fig. S2L). This feature is an efficientway to summarize
and compare interactions between a number of different loci at once.

Structural feature annotations
Akey step in using chromosome conformation capture data to explore
the functional organization of chromosomes is the annotation of
structural features. HiContacts implements methods to identify A/B
chromosome compartments using eigenvector decomposition18,
topologically associated domains (TADs51), using a diamond insulation
score52 et chromatin loops using computer vision53 (Table S1). It is
nonetheless advised to investigate structural features using a range of
different methods. For instance, A/B compartments can be identified
in R with HiTC and HiCDOC packages, while finer sub-compartments
can be annotated using CALDER54–56. To allow end-users to use best-
suited existing R packages,HiCExperiment objects can be coerced into
the specific data structures such as matrices, data frames or
GInteractions.
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Data integration
Hi-C has gained traction in several fields related to genome biology,
and several consortia have developed large-scale programs based on
this technique. The NIH 4DNucleome Programhosts a data portal that
lists > 500 chromosome conformation capture experiment sets

performed in humans and a variety of model organisms15. For each
experiment set, Hi-C contact matrices, pairs files, coverage tracks and
downstream analysis files are publicly available. The DNA Zoo con-
sortium is using Hi-C scaffolding to generate genome references for
hundreds of animals, plants, fungi and microorganisms. The polished

Fig. 2 | Bioconductor workflow to import and analyze Hi-C data in R. a Raw Hi-
C.fastq files can be pre-processed in R with HiCool to generate pairs and binned
matrix files. Note that other standardworkflows exist to pre-process Hi-C.fastq files
in a command-line interface. Binned contact matrices can be imported in R as
HiCExperiment objects using the import method defined in the HiCExperiment
package. From there, Hi-C data can be directly visualized, or analyzed from two
different perspectives, to perform matrix-centric analyses (e.g. matrix balancing,
aggregation, comparison, etc.) or interaction-centric analysis (e.g. cis/trans contact

ratios, distance-dependent interaction frequency, interaction profiles, etc.). b The
HiCool package enables Hi-C.fastq processing in R by automatically setting up and
temporarily activating a self-managed conda environment linking to hicstuff, a
multipurpose lightweightHi-Cprocessing Python library. It internally generates the
pairs and binned matrix files, saves a visual summary of the dataset and the pro-
cessing workflow, and outputs a ContactFile and a PairsFile objects to facilitate the
import of the pre-processed data in R.
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genome sequences and corresponding Hi-C contact maps are directly
accessible on a dedicated website8. Two R packages, fourDNData and
DNAZooData, provide gateways to these databases. A list of available
experiment sets and their metadata is provided within each package,
and the actual data files (‘.mcool‘, ‘.hic‘, ‘.bw‘, ‘.bed‘, ‘.pairs‘ and ‘.fasta‘
files) associated with an experiment of interest can be seamlessly
downloaded by providing a sample ID, and are locally cached for reuse
across independent R sessions. For example, the mouse and chicken
Hi-C data presented in Fig. S2 and Fig. 4 were retrieved directly in R
using the fourDNData package. Providing programmatic access to
existing databases will accelerate investigation in genome biology and
open new avenues of research.

Interoperability between Hi-C packages
The HiCExperiment class provides interoperability between Hi-C
packages. To illustrate this point, we present here a typical workflow
to analyze sevenHi-C yeastdatasets obtained fromWTcells ormutants
of the cohesin complex, synchronized in either G1 or G2/M, a stage in
which chromosomes are compacted into arrays of loops57. For each
library, Hi-C reads are aligned to the yeast reference genome and
binned into contact maps usingHiCool. Visual inspection of Hi-Cmaps
suggests an increase in contact over longer distances in G2/M vs G1,
enhanced in the absence of wpl1 and wpl1/eco1 (Fig. 3a), and this is
confirmed by the P(s) curves (Fig. 3b). That the replicates are coherent
is demonstrated by both the strong overlap of the P(s) curves (Fig. 3b)
and by the stratum-adjusted correlation coefficients (SCC) calculated
using HiCRep58. Here, we use the HiCExperiment coercion methods to
convert the imported Hi-C maps into dense matrices, the input class
required byHiCRep. SCC scores show that replicates forWT G2/M and
wpl1 are overall correlated, while the two replicates for WT G1 are
slightly more divergent (Fig. 3c). The stratum-dependent correlation
between G1 and G2/M replicates decreases dramatically at short

distance (10–30 kb), corresponding to the range of cohesin-mediated
chromatin loops along G2/M chromosomes in yeast (Fig. 3d). In con-
trast, stratum-dependent correlation with wpl1 single mutant and
wpl1/eco1doublemutant decreases atmid-range (50–100 kb) andmid-
to-long-range (50–200 kb) respectively, consistent with the indepen-
dent roles of Eco1 and Wpl1 factors in chromatin loop formation. We
took advantage of the replicates to perform differential interaction
(DI) analysis using the multiHiCcompare package59. Using HiCExperi-
ment, we imported wpl1 and WT replicates chromosome XI Hi-C data
and seamlessly coerced them into the multiHiCcompare-specific tab-
ular format. The contact frequency fold-change and adjusted p-values
computed by multiHiCcompare are injected back into the original
HiCExperiment objects to visually represent thesemetrics in Hi-Cmaps
(Fig. 3e) or as volcano plots, separating inter-arm and intra-arm
interactions over chrXI (Fig. 3f). This analysis highlights that the
increase in contact frequencies over longer distances occurs specifi-
cally for intra-arm contacts in wpl1 compared to WT, while contacts
spanning the acrocentric chrXI centromere decrease. Interoperability
with other packages in R is further illustrated in the following page of
the companion online book: https://bioconductor.org/books/devel/
OHCA/pages/interoperability.html.

Delivering new biological insights using Hi-C
To illustrate how HiCExperiment can be leveraged to raise new biolo-
gical hypotheses, we investigated a time-course Hi-C dataset of
chicken cells released from a G2 block into mitosis60. We used the
fourDNData gateway package to retrieve the data processed by the 4D
consortium, and HiContacts to annotate compartments. Hi-C maps of
chr3 (Fig. 4a) illustrate the progressive loss of compartment organi-
zation following G2 release, resulting in a rod-like polymer organiza-
tion as early as 10min after release when cells are in prophase and
followed by the emergence of a second broader diagonal

Fig. 3 | Comparison of distance-dependent interaction frequency across sam-
ples. a Hi-C contact matrix over chromosome X for four different yeast samples:
WT G1 merged duplicates, WT G2/M merged duplicates, wpl1 G2/M merged
duplicates andwpl1/eco1 single replicates (1 kbbins).bDistance-dependent contact
frequency (P(s)) for each of the seven individual replicates. c Overall stratum-
corrected correlation (SCC) scores between each of the seven individual replicates,
computed with HiCRep. The line represents the average SCC across yeast chro-
mosomes. The shaded ribbon represents the 90% confidence interval. d Distance-
dependent correlation scores betweenWTG2/M replicate 1 and the other datasets,
computedwithHiCRep. eContactmatrix over chromosomeX (2 kb bins). The color

code represents the interaction frequency fold-change betweenwpl1G2/M andWT
G2/M (in log2 scale), computed withmultiHiCcompare. f Volcano plot showing the
statistical significance (-log10 p-value) versus the magnitude of the interaction
frequency fold-change between wpl1 G2/M and WT G2/M within the chromosome
X. P-values and fold-change estimates are computedwithmultiHiCcompare using a
negative binomial exact test without correction for multiple testing. Intra-arm and
inter-arm (centrosome-spanning) interactions are shown in two separate facets.
Significant differential interaction (p-value ≤0.05, absolute fold-change≥ 2) are
highlighted.
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corresponding to helical coiling of chromosomes60. We generated
saddle plots for each time point with HiContacts and noted that
although AA and BB interactions are comparably lost at 10min of
release onwards, at 5min BB interactions seem to be specifically
depleted compared to AA ones (Fig. 4b). Correlation matrices over a
magnified section of chr4 at G2, and 5min and 30min after release
further confirmed that at this locus AA interactions are retained at
5min while BB interactions disappear (Fig. 4c). We quantified the
average contact frequency between pairs of genomic loci at these
three time points, revealing a similar trend genome-wide (Fig. 4D).
These results suggest that within minutes after G2 release, the B
compartment - corresponding to heterochromatin - is affected faster
than A compartment. This is consistent with the model whereby H3
S10 phosphorylation, occurring in late G2 first at chromocenters,

initially induces HP1 eviction from H3K9me361 and heterochromatin
dissolution62, and then spreads across entire chromosomes to allow
for mitotic condensation63.

Discussion
Over the past decade, dozens of Bioconductor-hosted packages have
led to widely adopted functional data classes for the generation,
parsing and analysis of emerging genomic technologies. These
developments allow advanced multi-omics analyses in R to an extent
unmatched in other programming languages. Yet, manipulating
chromosome conformation capture standard file formats in R
remains particularly cumbersome. Here, we present the imple-
mentation of a flexible HiCExperiment class built on the robust Bio-
conductor core infrastructure. The HiCExperiment class facilitates

Fig. 4 | Comparison of A/B interactions during mitotic entry. a Hi-C contact
matrix over chromosome 3 for four different chicken samples: cells blocked in G2,
or 5, 10, 15 and 30min after G2 release (100kb bins). b Saddle plots for the
respective Hi-C datasets shown in G. 250 kb-wide non-overlapping genomic win-
dows are grouped in 38 quantiles according to their A/B compartment eigenvector
value (E1), from lowest eigenvector values (i.e. strongest B compartments) to
highest eigenvector values (i.e. strongest A compartments). The average observed
vs. expected (O/E) interaction scores for pairwise eigenvector quantiles are com-
puted and plotted in a 2D heatmap. c Hi-C correlation matrices over a 16 Mb-wide
segment of chromosome 4, in three different samples: cells blocked inG2, or cells 5
and 30min after G2 release. The color scale indicates correlation of interaction
profiles between any pair of pixels (100kb bins). The A/B compartments identified

in cells blocked in G2 are displayed below each heatmap. Note the loss of positive
correlation preferentially between pairs of B compartments 5min after G2 release.
D Boxplot of O/E interaction scores between pairs of homologous (A-A or B-B) or
heterologous (A-B andB-A) compartments (250kbbins), in threedifferent samples:
cells blocked inG2, or cells 5 and30minafterG2 release.Only interactions between
loci > 5Mb apart are used. The number of interactions (in thousands) is indicated in
italics. The lower and upper hinges correspond to the first and third quartiles (the
25th and 75th percentiles), The lower and upper whiskers extend from the hinge to
the smallest/largest value no further than 1.5 * IQR from the hinge (IQR: inter-
quartile range, or distance between the first and third quartiles). Outliers are not
displayed here.
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chromosome conformation capture data integration (from Hi-C,
micro-C, …) into existing genomic analysis workflows in R, reducing
redundancy and improving interoperability. The companion HiCon-
tacts package provides the essential toolkit to compare, aggregate
and further investigate HiCExperiment objects. A detailed introduc-
tion and extensive examples of Hi-C data analysis workflows are
provided in the companion website https://bioconductor.org/books/
OHCA/.

This rich ecosystem has several advantages compared to existing
chromosome conformation capture libraries: (1) it is embedded in the
genomics-focus Bioconductor ecosystem, ensuring a rational geno-
mic representation of C data and evolvability (an extension of
HiCExperiment to support single-cell Hi-C data is currently in devel-
opment); (2) it extends pre-existing generic methods used by a large
community, facilitating the intuitive integration of the C data in
existing genomics workflows; (3) it supports quantitative and quali-
tative analysis of C data, represented as a numerical matrix or as a set
of genomic interactions; (4) the daily building/testing infrastructure
maintained by Bioconductor assures reproducibility of chromosome
conformation capture analyses. For developers, a Docker image with
preinstalled development versions of HiCExperiment-related packa-
ges is available here: https://github.com/users/js2264/packages/
container/package/ohca.

A tight integration of HiCExperiment within the Bioconductor
ecosystem unlocks future development opportunities for Hi-C data
analysis. First,HiCExperiment could adopt the “tidy” grammar recently
adapted to omics data investigation64, a project spearheaded by the
Bioconductor community. This would make Hi-C data wrangling more
intuitive and accessible to new investigators. Secondly, Bioconductor
supports a DelayedMatrix framework and a block processing
mechanism, which could be used to improve summarization of Hi-C
data over multiple loci. Finally, Bioconductor is currently making
efforts to deployHiCExperiment functionalitieswithin the AnVIL cloud
computing platform, a project powered by Terra to facilitate colla-
borative data investigation between biomedical researchers65. We
hope that this will accelerate the use of Hi-C in biomedical research,
e.g. to shed light on genomic rearrangement events often identified
through Hi-C66,67.

Methods
All analyses were performed using R 4.3.0 with Bioconductor 3.18.
Further details of howeach analysiswasperformed can be found in the
Code Availability section.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data presented in this manuscript have already been published.
YeastHi-Cdata come from57 and fastq fileswereobtained from the SRA
repository (SRA accession numbers: SRR8769554, SRR10687276,
SRR8769549, SRR10687281, SRR8769551, SRR10687278, SRR8769555)
or directly obtained through HiContactsData. Yeast ChIP-seq data
come from68 and processed data were obtained from GEO
(GSM6703614). Chicken Hi-C data come from60 and was directly
imported from the 4DN data portal with fourDNData (ExperimentSet
accession numbers: 4DNES9LEZXN7, 4DNESNWWIFZU,
4DNESGDXKM2I, 4DNESIR416OW, 4DNESS8PTK6F). micro-C data
generated from HFFc6 cells69 was also imported from the 4DN data
portal (ExperimentSet accession number: 4DNESWST3UBH).

Code availability
All the analysis steps are extensively described as dedicated workflows
in the companion website: https://bioconductor.org/books/OHCA/.

Additional examples are also available from the following doc-
umentation webpages: Importing Hi-C data (https://js2264.github.io/
HiCExperiment/reference/HiCExperiment.html#ref-examples), Arith-
metic with Hi-C data (https://js2264.github.io/HiContacts/reference/
arithmetics.html#examples) and Plotting Hi-C matrices (https://
js2264.github.io/HiContacts/reference/plotMatrix.html). HiCExperi-
ment is freely available on Bioconductor (https://bioconductor.org/
packages/HiCExperiment), and the source code is hosted on a GitHub
repository (https://github.com/js2264/HiCExperiment). HiContacts,
HiCool, fourDNData and DNAZooData packages are also freely pro-
vided as Bioconductor packages (https://bioconductor.org/packages)
and publicly hosted on GitHub. hicstuff is publicly available as a stan-
dalone python package from bioconda.
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