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An artificial intelligence-based model for
optimal conjunctive operation of surface
and groundwater resources

Saeid Akbarifard 1,2 , Mohamad Reza Madadi 3 &
Mohammad Zounemat-Kermani4

A hybrid simulation-optimization model is proposed for the optimal con-
junctive operation of surface and groundwater resources. This second-level
model is created by finding and combining the best aspects of two resilient
metaheuristics, the moth swarm algorithm and the symbiotic organization
search algorithm, and then connecting the resulting algorithm to an artificial
neural network simulator. For assessment of the developed model efficiency,
its results are compared with two first-level simulation-optimization models.
The comparisons reveal that the operation policies obtained by the developed
second-level model can reliably supplymore than 99% of the total demands in
the study regions, indicating its superior efficiency compared to the two other
first-level models. In addition, the highest sustainability index in the study
regions belongs to the proposedmodel. Comparing the results of this research
with those of other recent studies confirm the supremacy of the developed
second-level model over several previously developed models.

Water resource management in arid and semiarid regions is a critical
challenge for managers and decision-makers. Iran is one of these arid
regions, has experienced a drastic increase in water scarcity in the last
decades due to its climatic condition. This problem has also been
exacerbated by the population growth and expansion of agricultural,
urban, and industrial activities. In such a situation, excessive exploi-
tation of groundwater resources has caused a sharp drop in the
groundwater level in most parts of the country. Therefore, the pre-
servation of groundwater resources has become critical in Iran. Con-
junctive operation of surface and groundwater resources can be
considered a sustainable solution for reducing the high pressure on
groundwater resources and preserving such valuable resources1. It is a
suitable alternative for imbalanced water resource distribution and
related constraints in groundwater exploitation2. Conjunctive opera-
tion has several benefits such as preventing additional investment in
surface water resources (e.g., constructing dams or designing water
transmission systems with an over-optimal capacity) as well as

avoiding excessive pressure on groundwater resources. Despite its
several advantages, the appropriate implementation of the con-
junctive operation of water resources is a complex engineering pro-
blem. Solving such complex problems (finding the best operation
scenarios) by classical methods is very difficult (and often impossible)
due to their several limitations. These limitations have turned the
attention of researchers towardsmore efficient methods to solve such
complex problems. During the last decade, developing soft computing
techniques that often search based on the initial population has made
it possible to find globally near-optimal solutions to very complex
problems. Here, the results of someof the latest reputed studies on the
application of such robust techniques for the conjunctive operation of
surface and groundwater resources are presented.

Ghordoyee Milan et al.3 used two fuzzy optimization methods,
including a fuzzy inference system and a linear fuzzy optimization
model, for the conjunctive operation of surface and groundwater
resources in the Astaneh-Kouchesfahan Plain. The results
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demonstrated that the linear fuzzy optimization model with an aver-
age deficit of 14.6% was the superior model compared to the fuzzy
inference system (22%). Seo et al.4 used a fully distributed hydrologic
model for conjunctivemanagement of groundwater and surfacewater
resources during a drought. The satisfactory results of this model
showed that the proposedmanagement model took a step toward the
sustainable exploitation of groundwater resources during drought
periods. Sepahvand et al.5 used a simulation-optimization model for
conjunctivemanagement of surface and groundwater resources of the
Gavkhuni basin to increase the overall net benefit of agriculture and
reduce irrigation water shortages. They simulated the interactions of
surface and groundwater resources by a genetic programming model.
Then, this simulation model was integrated with a multi-objective
genetic algorithmas the optimizationmodel. Thefindings showed that
inwet, normal, anddry years, the net benefitwasmaximizedby 38.19%,
59.37%, and 45%, respectively, compared to the non-optimized con-
dition. Zeinali et al.6 investigated the performance of non-dominated
sorting genetic algorithm-II in optimal conjunctive operation of sur-
face and groundwater resources in southwestern Iran. The results
indicated that this optimization algorithm increased the reliability of
the demands supply and reduced the over-exploitation of ground-
water resources. Afshar et al.7 adopted cyclic and non-cyclic approa-
ches to the conjunctive operation of groundwater and surface water
resources. The results revealed that the groundwater sustainability
index in the cyclic conjunctive operation strategy was improved by
more than 27% compared to the non-cyclic conjunctive operation
strategy. Mirzaie et al.8 studied the capability of the fuzzy multi-
objective particle swarm optimization model in the conjunctive
operation of groundwater and purified wastewater under uncertain
conditions. In this study, three objective functions, namelymaximizing
economic profit, minimizing fertilizer consumption, and minimizing
the withdrawal of groundwater resources, were evaluated in the Var-
amin irrigation network in Iran. The results indicated that the devel-
oped model raised the net benefit by 16% without increasing the
cultivated area. Moreover, groundwater exploitation decreased by
allocating a greater amount of recycled wastewater in total water
consumption. By combining the system dynamics technique and the
Nash bargaining theory, Naghdi et al.9 optimized the conjunctive
allocation of surface and groundwater resources in industrial, drink-
ing, agricultural, and environmental sectors in the Najaf-Abad sub-
basin. In this study, the groundwater extractionwaskept to aminimum
and the water supply wasmaximized using the non-dominated sorting
genetic algorithm-II optimization algorithm. Based on the results, the
water level of the aquifer optimally decreased during the study period.
Arya Azar et al.10 integrated the whale optimization algorithm and the
firefly algorithm with the group method of data handling and least
squares support vector machine to optimally allocate surface and
groundwater resources in Marvdasht, south of Iran. The results indi-
cated that the groundwater level increased by about 0.4 and 0.55m
using the whale optimization algorithm and firefly algorithm, respec-
tively. Moreover, the firefly algorithm supplied about 61% of the water
demands in the worst scenario for surface water resources, while this
value was 52% using the whale optimization algorithm. Askari Fard
et al.11 developed an automated operating system, called centralized
model predictive control, for the conjunctive operation of surface and
groundwater resources in central Iran. They reported that by imple-
menting the centralizedmodel predictive control, thewater extraction
from the aquifer decreased by 16% after one year. Sondermann and
Oliveira12 used the WEI+ index to manage surface and groundwater
resources in the Tagus River basin. They mentioned the advantages of
this index for defining water scarcity levels compared to other indices.
Calculating the WEI+ index in this basin indicated severe water stress
conditions in most districts during the summer. Khosravi et al.13 used
conditional operation rules basedondecision trees for the conjunctive
use of groundwater and surface water resources. The objective

function was defined as minimizing the water deficit in various river
flow time series. The results revealed that the conditional operation
rules reduced relative absolute error by 39% (minimum) and 71%
(maximum) compared to a single linear regression. Khosravi et al.14

compared the cyclic storage system and the standard conjunctive use
method for the conjunctive operation of surface and groundwater
resources. They employed a multi-objective mixed-integer nonlinear
optimizationmodel using the ε-constraintmethod for water allocation
to irrigated agriculture and the energy required for groundwater
pumping. Based on the findings, the cyclic storage operation strategy
significantly improved the sustainability index compared to the stan-
dard conjunctive use strategy. Osorio Olivos et al.15 proposed a fra-
mework for water allocation with RUBEM, MODFLOW, and PYWR
hydrologic models. They used this framework in a basin of Sao Paulo
and reported good adherence with the water balance patterns and the
differences in demand attendance. Moghadam et al.16 investigated the
effects of climate change on the conjunctive operation of surface and
groundwater resources with a real case study. They utilized the results
of IHACRES (for surface water simulation) and MODFLOW (for
groundwater simulation) to develop a conjunctive operation model
with theWEAPmodel. They evaluated several climate change scenarios
with different levels of future water demands with WEAP and suc-
cessfully analyzed the annual deficits in future agricultural water sup-
ply. Moeini and Sarhadi17 proposed a cyclic storage approach for the
optimal conjunctive operation of surface and groundwater systems at
the ZarrinehRoud basin. To solve this problem, they evaluated the
performance of several mathematical and metaheuristics models
including nonlinear programming, gravitational search algorithm,
artificial bee colony algorithm, particle swarm optimization algorithm,
and genetic algorithm in a real surface-groundwater system. They
reported that the water demands were fully satisfied using the pro-
posed methods. Although the nonlinear programming method
decreased the operating cost, it extremely increased the computa-
tional time. Kayhomayoon et al.18 proposed an approach for the con-
junctive use of surface and groundwater resources. They used the
MODFLOW and whale optimization algorithm to simulate the
groundwater level and optimize the conjunctive use of water systems,
respectively. Then they exported the results of these models to the
least squares support vectormachinemodel to predict the amounts of
water deficits in the study period. They claimed that the developed
model could accurately predict the water deficits as well, and the
groundwater level could be increasedby0.7mduring the study period
by employing the developed model. Shafa et al.19 developed a multi-
objective simulation-optimization platform for the optimal exploita-
tion of surface and groundwater resources. Accordingly, they used
HEC-HMS for flood routing and artificial recharge and the non-
dominated sorting genetic algorithm for the optimization of cropping
pattern and irrigation demand for an artificial recharge system. They
documented that the developed model could decrease water con-
sumption by 50%. Jain et al.20 applied a multi-objective model for the
optimal allocation of surface and groundwater resources with three
objectives of maximizing the crop net return and the aquifer recharge
and minimizing the water deficit in a real case study in India. Three
optimization algorithms of particle swarm algorithm, genetic algo-
rithm, and marine predators’ algorithm, were used in the model. They
introduced the marine predators’ algorithm as the superior algorithm
in achieving the best Pareto front, and it significantly increased the
crop net return. Kalhori et al.21 employed a multi-objective invasive
weed optimization algorithm for optimal water allocation to drinking,
industry, and agricultural demands under different climate change
scenarios. They reported that the mentioned model could effectively
reduce failure periods and allocate water resources to different con-
sumption sectors.

This researchaims todevelop an efficient simulation-optimization
model based on the hybridizing of three robust artificial intelligence

Article https://doi.org/10.1038/s41467-024-44758-6

Nature Communications |          (2024) 15:553 2



methods for the optimal allocation of surface and groundwater
resources in the Halilrood basin. Accordingly, first, a sensitivity ana-
lysis is performed on the robust moth swarm algorithm structure to
identify its most efficient operators. Then, these operators are expor-
ted to the search process of the symbiotic organism search algorithm
(to strengthen this algorithm) to form a hybrid optimizer. Finally, the
artificial neural network as a simulator is linked with the developed
optimizer to obtain a second-level simulation-optimization model,
SOS-MSA-ANN, which can minimize the water deficit in different sec-
tors of the Halilrood basin, subject to constraints on groundwater
drawdown. The main novelties of this research are: (1) structural sen-
sitivity analysis of moth swarm algorithm and identifying the main
operators of this algorithm (celestial navigation, transverse orienta-
tion, and Lévy-mutation), (2) developing the robust hybrid symbiotic
organism search- moth swarm algorithm by employing the powerful
operators of the latter into the search engine of the former, (3)
developing the second-level hybrid simulation-optimization model,
SOS-MSA-ANN, for the conjunctive operation of surface and ground-
water resources, (4) implementing the developed simulation-
optimization model in a real case study lacking sustainable water
resource management protocols.

Results
Groundwater level estimation by ANN simulation model
The RBF-ANNmodel was adopted to estimate the groundwater level in
the studied areas. Table 1 represents the results of the superior neural
network model in estimating the groundwater level. Evidently, the
values of the determination coefficient (R2) in all regions aremore than
0.99while the values of error indices are very small, e.g., less than0.05
forMAPE, indicating the significant performanceof the selected neural
network model in groundwater level estimation. The high perfor-
mance of neural network in estimating the groundwater level in all the
studied areas (Baft, Rabor, and Jiroft) indicates that it is a reliable
simulation model for linking with the optimization models. Supple-
mentary Fig. 1 illustrates the distribution diagrams of observed (mea-
sured data) and simulated values of groundwater level in three regions
of Baft, Rabor, and Jiroft. In this figure, the values of the horizontal and
vertical axes denote the elevation of groundwater level in the studied
area (MASL). Almost all the points are concentrated on the 45-degree
line. This implies that there is a great agreementbetween the simulated
values and the observed data. This figure indicates that the neural
networkmodel has high efficiency in estimating the groundwater level
in all three regions of Baft, Rabor, and Jiroft.

Due to the significant performance of the artificial neural network
model, as proved byTable 1 and Supplementary Fig. 1, it was employed
in the simulation-optimization model as a powerful simulator for the

conjunctive operation of surface and groundwater resources in the
Halilrood basin.

Evaluation of the simulation-optimization model outputs
In this study, the objective function was minimizing the total deficit in
the study period. Here, the results of the SOS-MSA-ANN model in
comparison with two other developed models of SOS-ANN and MSA-
ANN, were presented for the conjunctive operation of surface and
groundwater resources in the Halilrood basin. Tables 2 and 3 demon-
strate the best values of the objective function and the performance
indicators of water systems in Baft, Rabor, and Jiroft, obtained by the
developed models after 1000 iterations. As presented in Table 2, the
objective function value of thedevelopedhybridSOS-MSA-ANNmodel
in the problemwas equal to 399.28, indicating the higher capability of
this model compared to the neural network moth swarm algorithm
(objective function=544.68) and neural network symbiotic organism
search algorithm (objective function=769.27). The SOS-MSA-ANN
supplied 99.49%, 99.50%, and 99.73% of the demands in Baft, Rabor,
and Jiroft, respectively. The neural networkmoth swarmalgorithm and
neural network symbiotic organism search algorithmmodels with the
demand supply of (96.54%, 96.49%, and 99.39%) and (96.57%, 98.23%,
and 98.89%) occupied the next ranks. The better performance of the
SOS-MSA-ANN indicates that it could better manage (reduce) the total
deficits in the study period compared to the other two models.

Table 3 shows the values of evaluation criteria (reliability, resi-
lience, vulnerability, and sustainability indices) of the developed
models in the conjunctive operation of surface and groundwater

Table 1 | Statistical indices of the best ANN model

Regions Inputs R2 RMSE MAE MSE NMSE MAPE

Baft EvðtÞ,PrðtÞ,HyðtÞ,DeðtÞ,GðtÞ,Lev Gðt�1Þ 0.9989 0.1256 0.064 0.0158 0.0011 0.0032

Rabor 0.9994 0.088 0.0556 0.0077 0.0006 0.0028

Jiroft 0.9978 0.2058 0.1159 0.0424 0.0022 0.0187

Table 3 | Values of evaluation criteria of the developed
models

Regions Model Reliability Resiliency Vulnerability Sustainability

Baft SOS-
MSA-ANN

96.41 87.5 15.59 89.30

MSA-ANN 89.24 74 55.08 66.69

SOS-ANN 91.03 77.27 72.84 57.59

Rabor SOS-
MSA-ANN

96.86 70.37 20.35 81.58

MSA-ANN 91.03 60 35.62 70.58

SOS-ANN 95.96 78.72 33.55 79.48

Jiroft SOS-
MSA-ANN

98.21 100 6.9 97.06

MSA-ANN 95.07 100 27.28 88.42

SOS-ANN 91.93 78.95 41.56 75.13

Bold values indicate better performance of the corresponding model.

Table 2 | Objective function values and total demand deficit obtained by the developed models

Method Objective function Baft Rabor Jiroft

Water supply (%) Deficit (MCM) Water supply (%) Deficit (MCM) Water supply (%) Deficit (MCM)

SOS-MSA-ANN 399.28 99.49 1.21 99.50 2.82 99.73 3.17

MSA-ANN 544.68 96.54 8.17 96.49 19.92 99.39 7.24

SOS-ANN 769.27 96.57 8.10 98.23 10.04 98.89 13.12

Bold values indicate better performance of the corresponding model.
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resources in Baft, Rabor, and Jiroft. The sustainability index obtained
by the SOS-neural network moth swarm algorithm model to supply
total demands in Baft, Rabor, and Jiroft (89.30, 81.57, and 97.06) was
significantly greater than the corresponding values of neural network
moth swarm algorithm (66.69, 70.58, and 88.42) and neural network
symbiotic organism search algorithm (57.59, 79.48, and 75.13). There is
a similar trend for the other indicators. In otherwords, the comparison
of all 4 indicators showed that the SOS-MSA-ANN was the superior
model in the optimization of the conjunctive operation of surface and
groundwater resources.

Supplementary Fig. 2 indicates the convergence rate of the
second-level SOS-MSA-ANN model in comparison with the first-level
MSA-ANN and the SOS-ANNmodels. The SOS-MSA-ANN produced the
closest solutions to the optimal solution in the least number of itera-
tions. It is seen that for an equal number of iterations in all
three models (1000 iterations), the values of the solutions generated
by SOS-MSA-ANN were far less than the neural network moth swarm
algorithm and neural network symbiotic organism search algorithm,
respectively.

Figure 1 indicates the monthly average allocation of surface and
groundwater resources to the demands in Baft, Rabor, and Jiroft by the
developedmodels in the study period (2001–2019). By comparing the
results of water allocation, it is clear that the SOS-MSA-ANN supplied

nearly 100% of the total demands in all months, without any significant
deficit in a certain month or region. However, the other models were
not successful in some months. For example, in the Baft region, the
MSA-ANN and SOS-ANN could not supply the demands satisfactorily
from October to December, July, and September. This revealed the
high efficiency of the SOS-MSA-ANNmodel in the optimal operation of
this complex water system.

Figure 2 shows the simulated groundwater level by the developed
models resulting from the conjunctive operation scenarios versus the
observed values in the same period in Baft, Rabor, and Jiroft. The black
line with triangular markers (SOS-MSA-ANN) is the highest curve, and
the blue line with circular markers (real-condition operation) is the
lowest curve of this figure. It means that, the SOS-MSA-ANN followed
by MSA-ANN and SOS-ANN kept the groundwater level at a higher
elevation compared to the real condition. In other words, the
groundwater level drop in the non-optimal condition was about 2m
more than the optimal condition in all the studied regions, showing
that a large volume of groundwater was preserved by the optimal
management scenarios. Therefore, it can be concluded that all the
developed models could optimize the conjunctive operation of sur-
face and groundwater resources in the Halilrood basin and could
supply the demands with high reliability. In addition, the resulting
scenarios were effective in the partial balance of groundwater, so they
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Fig. 1 | Monthly average allocation of surface and groundwater resources to
demands in Baft, Rabor, and Jiroft by the developed models (study period:
2001–2019). First, second and third rows relate to the results of the models in the
Baft, Rabor, and Jiroft regions, respectively. SOS-MSA-ANN is the second-level
simulation-optimization model produced by the hybridization of two metaheur-
istics of symbiotic organism search algorithm and moth swarm algorithm with the
artificial neural network. MSA-ANN and SOS-ANN denote the first-level hybrid

artificial neural networks with moth swarm and symbiotic organism search algo-
rithms, respectively. The histograms show the contribution of surface and
groundwater resources in meeting the demands (black points) of each region. In
somemonths, the total water supplied from the “surface water” and “groundwater”
sources is almost equal to the total water “demands”. This means that the utilized
optimization model has been able to supply almost all the water demands of that
region in that month. Source data are provided as Source Data file.
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balanced the groundwater level andmaintained its sustainability in the
study areas during the 19-year period.

Supplementary Fig. 3 indicates the monthly deficits in the Halil-
rood basin resulting from the conjunctive operation of surface and
groundwater resources by the developed models. In this figure, the
blue bars show the values of the deficits in real-condition operation.

During all operational months, the values of deficits obtained by SOS-
MSA-ANN were much less than those of the two other models, indi-
cating the high performance of this model in supplying the demands
and optimal conjunctive operation of surface and groundwater
resources. It reduced the deficits by 1.21, 2.82, and 3.17Mm3 in Baft,
Rabor, and Jiroft, respectively, during the 19-year operational period.
The corresponding values for the neural network moth swarm algo-
rithm were 8.17, 19.92, and 7.24Mm3 which placed it at the next rank
beside the neural network symbiotic organism search algorithm.

Discussion
This study attempted to develop a hybrid simulation-optimization
model to supply thewaterdemands in theHalilroodbasin in Iran.Here,
the results of this study are compared with those of some similar
studies on the conjunctive use of water resources. As seen in Table 4,
three criteria of (i) the percentage of total demands supplied by the
utilized model, (ii) the sustainability index of the studied water
resources system optimized by the models, and (iii) the capability of
utilized models in raising the groundwater level compared to the
actual condition, were employed to compare the performance of uti-
lized models. In terms of water supply, the MSA-ANN, SOS-ANN, and
SOS-MSA-ANN models (the developed models of the present study)
could successfully supply 97.5%, 97.9%, and 99.6% of the total
demands in the studied basin. Zeinali et al.6 developed a hybrid model
by linking the MODFLOW, WEAP, and NSGA-II which could supply
97.85% of the demands. The performance of their model was com-
parable with the performance of two first-level models of the present
study (MSA-ANN and SOS-ANN), but its performance is far from the
performance of the second-level model of SOS-MSA-ANN. Further-
more, two hybrid metaheuristics models of FA-GMDH-LS-SVM and
WOA-GMDH-LS-SVM proposed by Arya Azar et al.10 with water supply
of 87.1% and 84.4%, could not provide significant results inmeeting the
demands of the studied area. Therefore, among the six implemented
methods for the conjunctive use of water resources systems, the SOS-
MSA-ANN was the superior model in terms of water supply. It should
be noted that each of these models was developed for a specific area
and this issue should be considered in the comparisons. In termsof the
sustainability index, the best results were also obtained by SOS-MSA-
ANN (89.3%), followed by the CS model (86%) developed by Khosravi
et al.14. The next rank was devoted to the MSA-ANN model with SI =
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Fig. 2 | Monthly average groundwater level in the three regions simulated by
the developed hybrid models versus the actual condition in the study period
(2001−2019). The top figure shows the variations of observed (measured)
groundwater level compared to the simulated by the developedmodels (SOS-MSA-
ANN, MSA-ANN, and SOS-ANN) in the Baft region. The middle and below figures
show the same items for the Rabor and Jiroft regions, respectively. Vertical axis
demonstrates the groundwater level by the meter above sea level as the datum.
Source data are provided as Source Data file.

Table 4 | Comparison of different hybrid models in con-
junctive operation of water resources

Criteria Reference Model Result

Water supply (%) Zeinali et al.6 NSGA-II-WEAP-MODFLOW 97.85%

Arya Azar
et al.10

FA-GMDH-LS-SVM 87.1%

WOA-GMDH-LS-SVM 84.4%

Current study MSA-ANN 97.5%

SOS-ANN 97.9%

SOS-MSA-ANN 99.6%

Sustainability
index (%)

Khosravi et al.14 CS Model 86%

SCU Model 70%

Current study SOS-ANN 70.73%

MSA-ANN 75.23%

SOS-MSA-ANN 89.3%

Groundwater level
rising (%)

Naghdi et al.9 NSGA-II and Nash bar-
gaining theory cou-
pled model

30%

Current study SOS-ANN 56.33%

MSA-ANN 62.21%

SOS-MSA-ANN 64.68%

Bold values indicate the best model in terms of each criteria.
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75.23%. The performance of the SOS-ANN model was somewhat
similar to that of the SCU model, both of which were about 70%.

By optimizing the conjunctive operation of water resources sys-
tems to sustain the groundwater resources, it is anticipated that the
groundwater level will increase during the study period compared to
the non-optimal condition. Accordingly, Naghdi et al.9 claimed that by
combining the NSGA-II and Nash bargaining theory coupled model,
they could increase the groundwater level by about 30% (compared to
the actual condition), while the increase of groundwater level by the
SOS-ANN and MSA-ANN models was 56.33% and 62.21%, respectively,
indicating the superiority of the developed models of the present
study. The highest increase in groundwater level was obtained by the
SOS-MSA-ANN model, 89.3%, which indicates its impressive capability
of sustainable exploitation of groundwater resources.

For a better understanding, the results of the three models
developed in this study in meeting the demands of the whole basin
were compared with each other in Fig. 3. In this figure, the water
withdrawal from the groundwater resources is indicated by blue dot-
ted bars and the withdrawal from the surface water (reservoirs) is
demonstrated by purple horizontal stripes bars. The values of with-
drawals are expressed as a percentage of the total surface and
groundwater usage by a yearly scale. For example, in 2016, the SOS-
MSA-ANNmodel supplied99%of the total demands in thewhole basin,
of which 77% was supplied by the surface water, and 22% was supplied
by the groundwater (the values on the bars are rounded to the nearest
integer number). The surface water (the stored water in the dam
reservoirs) is themain source of water supply in thewhole basin.While
the SOS-ANN and MSA-ANN could not meet all the demands in most
years, the SOS-MSA-ANN met nearly 100% of the demands in most
years of the study period. In addition, the next important point that
can be found from this figure is that in the management scenario
produced by SOS-MSA-ANN, compared to the other two models, less
water withdrawal from the groundwater source (aquifer) was per-
formed. Thismeans that in themanagement scenarioproduced by this
model, while a higher percentageof the basin’s demands hasbeenmet,
the groundwater level has also become more stable; in other words,
the sustainable exploitation of groundwater resources has taken place.

Methods
Study area
TheHamun-Jazmurian basin with an area of 69375 km2 in southeastern
Iran is a part of the central desert basin of Iran and is geographically
located at 56° 15’−61° 23’ E longitude and 26° 28’−29° 30’ N latitude.
The Halilrood basin is located in the western part of the Hamun-
Jazmurian basin within the Kerman Province (Fig. 4) and covers an area
of about 7224 km2.

Halilrood is the greatest river in terms of discharge (with an
average annual discharge of 7.68m3/sec) in Kerman Province and one
of the main water sources for the Jazmurian wetland22. The Halilrood
flow is used for energy generation (by the Jiroft hydropower dam), as
well as, agricultural, domestic, industrial, and environmental uses. The
basin elevation varies from 1391m to 4359 meter above sea level
(MASL). In this basin, rainfed agriculture is limited and irrigated agri-
culture is mainly established in the vicinity of rivers, qanats, and
springs. According to the Köppen–Geiger climate classification sys-
tem, the Halilrood basin has an arid desert climate with hot summers.
While the average annual temperature is 13 °C, the daily average
maximum temperature approaches 40 °C. The long-term average
annual rainfall is less than 225mm, most of which is received between
January and May, while precipitation is negligible from June to
December. The annual potential evapotranspiration (PET) ranges from
2039mm to 2569mm. Five hydrometric stations, 9 climate stations,
and one synoptic station are in operation, providing daily climate data
since 1979 and discharge data since 1993. In the northern part of the
basin, the Baft and Safarood dams were constructed for agricultural,

drinking and industrial purposes. At the basin outlet, Jiroft Dam was
built for domestic, industrial, and agricultural uses, power generation
and flood control purposes. In recent decades, besides surface water,
the extraction of groundwater has been widely performed to combat
severe droughts. Accordingly, the water needed for domestic, indus-
trial, and agricultural purposes is supplied by a combination of surface
and groundwater resources (wells, qanats, dams, and springs).

Utilized data
In this study, 223-month time-series data, from 2001 to 2019, were
used for the conjunctive operation of surface and groundwater
resources in theHalilrood basin tominimize the deficits inmeeting the
demands. The utilized data include precipitation, evaporation, river
flow, groundwater level, and total demands in the Baft, Rabor, and
Jiroft regions (Supplementary Table 1).

Artificial neural network (ANN) simulation model
As mentioned in the previous sections, the multi-layer perceptron
(MLP) artificial neural network model was used to simulate the
groundwater level in the studied regions. For this purpose, the mea-
sured monthly data of precipitation (Pr) in the current time step,
evaporation (Ev) in the current time step, river flow (Hy) in the current
time step, water demand in each region (De) in the current time step,
aquifer exploitation (G) in the current time step, piezometric
groundwater level in each region in the previous time step (as the
initial conditions) and piezometric groundwater level in the adjacent
regions in the previous time step (as the boundary conditions) were
used as the neural networkmodel inputs, and the groundwater level in
the current time step was considered as the model output. Therefore,
there are a total of seven inputs and one output for the neural network
model in each region. Different combinations of input parameters and
different structures were designed and tested to find the appropriate
structure for the neural networkmodel, and finally, the bestmodelwas
selected to estimate the monthly groundwater level. Accordingly, the
best neural network model had three hidden layers with a structure of
(10-15-10) and one output layer. The radial basis function (RBF) was
determined as the middle layers transfer function. The Purelin was
specified as the output layers transfer function. In the training process,
the initial weights were randomly assigned, each network was trained
with several iterations to prevent the network from being trapped in
local minima, and the best result was considered as the criterion of
action. The mean square error (MSE) was used as the performance
function and the Levenberg-Marquardt algorithmwas employed as the
training function. The results of simulations were compared with the
observed data of groundwater level to evaluate the reliability of the
developed ANN model. All the programs, as provided in Supplemen-
tary Code 1, were coded in MATLAB (R2018b).

Symbiotic organisms search (SOS) algorithm
Symbiotic organisms search (SOS) is a meta-heuristic optimization
algorithm, that simulates the interactive behaviors of organisms23.
Organisms rarely live in isolation due to relying onother species to live
and even survive. This trust-based relationship is known as symbiosis.
The SOS algorithm simulates interactions in the relationship between
two species, in a way that one species searches to find the most sui-
table organism. Like other population-based algorithms, the SOS
algorithm repeatedly generates a population of candidates to find
regions as optimal solutions in the whole solution space. This popu-
lation is equivalent to the optimal release scenarios in each period, in
the problem of optimal operation of the reservoirs. The SOS algorithm
starts with an initial population called the ecosystem. In the initial
ecosystem, a group of organisms (decision variables) is randomly
generated in the search space. Each organism as a candidate for the
problem solution, which is related to a certain degree of fitness, indi-
cates the degree of adaptation to the desired target (value of the
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Fig. 3 | Optimized yearly withdrawal from each water resources (in percent) by
the utilized models versus the total demands. The histograms show the opti-
mized annual withdrawal from the surface and groundwater resources in the whole
Halilroodbasin (including all the regions) in the study period (2001–2019). The top,
middle, and bottom figures are the optimized withdrawal simulated by the SOS-
MSA-ANN, MSA-ANN, and SOS-ANN, respectively. The value inside the box

denotes the withdrawal from each resource by percent. The horizontal green
dashline shows the total demands in the whole basin. In some years, the developed
models could meet the total (100%) downstream demands of the whole basin by
optimizing water withdrawal from the surface and groundwater resources. Source
data are provided as Source Data file.
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objective function). Almost all meta-heuristic algorithms use a sub-
stitution process at each iteration to solve the problem and generate a
new solution for the next iteration. In SOS, the generation of a new
solution is governed by mimicking the biological interaction between
two organisms in the ecosystem. Three phases of mutualism, com-
mensalism, and parasitism, which are like the biological interaction
model in the real world, are considered. The identity of each interac-
tion is defined based on the type of interaction. In this way, the two-
way profit shows themutualism phase, the one-sided profit represents
the commensalism phase, and the profit of one side and the loss of the
other side indicate the parasitic phase. In all phases, each organism
randomly interacts with another organism. This process continues
until the process termination criterion (reaching the maximum num-
ber of iterations) is met. The general process of the algorithm is as
follows23:

Initialization → Iteration → Mutualism phase → Commensalism
phase → Parasitism phase → Process termination after reaching the
maximum number of iterations.

Moth swarm algorithm (MSA)
The moth swarm algorithm (MSA) was inspired by the behavior of
moths in nature24. During the day, moths strive to avoid predators,
while at night, they use celestial navigation to find food sources. They
fly in a straight line over long distances and act as a compass at a
constant angle towards a light source like the moonlight24. To prevent
premature convergence, i.e., being trapped in local solutions, and
achieving the global optimum, the moth swarm algorithm includes
three groups of moths, namely pathfinders, prospectors, and onloo-
kers. The associative learning mechanisms with instantaneous mem-
ory, and the population division for Lévy-mutation were employed in
the MSA to enhance its exploitation and exploration capabilities.
Gaussian walks and adaptive spiral motion are other mechanisms of
the MSA that increase the convergence rate, flexibility against local
optimumproblems, and the capability to face large-scale and complex
problems25.

As mentioned earlier, by performing a structural sensitivity ana-
lysis on the robustMSA algorithm, themost effective operators of this
algorithmwere identified and thenused to improve the SOSalgorithm,
for generating the hybrid SOS-MSA algorithm. In the following section,
the procedure for generating the hybrid SOS-MSA algorithm is
explained in more detail.

Structural sensitivity analysis of MSA
By performing a sensitivity analysis on the structure of the MSA and
the way its operators work, it is possible to identify the strong and
effective operators of the MSA algorithm and use them to strengthen
and upgrade other algorithms and generate new hybrid algorithms.
For this purpose, a brief explanation about each of these operators is
first presented, and then by changing or removing each of these
operators one by one, the strongest ones which are responsible for the
high capability of the MSA algorithm are identified and then added to
the SOS algorithm to generate the hybrid SOS-MSA.

Lévy-mutation mechanism
Pathfinder moths are required to explore less crowded areas to avoid
premature convergence (being trapped in local optima),. Pathfinders
update their position by interacting with each other (crossover), flying
over long distances (Lévy-mutation), and performing adaptive dis-
placement using Lévy-mutation mechanism. Lévy-mutation is a ran-
dom process based on α-stable distribution with the ability to move
over long distances. The α-stable distribution is strongly associated
with the probability density function, statistical fractal theory, and
inhomogeneous diffusion.

Transverse orientation mechanism
Prospectormoths, whichhave the highest luminescence intensity after
pathfinder moths, travel the spiral path by conical logarithmic spirals.
In the transverse orientation phase, each prospector moth updates its
position based on the spiral flight path (logarithmic flight). In moth
swarm algorithm, the type of eachmoth changes dynamically, e.g., the
number of prospector moths decreases, and the number of onlooker
moths increases at different iterations.Moreover, if the prospector has
a higher luminescence intensity than the pathfinder, it can become a
pathfinder.

Celestial navigation mechanism
Onlooker moths that have the lowest luminescence intensity move
directly toward the best solution (moonlight). Onlookers focus on
important points in the search space to search more effectively. In
moth swarm algorithm, onlooker moths are divided into two
categories:

(I) Gaussian walks: The first group of onlookers uses the Gaussian
random distribution to move toward the moonlight due to the ability

Fig. 4 | TheHalilroodbasin in Iran; themain river tributaries and the locationof
dams and climatic/hydrometric stations are shown in the zoomed view. The
left map demonstrates the location of large Hamun-Jazmurian basin (green area) in

Iran and the location of Halilrood Basin (brown area) inside it. The rightmap shows
the zoomed view of theHalilroodBasinwith the river tributaries and the locationof
dam reservoirs in the study area.
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of this distribution to limit randomsampledistribution. Gaussianwalks
limit variation in subsequent population positions.

(II) Associative learning mechanism with immediate memory:
Immediate memory is a type of memory used for transferring infor-
mation from one generation to the next generation in algorithms.
Moth behaviors are strongly influenced by associative learning with
immediate memory. The second group of onlooker moths are drawn
to the moonlight using associative learning with immediate memory.
Immediate memory is initialized with Gaussian continuous uniform
distribution from xt

i � xmin
i to xmax

i � xti .
In this study, different structures were obtained by modifying or

removing the main operators of the MSA. The investigated structures
are explained In the following.

Structure 1: The MSA was examined without any changes in the
structure.

Structure 2: The Cauchy distribution (instead of the Lévy dis-
tribution) was used in the Lévy-mutation phase of the original MSA.
The Cauchy distribution, q∼ cauchyðσ,μÞ, was defined as follows:

f ðqÞ= 1

πðσ2 + ðq� μÞ2Þ
! �1<q<1 ð1Þ

Structure 3: The normal or Gaussian distribution (instead of the
Lévy distribution) was used in the Lévy-mutation operator of the ori-
ginal MSA. The normal or Gaussian distribution q∼Nðμ, σ2

GÞ with
density function is presented as Eq. (2):

f ðqÞ= 1ffiffiffiffiffiffi
2π

p
σG

exp �ðq� μÞ2
2σ2

G

 !
! �1<q<1 ð2Þ

Structure 4: The Lévy-mutation process or mechanism, which
controlled themovement of pathfindermoths in the search space, was
removed from the original MSA algorithm.

Structure 5: The transverse orientation process, which uses the
logarithmic spiral mechanism to move prospector propellers, was
removed from the original MSA algorithm.

Structure 6: The Gaussian walksmechanism, which controlled the
movement of onlooker moths, in the celestial navigation phase was
removed from the original MSA algorithm.

Structure 7: The associative learning mechanism with the
immediate memory was removed from the celestial navigation phase
in the original MSA algorithm.

Structure 8: The Gaussian walks mechanism and the associative
learning mechanism with the immediate memory, i.e., the celestial
navigation phase, were simultaneously removed from the originalMSA
algorithm.

A benchmark problem was needed to investigate the effect of
these 8 structures on the performance of the MSA algorithm and to
identify its strongest and most effective operators. Accordingly, the
four-reservoir benchmark problem, as the closest test problem to the
problem of conjunctive operation of surface and groundwater
resources, was used26. This multi-reservoir system consists of both
series and parallel reservoirs in which the operation policy of the
upstream reservoirs affects the downstream reservoirs. This bench-
mark has 46 decision variables, and the objective function is to max-
imize the profit of the system in 12 operating periods26. In thisfigure,Qi

and Ri represent the inflow and release from reservoir i, respectively.
The global optimal value in this problem is equal to 308.83, and

the proximity of the objective function to this value is considered the
reason for the superiority of anoptimizationmodel. Table 5 represents
the results of eight MSA structures at 10 runs. In the overall ranking,
Structure 8 (removing the celestial navigation phase) had the worst
rank among the investigated structures. It means that the worst value
of the objective function (268.151) was obtained by this structure. This
indicates the dramatic (negative) impact of removing the celestial

navigation phase on the performance of the MSA algorithm. The next
worst solutions were obtained by the MSA with Structures 6 and
Structure 7 (removing the Gaussian walks mechanism and removing
the associative learning mechanism with immediate memory, respec-
tively). In other words, removing the celestial navigation phase,
including the Gaussian walks mechanism, and the associative learning
mechanism with immediate memory, dramatically reduced the per-
formance of the MSA algorithm. Moreover, removing the Lévy-
mutation and the transverse orientation phases reduced the algo-
rithm’s capability and caused entrapment in local optima, respectively.

Supplementary Fig. 4 provides the convergence rate to the opti-
mal value in eight MSA structures for the benchmark problem. Evi-
dently, Structures 4, 6, and 8, obtained by removing the Lévy-mutation
and the celestial navigation phases, negatively impacted the algorithm
convergence rate such that, in these cases, the algorithm was trapped
in local optima in several steps.

SOS-MSA optimization model
According to the sensitivity analysis of the structure of the moth
swarm algorithm, it was observed that the Lévy-mutation, the celestial
navigation, and the transverse orientation operators had a great effect
on the strength of the MSA algorithm. Therefore, it can be concluded
that these operators are the most effective parameters of the MSA
algorithm that play a significant role in its performance. Thus, if these
strong items are used in another optimization model, it is anticipated
that the performance of that algorithm should also increase sig-
nificantly. Accordingly, these operators were exported to the search
engine of the symbiotic organism search algorithm to generate the
hybrid SOS-MSA optimization algorithm.

Objective function of the optimization model
The optimization model aims to meet the maximum demands or in
other words, to minimize the difference between the allocated water
and the demands as follows:

Minimize f =
X3
i= 1

XT

t = 1
Demandi,t � Supplyi,t
� �2h i

+Penalty1i

+Penalty2i

ð3Þ

where, f is the objective function, t is the time step counter (number of
months in the planning period), i is the area counter, Demandi,t is the
netwater demand in the ith region and tthmonth, Supplyi,t =Gi,t +Rei,t
where Supplyi,t is the amount ofwater allocated to the ith region in the
tth month by the optimization model, Gi,t is the groundwater with-
drawal in the ith region and tth month, Rei,t is the surface water
exploitation in the ith region and tth month, Penalty1i and Penalty2i
are the penalty functions related to the volume of reservoirs (Eq. (12))
and groundwater level (Eq. (15)), respectively.

Constraints of the optimization model
Constraints related to spillway and evaporation losses are applied in
the form of the following relations:

Spi,t =
Si,t � Smaxi + Smin i if Si,t > ðSmax i � Smin iÞ
0 if Si,t ≤ ðSmax i � Smin iÞ

(
ð4Þ

Lossi,t = Ai,t × Evi,t ð5Þ

Ai,t = ai +bi × Si,t + ci ×S
2
i,t ð6Þ

- In all stages of optimization of reservoirs operation, there must
be a mass balance between the input and output values and the
volumeof the reservoir (continuity relationship). This is demonstrated
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by Eqs. (7)–(9).

S1,t + 1 = S1,t +Q1,t � Re1,t � Sp1,t � Loss1,t ð7Þ

S2,t + 1 = S2,t +Q2,t � Re2,t � Sp2,t � Loss2,t ð8Þ

S3,t + 1 = S3,t +Q3,t + Sp1,t + Sp2,t +Dez1,t +Dez2,t � Re3,t
�Sp3,t � Loss3,t

ð9Þ

- Constraints of decision variables

Smin i ≤ Si,t ≤ Smax i ð10Þ

Remin i,t ≤ Rei,t ≤ Remax i,t ð11Þ

- Penalty function related to the volume of reservoirs:

Penalty1i =

PT
t = 1

P3
i = 1

ðSi,t�Smin i
Smin i

Þ2if Si,t < Smin i

PT
t = 1

P3
i = 1

ðSi,t�Smax i
Smax i

Þ2if Si,t > Smax i

0 if Si,t ≥ Smin iandSi,t ≤ Smax i

8>>>>>><
>>>>>>:

ð12Þ

where, Spi,t is the amount of water overflowing from reservoir i in
month t, Si,t is the storage of reservoir i at the beginning of period t,
Si,t + 1 is the storage of reservoir i at the end of period t, Smax i is the
maximum storage of reservoir i, Smin i, the minimum storage of reser-
voir i,Qi,t , the inflow to reservoir i in themonth t, Lossi,t , the amount of
losses in reservoir i in month t, which is the loss from the reservoir in
the form of evaporation and considering the relationship between the
reservoir surface and volume, it is calculatedbasedon theEq. (5)where
Ai,t is the surface area of reservoir i in period t (square kilometers), Evi,t
is the evaporation rate from reservoir i in period t (m) and ai, bi, and ci
are the constant coefficients of converting the storageof the reservoir i

to its corresponding level at the beginning of the same period.Dezi,t is
the environmental demand of the reservoir i in month t, Remin i,t is the
minimum release of reservoir i in month t, and Remax i,t , t is the max-
imum release of the ith dam in month t.

The next constraint is related to the maximum monthly with-
drawal from the aquifer. The upper limit of monthly withdrawal from
an aquifer is equal to the totalmonthly demands of the studied areas in
eachmonth of the 19-year period. The other constraints that should be
applied are related to groundwater level control. Equation (13) indi-
cates the maximum groundwater level in each area, which should not
exceed the plant root zone (1.5m from the ground). Equation (14)
states that groundwater level drop at the end of the operation period
should not exceed the maximum allowable drop in the operation
period.

Li,t ≥ 1:5 i= 1,2,3, t = 1,2, . . . ,T ð13Þ

XT
t = 1

ΔLi,t ≤ ΔLtotalmax i, i= 1,2,3 ð14Þ

where Li,t is the groundwater depth, i.e., the distance between the well
opening and aquifer level in the ith region and tth month, ΔLi,t is the
change in groundwater level in the tth month compared to the t-1th
month in the ith region and ΔL totalmax i is the upper limit of drop or
lower limit of allowable improvement of the groundwater level at the
end of the planning period. Values are selected in such a way that the
groundwater level remains almost constant over the 19-year period.
Finally, if any of the constraints are not satisfied, the penalty value is
added to the objective function according to Eq. (15):

Penalty2i =
XT
t = 1

X3
i = 1

Ri ×Δi,t ð15Þ

whereRi is thepenalty coefficient in the ith region, the appropriate value
of which is obtained for each constraint according to the importance of
its satisfaction and performing trials and errors in the optimization

Table 5 | Results of ten different runs on MSA structures in the benchmark four-reservoir system

Number of runs Structure 1 Structure 2 Structure 3 Structure 4 Structure 5 Structure 6 Structure 7 Structure 8

1 308.8324 303.2897 303.8548 281.9172 300.9973 283.0921 293.0915 289.9782

2 308.5169 302.1507 308.2725 281.8771 298.7954 279.8854 300.8698 282.4970

3 308.6384 307.1987 302.3948 284.3652 300.1170 273.2014 296.1268 279.8042

4 307.5226 304.9934 307.4276 286.9606 303.9855 280.2431 293.4608 288.2985

5 307.7049 300.8550 306.9971 286.4089 291.2267 278.8297 292.4203 283.3925

6 308.4667 306.6445 303.6845 280.5672 303.1159 289.8373 286.3155 285.7833

7 308.4288 302.0114 308.0988 281.0041 294.3097 286.9948 272.9784 277.9623

8 307.4117 306.6916 304.3439 287.5824 300.7196 273.4283 292.9414 280.7263

9 308.8324 305.8378 308.0631 289.3183 291.1644 278.3319 286.2434 281.9761

10 308.1411 307.5795 302.0633 279.7089 291.7140 281.9227 288.8347 268.1510

Best 308.8324 307.5795 308.2725 289.3183 303.9855 289.8373 300.8698 289.9782

Rank-1 1 3 2 8 4 7 5 6

Worst 307.4117 300.8550 302.0633 279.7089 291.1644 273.2014 272.9784 268.1510

Rank-2 1 3 2 5 4 6 7 8

Average 308.2496 304.7252 305.5200 283.9710 297.6146 280.5767 290.3283 281.8569

Rank-3 1 3 2 6 4 8 5 7

SD 0.5292 2.4531 2.4890 3.3965 5.0304 5.2627 7.5236 6.0933

Rank-4 1 2 3 4 5 6 8 7

CV 0.0017 0.0081 0.0081 0.0120 0.0169 0.0188 0.0259 0.0216

Rank-5 1 2 2 4 5 6 8 7

Overall rank 1 3 2 5 4 6 6 8

Article https://doi.org/10.1038/s41467-024-44758-6

Nature Communications |          (2024) 15:553 10



model, andΔi indicates the extent of exceeding the allowedvalues in the
ith region and tth month in Eqs. (13) and (14).

Simulation-optimization model
After the separate development of the simulation (ANN) and optimiza-
tion (SOS-MSA) models, it is now possible to generate a simulation-
optimization model by hybridizing them together. The produced
simulation-optimization models (SOS-ANN, MSA-ANN, and SOS-MSA-
ANN) can be used for the optimization of the conjunctive operation of
surface and groundwater resources in a way that the groundwater level
in the study areas reaches a balance. They can be executed by deter-
mining the initial parameters of the proposed simulation-optimization
models. Supplementary Table S2 represents the parameter setting
values for the developed models. These values were obtained by sensi-
tivity analysis. The optimization model should comply with the con-
straints imposed on the state and decision variables. In this study,
groundwater level fluctuation is considered as the state variable, and the
amount of allocation of surface and groundwater resources to the
demands is the decision variable. First, the optimization model gen-
erates decision variables and then, transfers them to the objective
function and constraint program. In this program, the inputs are trans-
ferred to the ANN (simulationmodel) to estimate the groundwater level.
Next, the simulation model responds to the system behavior based on
the optimization model inputs, calculates the groundwater level, and
finally, returns it to the optimization model. Constraints are controlled
using the penalty method. If the generated solutions can not satisfy the
constraints and do not obtain the minimum objective function value,
this process continues, so that the optimization algorithm generates
new decision variables and sends them to the simulation model. This
cycle continues until it reaches the maximum number of iterations and
converges to the global or near-global optimum. The flowchart of the
developed simulation-optimization model is shown in Fig. 5.

Performance indicators of water resources systems
Water resources planning andmanagement policies aim to reduce the
impact of policies that negatively affect water resources systems both
in the current and future situations and to develop policies that have
positive socioeconomic, environmental, political, and legal effects on
the system. Therefore, there should be some indicators for measuring

the system performance to evaluate and compare conditions of water
resources systems under differentmanagement policies and programs
(scenarios)27. Evaluating the operation policies is the last and themost
important step in utilizing the optimization and simulation models
during the operation of water resources systems. In this research, four
indicators of reliability, vulnerability, resiliency, and sustainability
were used to evaluate the investigated models in the conjunctive
operation of surface and groundwater resources.

Rel = 1� NDef
T

� �
× 1000NDef =Numberof Det >Ret

� � ð17Þ

where, Ndef is the overall number of failures during the operation
period,Det is the demand value in period t, Ret is the output in period t,
and Rel is the system reliability during the operation period. The
greater the value of this parameter, the higher the system reliability28.

Vul = max
ðDet � RetÞ

Det

� �
× 100, t = 1,2, . . . ,T ð18Þ

where, Vul denotes the system’s vulnerability, Ret is the output in
period t, Det is the demand value in period t, and T is the total number
of operation periods28.

Res =

T

N

t = 1

ðDef t + 1 =0 jDef t>0Þ

T

N

t = 1

ðDef t>0Þ

× 100, t = 1,2, . . . ,T ð19Þ

where Res denotes the system’s resiliency,
T
N
t = 1

ðÞ is the number of

occurrences of the condition in parentheses and Deft is the shortage in
period t28.

SI = Rel ×Res × ð1� VulÞ	 
1=3 ð20Þ

Fig. 5 | Flowchart of the mechanism of SOS-MSA-ANN simulation-
optimization model. The left box (blue background) demonstrates the optimi-
zationmodel, whichwas obtained by hybridizing the SOS andMSA algorithms. The

right box (green background) shows the artificial intelligence-based simulation
model that predicts the groundwater level. The middle part shows the main pro-
cedure of the second-level simulation-optimization model.
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The sustainability index (SI) denotes system performance criteria
in a generic index to facilitate comparison and decision-making
between different scenarios based on performance indicators of water
resources systems27.

Data availability
Source data are provided with this paper.

Code availability
Codes are provided as Supplementary Code 1. The “main_-
MSA_SOS_hybrid.m” is the main code of the developed simulation-
optimization model that was scripted in the programming panel of
MATLAB software. The other files include the sub-routines for the
main code.
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