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Accelerationof theoceanwarming from1961
to 2022 unveiled by large-ensemble
reanalyses

Andrea Storto 1 & Chunxue Yang1

Long-term changes in ocean heat content (OHC) represent a fundamental
global warming indicator and are mostly caused by anthropogenic climate-
altering gas emissions. OHC increases heavily threaten the marine environ-
ment, therefore, reconstructingOHCbefore thewell-instrumentedperiod (i.e.,
before the Argo floats deployment in the mid-2000s) is crucial to under-
standing themulti-decadal climate change in the ocean. Here, we shed light on
ocean warming and its uncertainty for the 1961-2022 period through a large
ensemble reanalysis system that spans the major sources of uncertainties.
Results indicate a 62-year warming of 0.43 ± 0.08Wm−2, and a statistically
significant acceleration rate equal to 0.15 ± 0.04Wm−2 dec−1, locally peaking at
high latitudes. The 11.6% of the global ocean area reaches themaximum yearly
OHC in 2022, almost doubling any previous year. At the regional scale, major
OHC uncertainty is found in the Tropics; at the global scale, the uncertainty
represents about 40% and 15% of the OHC variability, respectively before and
after the mid-2000s. The uncertainty of regional trends is mostly affected by
observation calibration (especially at high latitudes), and sea surface tem-
perature data uncertainty (especially at low latitudes).

Ocean warming is among the most notable threats to the marine
environment, leading to e.g. sea-ice decline1,2, sea-level rise3, and an
increase in frequency and amplitude of marine heatwaves4, which,
together with other climate change effects (e.g., ocean acidification5),
all endanger the marine ecosystem6. The ocean is characterized by
non-uniform warming7, due, in turn, to the spatially and temporally
varying heatuptake fromthe atmosphere and surfacewind variability8,
combined withmulti-scale redistribution through advective processes
and verticalmixing. Oceanheat content (OHC, that is, the total amount
of heat stored in the ocean) is one of the most important indicators of
climate change in the ocean. While inter-annual variations of OHC are
shaped by both internal climate variability and external forcing9, its
long-term increase is due to the human-induced increase of climate-
altering gas concentrations10,11. Reliably quantifying ocean warming
and its uncertainty has enormous importance for monitoring Earth’s
energy budget and climate12,13.

Accounting for themain sources of uncertainty ofOHC in the pre-
Argo period is crucial to provide estimates with reliable uncertainty
envelopes14. Before the Argo era (namely before the 2000s), uncer-
tainty is dominated by the observations themselves, mostly the
eXpendable BathyThermograph data15,16; however, horizontal map-
ping methods17,18 and vertical interpolation (i.e., the error length-
scales19) are all non-negligible sources of errors20. Further to these, the
accuracy of model-based reconstructions may also be affected by the
vertical physics parametrization uncertainty and systematic model
errors21, assumptions in the data assimilation systems, and the uncer-
tainty in all other input datasets (notably, the atmospheric forcing and
sea surface data22,23). Intrinsic (chaotic) ocean variability is also non-
negligible for regional estimates24, making the overall picture quite
complicated.

The analysis of ocean heat content is usually performed through
(i) objective analyses17,25,26 which are statistical mapping of the
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observations, (ii) reanalyses that use an ocean general circulation
model to project forward in time the ocean state, using observations to
constrain the model trajectory through data assimilation27, (iii) a com-
bination of them, for instance, using reanalyses to derive error statistics
for unsampled regions28, (iv) use of proxy data29 or indirect data that
infer OHC increase from satellite-derived steric sea level variations (i.e.,
the so-called geodetic estimates14), or (v) advanced data-driven tech-
niques such as machine learning30. Reanalyses, while being very costly
from a computational point of view, permit a multi-variate four-
dimensional characterization of the ocean, useful in turn for process-
oriented and cause–effect studies31; reanalyses are attractive because
they can in principle ingest any measurement which is related to the
ocean state (for instance, altimetry and gravimetry observations32,33),
and for a much broader range of applications than objective analyses,
notably to initialize long-range prediction systems34.

The present study aims to re-assess the OHC trends and their
uncertainty as estimated by reanalyses, compare them with objective
analyses, and draft a hierarchy of sources of uncertainty. It builds upon
a large-ensemble reanalysis system (32 members) that includes, in the
ensemble generation, the major sources of uncertainty. We also take
advantage of an objective analysis system (i.e., a statistical mapping of
the observations using the same analysis system as the reanalysis but
without any numerical oceanmodel integration), which is used to test
if any of the reanalysis signals are spuriously given by the interaction
between theoceanmodel and thedata assimilation35,36. The goal is thus
to quantify thewarming and assess and rank the sources of uncertainty
in the OHC reconstruction.

Results
We summarize, in the next two sections, the main outcomes of the
large ensemble reanalysis system (hereafter CIGAR, the Cnr Ismar
Global historicAl Reanalysis, http://cigar.ismar.cnr.it) in terms of ocean
warming distribution and uncertainties, respectively. For some
uncertainty diagnostics, we divide the reanalysis period (1961–2022)
into the observation-poor period 1961–2001 and the observation-rich
period 2002–2022, considering that the Argo float deployment37 starts
in the early 2000s and matures around the mid-2000s.

Ocean warming distribution
The total ocean warming from CIGAR in terms of energy per Earth’s
area is equal to 0.43 ±0.08Wm−2 for the period 1961–2022 (Table 1),
and it equals 0.41 ± 0.09Wm−2 for the period 1961–2020 coinciding
with the latest GCOS assessment38, which indicates 0.41 ± 0.10Wm−2

for the same period. Note that we have followed the uncertainty
definition of the GCOS assessment: assuming Gaussian distributions
for the trend errors, the uncertainty is given as twice the ensemble
standard deviation, which corresponds to the 95% confidence level38).
Thus, the two estimates are identical in terms of trends, and very close
in terms of uncertainty, confirming the two approaches are consistent
and complementary, as expected. We found a significant global
warming acceleration equal to 0.15 ± 0.04Wm−2 dec−1 for the
1961–2022 period. During the recent period 2006–2018, the accel-
eration is equal to 0.20 ± 0.07Wm−2 dec−1, in agreement within the
error bars with the estimates 0.50 ±0.47Wm−2 dec−1 over mid-2005 to
mid-201939 and 0.25Wm−2 dec−1 over 2002–201913, although CIGAR
shows much smaller uncertainty.

Timeseries for the global ocean heat content anomalies are shown
in Fig. 1a, together with the GCOS20 assessment26. Additionally, we
display estimates from ZANNA1940, which reconstructs OHC from sea
surface data using Green’s functions, and from ARANN41, which uses
autoregressive artificial neural networks. The figure shows that,
although the full-period trend is similar, our reanalysis system shows
enhanced interannual variability, and a pronounced non-linear OHC
increase, with the first period (up to about 1997–2000) exhibiting a
slower increase and a sharper increase afterward. The other timeseries

show a steadier increase (see also Table 1 for quantitative diagnostics),
similar also to CMIP simulations42. For the well-observed period
2007–2022, we also compare the reanalysis with other independent
estimates, i.e., geodetic estimates43 and CERES-based timeseries28,44.
This comparison, in terms of OHC yearly tendencies, shows a very
good agreement between the datasets, except for some well-known
differences in the CERES-based timeseries (e.g., all datasets but those
based on CERES exhibit cooling in 201645). The high-frequency varia-
bility between CERES-based estimates and those from oceanic obser-
vations is known to be largely different, due to several weather and
climate processes providing a different response in the TOA EEI
(top-of-atmosphere Earth Energy Imbalance) compared to the ocean
heat uptake12. The climate community is converging toward compar-
ing these two complementary datasets at frequencies slower than 3
years28,43,46. However, an accurate understanding of the scale coher-
ence between the two is still an open question, whose answer is
complicated by the relatively short temporal record of the
satellite data.

To gain confidence in the datasets, it is important to understand
whether the enhanced interannual variations in the reanalysis system
are somehow spurious; alternatively, the objective analysis metho-
dology and the ensemble average operation performed over the quite
diverse range of products of the GCOS assessment may flatten the
ocean heat content tendency signals. To this end, we compare our
ensemble mean realization with that of a corresponding objective
analysis (same assimilation system but no ocean dynamical model, see
“Methods” section for details), denoted OA in Fig. 1 and Table 1. This
objective analysis has a trend, acceleration, and interannual variability
very close to that of CIGAR. In one alternative objective analysis
experiment, the background—namely, the prior estimate used in the
statistical analysis—is taken from an external model simulation like
CMIP (OA-BGSIM), mimicking to some extent OA methodologies
relying on external model-based products as background47. This
experiment shows a much more attenuated variability and a steady

Table 1 | Global warming (in Wm−2, in units of the Earth’s
surface) from CIGAR and other assessments

Dataset Global warming
(Wm−2)
1961–2022

Global warming (Wm−2) 1961–2020

CIGAR 0.43 ±0.08 0.41 ± 0.09

GCOS22 NA 0.41 ± 0.10

Dataset OHC trend
(Wm−2)
(1961–2018)

Interannual varia-
bility (1E9 Jm−2)
(1961–2018)

Acceleration
(Wm−2 dec−1)
(1961–2018)

CIGAR 0.42 0.20 0.13

GCOS20 0.34 0.09 0.07

ARANN 0.29 0.13 0.11

ZANNA19 0.35 0.05 0.03

OA 0.41 0.19 0.12

OA-BGSIM 0.44 0.07 0.04

OA-MON 0.36 0.12 0.07

OA-SLS 0.37 0.14 0.09

To obtain the trend in units of the ocean surface, values need to be multiplied by 1.42. In both
products, the uncertainty is defined as twice the ensemble standard deviations. The table also
shows the trend, interannual variability, and acceleration of CIGAR, the GCOS20 assessment26,
ARANN41 and ZANNA1940, and several objective analysis experiments explained in the text, over
thecommonperiod 1961–2018. Trendsare computed as the slopeof thefitted line (in units of the
Earth’s surface); interannual variability as the standard deviation of the detrended yearly means;
acceleration from the coefficient of the fitted parabola. OA is the objective analysis experiment
with the same setting as CIGAR but no ocean model and background defined as the 10-day
climatologyplus thepersistent anomaly from thepreviousanalysis cycle;OA-BGSIM is asOAbut
with the background from model simulations without data assimilation; OA-MON is as OA, but
with 1-month assimilation frequency and time-window; OA-SLS is as OA, but with halved hor-
izontal correlation length-scales.
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increase (see also Table 1), evident in the poorly sampled period.When
the assimilation frequency and time window are extended from ten
days to one month (experiment OA-MON), variability and OHC
increase are dampedduring themost recent, well-observed, period; an
attenuation of variability during the full reanalysis period occurs when
horizontal correlation length scales in the data assimilation system are
halved (experiment OA-SLS). In all these experiments, interannual
variability, trend, and acceleration approach those of the GCOS20
assessment. This indicates that the combined choice of the back-
ground field, correlation length-scales, and temporal frequency in the
objective analysis reconstructions affect the OHC interannual varia-
bility. Maps of interannual variability (Fig. 2a, d) reveal that areas of
intense mesoscale activity (e.g., the western boundary currents, and
the Antarctic Circumpolar Current) are those characterized by the
largest interannual fluctuations. Here, objective analyses may struggle
to reproduce suchfluctuations due to their coarse temporal resolution
and the lack of atmospheric forcing information. Likewise,

observation-blind model simulations (as those used as background in
OA-BGSIM), significantly under-estimate the inter-annual variability,
especially in the Southern Ocean.

Timeseries for the three latitudinal bands (Northern and Southern
Extra-Tropics, and Tropics) are shown in Fig. 1c. They indicate the
largest interannual variability and trends in the extra-Tropics (parti-
cularly, in the Southern Ocean), while a steadier increase and atte-
nuated interannual variability in the Tropics. In terms of trends, the
Southern Extra-Tropics contribute more than other regions over the
1961–2022 period (0.63Wm−2 against 0.35 and 0.37Wm−2 for the
Tropics and Northern Extra-Tropics, in units of the Earth’s surface), in
agreement with previous studies48–50.

Maps of OHC’s significant trends and accelerations (1961–2022)
are shown in Fig. 2, together with their uncertainty. Areas of large heat
accumulation (>1Wm−2) are visible in the Southern Ocean and the
Arctic, while the Tropical band showsmoderate warming, larger in the
Atlantic Ocean than elsewhere. Although the in-situ observational
sampling is limited in polar areas and the OHC uncertainty is therein
large, CIGAR indicates the high latitudes asoceanwarminghotspots, in
agreement with many observation- and model-based studies51–54. Mid-
latitudes show smaller warming than elsewhere. This agrees with
previously estimated 1968–2019 trend maps55. The uncertainty gen-
erally follows the areas of the largest trends (high latitudes and Tro-
pics), with notable uncertainty in the North Atlantic Ocean as well. The
map of ocean heat content acceleration indicates that part of the
Antarctic region (Weddel Sea) and the North Atlantic Ocean (Gulf of
Mexico, western boundary currents, Labrador, Greenland, and Medi-
terraneanSeas) suffer fromocean heat content acceleration exceeding
0.4Wm−2 dec−1. The acceleration uncertainty is, similarly to the trend,
the largest at high latitudes and near the Equator, but significantly
smaller than the signal.

The large ensemble system allows us to quantify and understand
recent changes and associate statistical significance with them. We
show in Fig. 3 the areas that exhibit statistically significant OHC
increase in 2022 compared to 2021 (last year’s OHC increase), which is
of great importance for climatemonitoring. Large portions of themid-
latitude Southern Hemisphere, Atlantic and Pacific Oceans, and Tro-
pics, exhibit a significant increase in OHC, with patterns in agreement
with a previous study56 (i.e., western Tropical Pacific Ocean, the
southern part of the Indian Ocean, north-eastern Atlantic Ocean, etc.).
The globalOHC increase is driven by the accumulation of heat inmany
regions, rather than localized accumulation. To understandhowglobal
warming is affecting the OHC increase distribution, panel b of Fig. 3
shows (for each grid point of the large ensemble reanalysis system) the
year owing the largest OHC. Large portions of all the main basins
exhibit the latest two years as the warmest years, with some excep-
tions, for instance, located in the Eastern Tropical Pacific upwelling
region, central North Atlantic Ocean, and Kuroshio extension. In terms
of area-averaged values (Fig. 3c), on 11.6% of the global ocean, the year
2022 is the warmest year over the 1961–2022 record, almost doubling
any previous year. These statistics confirm a robust acceleration of
warming that concerns large areas of the global oceans. Other notable
years (exceeding 5%) are 2021, 2016, and 2015.

Analysis of uncertainties
The ocean heat content ensemble standard deviation (spread) from
CIGAR is shown in Fig. 4a, b for the global ocean and three latitudinal
bands, together with the uncertainty of the GCOS20 global ocean heat
content assessment. The top panel shows the absolute uncertainty,
while the middle panel shows the percent uncertainty, normalized by
the OHC interannual variability (temporal standard deviation of the
detrended timeseries). Tropics appear as the most uncertain latitu-
dinal band, while the Northern Extra Tropics are the least (with
uncertainty values always <30%), mostly because of the maturity of its
observing network before the Argo float deployment. Peaks in the

Fig. 1 | Ocean heat content evolution. a Ocean heat content (OHC) timeseries
from CIGAR, ZANNA1940, GCOS2026, and ARANN41. Shades correspond to twice the
ensemble standard deviation in CIGAR and GCOS. The top-left subpanel shows the
yearly ocean heat content tendency (OHCT) for the 2007–2022 period, for the
CIGAR and the geodetic estimate from MOHECANv543, GCOS2026, CERES EBAF
Ed4.244, and optimizedCERES timeseries28 (CERES+). The gray rectangle in themain
plot indicates the period over which the OHCT is shown. b OHC timeseries from
CIGAR and the objective analysis experiments (see the caption of Table 1 for the
definition of the experiments). c OHC time series from CIGAR for the three latitu-
dinal bands Southern Extra-Tropics (90°S–30°S), Tropics (30°S–30°N), and
Northern Extra-Tropics (30°N–90°N).
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Tropics correspond to strong El Nino events (e.g., 1998) and seem not
much affected by the TAO/TRITON mooring array deployment in the
1990s. This is consistent with previous analyses57, which show that El
Niño events lead to an increase andbroadening of ensemble anomalies
and covariances in reanalyses compared to neutral years, due to the
enhanced thermocline variability. The Southern Ocean has very large
uncertainty in the 1960s, which rapidly resembles that of the global
ocean (35-40%) from the 1970s onward. Overall, the global ocean
shows an uncertainty of about 40%, which drops to about 15% during
the last decade (2013–2022). Compared to GCOS20, our reanalysis
system has often a larger uncertainty but is steady at around 40%
before the 2000s, while GCOS20’s fluctuates between 10% and 50%.
The larger uncertainty in CIGAR is likely due to themanymore sources
of uncertainty in reanalyses than objective analyses (e.g., atmospheric
forcing,model physics, etc.), which dominate the ensemble dispersion
in periods with poor observational sampling. During the last decade,
the normalized uncertainties of CIGAR and GCOS converged towards
similar values of about 15%.

Temporal variations of warming uncertainty (ocean heat content
trend), at the global scale, are evaluated by computing (Fig. 4c) the
running ensemble standard deviation of trends, over both a 15 and a
30-year time window. The panel shows the running ensemblemean of
the trend for comparison (in red, with the right-side axis). The trend
uncertainty is high (more than 0.10Wm−2) at the beginning of
the timeseries and stabilizes between 0.05 and 0.10Wm−2 until
approximately 1995; then, it increases to more than 0.15Wm−2 (2001)
for the 15-year time interval and decreases afterward, up to values of
<0.05Wm−2. The increase starts earlier than the Argo float deploy-
ment; however, it is difficult to say howmuch of this is affected by the
observational sampling, which only partially follows the 15-year run-
ning trend variability. Additional objective analysis (OA) experiments
randomly withholding 50%, 75%, and 90% of Argo floats, or with no
observation assimilation below 1000m of depth, led to statistically
insignificant differences in oceanwarming and acceleration compared
to the OA experiment with the full observing network; this suggests
that our results are not significantly influenced by the change in

Fig. 2 | Ocean heat content variability.Ocean heat content interannual variability
(a), trend (b), and acceleration (c) from the CIGAR ensemble mean, and their cor-
responding uncertainty (d–f), calculated as twice the ensemble standard deviation

from CIGAR. The interannual variability is taken as the standard deviation calcu-
lated over the detrended yearly means.
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observational sampling following the deployment of Argo floats. Fig-
ure 4c also reports diagnostics with 30-year time intervals, which show
much steadier behavior than those with 15-year intervals.

Clustering the ensemble members by grouping their type of
perturbations, i.e., their sources of uncertainty, allows us to under-
stand the main sources of uncertainties, as explored in regional
operational contexts58. In practice, this is done by considering the
averaged spread formemberswith the same source of uncertainty (see
the “Methods” section), in comparison with the total (full ensemble)
spread. We show in Fig. 5 the outcomes of this assessment in terms of
both global and regional diagnostics (Fig. 5a, b), and maps of

significant prevailing sources of uncertainty (Fig. 5c, d; see the figure
captions for the exact definitions).

The uncertainty of the global trend (top left panel) is a percentage
estimate of the total ensemble standard deviation (which accounts for
model physics and data assimilation uncertainty). In this case, the
sources of uncertainty are not additive and saturate between 45% and
75%, meaning that they can all explain a large portion of the resulting
ensemble dispersion. For the 1961–2022 global trend, the main source
of uncertainty is the air–sea flux formulation and the observation
dataset, provided that, in the global OHC trend estimates, the air–sea
flux formulation directly drives the heat tendency because horizontal

Fig. 3 | Recent increase inoceanheat content. a Significant increase inOceanheat
content (OHC) from2021 to 2022 (significant cooling or non-significant differences
are masked in white to emphasize the regions with heat content increase). b Year

corresponding to themaximumyearlyOHC for every gridpointofCIGAR. cPercent
of ocean surface showing maximum yearly OHC, as a function of the years from
1961 to 2022. Values are shown for the years exceeding 5%.
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and vertical redistributions of heat do not affect the global mean sig-
nal. The sea surface temperature (SST) uncertainty exceeds 70% of the
global trenduncertainty,while other sources showsmaller values,with
the initial conditions having the smallest percentage of 45%. The early
period 1961–2001 shows similar results, with the atmospheric forcing
uncertainty becoming the main source of uncertainty.

Regional trend uncertainty is defined as the percent area where
a certain source of uncertainty is significantly prevailing. Thus,
percent values are additive in this case. For the entire period, it is
the largest for the observations, which account for about 22% of the
uncertainty, followed by the SST uncertainty (13%) and initial con-
ditions uncertainty (11%). Atmospheric forcing and the air–sea flux
formulation together do not exceed 10% and represent more mar-
ginal sources of uncertainty than the others. In the observation poor
period 1961–2001, the SST uncertainty, which plays a major role in
the absence of other developed networks, is the largest source of
uncertainty accounting for about 17% of the total regional
uncertainty.

Maps of prevailing types of uncertainty indicate which uncer-
tainty source is locally dominant—statistically significantly—in the
trend uncertainty. Only areas where a statistically significant source
occurs are shown. The uncertainty associated with the observation
preprocessing (OBS) is found to prevail in the Southern Ocean and

in the North Atlantic, initial conditions uncertainty dominates in the
Indian Ocean, and SST uncertainty mostly manifests at low lati-
tudes. The atmospheric boundary conditions uncertainty confirms
more marginal and ascribed to small portions of the global oceans.
For the poorly sampled period 1961–2001, patterns are more com-
plicated to interpret, with SST uncertainty extending its areas of
dominance to mid-latitudes; the atmospheric boundary conditions
become the prevailing source of uncertainty in large portions of the
Southern Ocean.

Discussion
With a large ensemble ocean reanalysis at moderate resolution (1/
3°−1°) we have quantified global and regional ocean warming, its
acceleration and confidence, evaluated its uncertainty, and identified
the main sources of uncertainty. We have investigated the enhanced
interannual variability and trends in the reanalysis compared to
objective analyses. Sensitivity experiments show that these are not an
artifact of the reanalysis system but depend closely on the choices of
the assimilation frequency, background field, and error length scales,
in objective analyses.

The 32-member ensemble was built with the scope of including
explicitly the major sources of uncertainties (atmospheric forcing
and its air-sea flux formulation, observation bias correction, initial
conditions, and sea surface temperature accuracy). We combined
these sources of uncertainty within the ensemble generation,
adding stochastic modulation of ocean model parameters and
assimilated observations in the reanalysis system. Results show that
our system has similar ocean warming values and uncertainty as
other dependent and independent datasets, confirming the relia-
bility of the ensemble. Moreover, the approach allows us to
understand the hierarchy of uncertainty sources in ocean heat
content reconstructions. Thus, this multi-perturbation ensemble
reanalysis system is promising for use over earlier historical peri-
ods, for which spanning the major sources of uncertainty in an
ensemble context is crucial to correctly represent the uncertainty
envelope and quantify the time-dependent signal-to-noise ratio in
the ensemble system.

The 1961–2022 warming is quantified in 0.43 ±0.08Wm−2. The
acceleration is found significant and equal to 0.15 ± 0.04Wm−2 dec−1.
Regional patterns show a dominant trend and acceleration at high
latitudes and near the Equator, with mid-latitudes exhibiting less
pronounced accumulation, due to the largemeridional heat transports
therein. Patterns of OHC increase in 2022 are well spread over all the
basins, andmore than 11% of the global ocean shows its highestOHC in
2022, almost doubling any previous year. Before the Argo era, the
relative OHC uncertainty was the largest in the Tropical band and
partly associatedwith El Nino events. On a global scale, the uncertainty
reduced from 40% of its natural variability in the 1960s to about 15%
during the last decade.

Among the different sources of uncertainty, regional trends are
mostly affected by observation procedures (bias correction, especially
at high latitudes) and SST data uncertainty (especially at low latitudes).
In contrast, all the sources of uncertainty contribute to the global trend
uncertainty. The reanalysis initialization uncertainty plays a more
marginal role, except in specific regions (e.g., in the eastern Indian
Ocean) where the local or remote memory of the ocean or poor
observational sampling may amplify its impact.

These findings shed light on the contemporary ocean warming
acceleration and foster the design of reanalyses and reconstruction
systems aware of all sources of uncertainty. Ensemble reanalyses,
although with a much smaller ensemble size, are increasingly used
to reconstruct the climate of the past and initialize long-range
predictions59, and the uncertainty ranking provided here (at regio-
nal and global scales) will help guide the ensemble generation
approach.

Fig. 4 | Ocean heat content uncertainty. a, b Yearly ocean heat content (OHC)
ensemble standard deviation (spread) for the global ocean and the three latitudinal
bands defined in the caption of Fig. 1. Absolute values are in panel a, while percent
values (normalized by the interannual variability, i.e., the interannual detrended
standard deviation) are shown in panel b. c Running ensemble standard deviation
of OHC trends over 15-year (solid) and 30-year (dashed) time intervals. Red lines
and axis report the running ensemble means of the trends.
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Methods
Ocean model configuration
The ocean model is NEMO60, version 4.0.7, which includes the five-
category sea-ice dynamic and thermodynamic model SI3 61. It is imple-
mented at about 1° of horizontal resolution, with augmentedmeridional
resolution in the Tropics (up to 1/3°), and 75 vertical depth levels with
partial steps62. The model uses bulk formulas adapted from the AERO-
BULK package63, a 3-band RGB scheme for the penetrating component
of the air–sea heat flux, with extinction coefficients that depend on a
monthly climatology of chlorophyll64; for vertical mixing, the TKE

scheme65 is used with re-tuned background eddy viscosity and
diffusivity66, while the horizontal diffusion operator is composed by a
Laplacian operator for temperature and salinity and a bi-Laplacian for
momentum.

The system is forced at the surface by the ECMWF ERA5
reanalysis67. Hourly fields of near-surface temperature, humidity, wind,
and pressure are used to calculate high-frequency turbulent fluxes,
while dailymeans of radiation andprecipitationfields are used, with an
analytical diurnal modulation68 of downwelling solar radiation. At the
sea surface, heat and freshwater fluxes are corrected through a

Fig. 5 | Main sources of uncertainty in the Ocean heat content reconstruction.
a,b Percent uncertainty associatedwith the different sources of uncertainty for the
global trend (a, as a percent of the individual source that explains the total
uncertainty) and regional trends (b, as a percent of the ocean with the prevailing
source of uncertainty). c, d local (statistically significant) prevailing source of
uncertainty. White areas denote points with insignificant prevailing sources.

Diagnostics are shown for both the full period 1961–2022 (c) and the observation-
poor period 1961–2001 (d). SST is the sea surface temperature uncertainty, OBS is
the in-situ profile uncertainty, INI is the uncertainty of the initial conditions at the
beginning of the reanalysis period, ATF is the atmospheric input data uncertainty,
BLK is the uncertainty in the air–sea flux formulation.
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relaxation scheme that nudges SST and sea surface salinity (SSS) to
external analyses. The relaxation time scale is set to 1month and 1 year
for SST and SSS, respectively. SSS analyses are taken from the UKMO
EN469, while SST analyses depend on the specific ensemble member
(see the section “Sources of uncertainty and ensemble generation”).

The freshwater discharge onto the ocean from land and ice sheets
is provided by the JMA JRA-55-do reanalysis70, as inter-annually varying
daily mean freshwater inputs, re-gridded onto the NEMO grid through
conservative remapping.

Assimilation scheme
An oceanic 3DVAR scheme is used for assimilation, which implements
background-error covariances estimated from long-term climatologi-
cal anomaly differences, re-tuned via a posterior calibration method71

within preliminary assimilation experiments. In particular,
background-error vertical covariances are implemented through the
application of multi-variate spatially varying EOFs, while a first-order
recursive filter that uses spatially varying correlation length scales is
adopted horizontally72. The set of assimilated observations includes all
in-situ profiles (MBT, XBT, and CTD casts,moorings, floats and gliders,
and animal-borne sensors), extracted from the UKMO EN4 dataset69.
Observational errorswere initially taken fromprevious estimates73 and
calibrated employing the posterior method71. A variational quality
control scheme74 is used for non-linear quality control of the assimi-
lated observations. A 10-day assimilation time window and analysis
increment application frequency are adopted.

In addition to the variational assimilation scheme, a large-scale
model bias correction (LSMBC) scheme is applied75, where deep ocean
waters (below 500m of depth) are weakly relaxed towards external
objective analyses, at a temporal and spatial scale of 10 years and
1000 km, respectively. Additional experimentswith thewithholding of
the scheme, or in simulations using the LSMBC but without assim-
ilating in-situ profiles, or comparing CIGARwith the objective analyses
indicate that such a large-scale bias correction scheme has no sig-
nificant impact on the resulting warming of CIGAR. Indeed, this is
driven by the assimilation of in-situ profiles, in terms of long-term
changes and interannual variability. The fact that the OA objective
analysis experiment (see its description below), with no LSMBC, has a
very close variability and trends to CIGAR, further confirms that
LSMBC is negligible for ocean warming assessments.

For comparison with the reanalysis system, an objective analysis
scheme (OA, hereafter) is built upon the same data assimilation scheme.
The two analysis systems share the same data assimilation configura-
tion, with an analysis frequency of 10 days, but OA does not include any
dynamical ocean model (namely, the model time integration step), and
simplifies to an observation statistical mapping, which uses the same
variational data assimilation scheme as CIGAR. As background-error
covariances are estimated from climatology anomalies, they are repre-
sentative of the climatemodes of variability rather than the background
accuracy; thus, the same set is used for both reanalyses and objective
analyses. In OA, background fields are taken from a 10-day climatology
to which the 10-day (persistent) anomaly from the previous analysis
cycle is added, mimicking the cumulative effect of data assimilation in
reanalyses. The OA system is used to interpret the different behavior of
the ocean heat content reconstructed from the ensemble reanalysis
compared to that from objective analyses.

Sources of uncertainty and ensemble generation
The large-ensemble reanalysis system CIGAR accounts for the major
sources of uncertainty in the system configuration. These are listed
below, and correspond to the ensemble generation strategy:

- Observation bias correction (for MBT, XBT, and floats) is an
important source of uncertainty for multi-decadal retrospective
analyses15. Here, it is spanned using two different sets of observations
(namely, two different algorithms for XBT corrections) which include,

respectively, two different XBT corrections76,77. Both corrections are
provided through the UKMO EN4 profile dataset.

- The SST dataset used in the surface relaxation scheme; here
we consider two SST analysis realizations, given by the UKMO
HadISST78 and the JMA COBE79 analyses. The differences between
the two datasets exceed 1 °C in areas of enhancedmesoscale activity
(e.g., around the Antarctic Circumpolar Current), and show, in
terms of globally averaged values, that COBE-SST is slightly colder
than HadISST by about 0.15 °C. After 2005, the two datasets tend to
converge.

- Initial conditions at the beginning of the reanalyzed period are
a possibly important source of uncertainty, especially for ocean
heat content analyses;31 here, we use two sets of initial conditions,
extracted from lagged simulation restarts in previous assimilation
experiments. Specifically, we have taken the 1948 and 1968 initial
conditions from previous pilot assimilation experiments as initial
conditions valid in 1958; we consider the first three years
(1958–1960) as an adjustment period. The pilot assimilation
experiment is the last iteration of many iterative 1958–2021 reana-
lyses performed as spinup to stabilize the ocean model drift, with
initial conditions taken from the latest restart of the previous
iteration.

- Atmospheric forcing uncertainty is accounted for using two
different ensemble members of the ERA5 reanalysis. We added the
ensemble anomalies frommembers 1 and 4 of the ERA5 ensemble data
assimilation (EDA) system to the deterministic ERA5 reanalysis fields.
The two members have been chosen after clustering the atmospheric
surface kinetic energy following a clustering method80.

- Air–sea flux formulation, whose uncertainty is modeled using
twodistinct bulk formulations, i.e., theNCEP/CORE formulas81 and that
from ECMWF82. The two bulk formulas implement, among others, a
different formulation of the Charnock coefficient and a different useof
the sea surface temperature (bulk versus skin), respectively63,83;
moreover, within the bulk formula implementation, the NCEP uses the
absolute wind while the ECMWF the relative wind (namely, the surface
currents are subtracted to the wind).

The large ensemble results from any possible combination of
these sources of uncertainty, resulting in a 32-member reanalysis. On
top of this configuration, we use a stochastic parameter perturbation
(SPP) scheme84 to stochastically account for the model uncertainty (in
particular, the uncertainty of the solar extinction coefficients, the TKE
parameters, the surface nudging relaxation time, and the horizontal
diffusivity and viscosity). Additionally, we perturb the observations
before their ingestion in the variational data assimilation system,
through a Gaussian random deviation, with the standard deviation
equal to the representativeness error of the observations85. This allows
us to consider stochastic perturbations for both the assimilation and
forecast steps, in addition to the sources of uncertainty explicitly
detailed above.

We estimated the sampling uncertainty of the ensemble mean of
the global OHC trend (1961–2022) using previous definitions86 and
found that the 32-member ensemble size reduces by 88% the sampling
error compared to a 10-member ensemble. The sampling uncertainty
may further decreasewith a larger ensemble than 32; however, the size
of 32 is chosen as a compromise between small sampling uncertainty
and computational affordability.

This study is designed to account for the major sources of
uncertainty in the reanalysis system. However, there may be other
processes, that may induce additional uncertainties and are not sam-
pled by our system, for instance: exchanges of heat between the ocean
and the sea ice; small-scale energy exchanges that cannot be resolved
by our reanalysis system due to its limited spatial resolution; sys-
tematic errors in the atmospheric forcing not spanned by the ERA5
members; observational sampling error not spanned by the use of one
observation production system (EN4).
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Improvements compared to previous reanalysis estimates and
assessments
Previous studies showed limited consistency among reanalyses in
comparing the ocean heat content, with poorly reliable long-term
trends. For instance, it was found that drifts and/or spurious variability
below 700m of depth degraded the accuracy of ocean warming esti-
mates from reanalyses35. Such work was part of the Ocean Re-Analysis
Intercomparison Project (ORA-IP87), which is an intercomparison
exercise initiated in 2012 with a vintage of reanalyses more than 10
years old. Since then, many advances have been achieved in both
modeling and data assimilation aspects of reanalyses, most of them
discussed, respectively, in recent works88,89. Ocean model para-
metrizations, including extensive tuning of vertical mixing schemes
and sea-ice models66; enhanced representation of background-error
vertical correlations, improved bias-correction schemes27; improved
estimates of air–sea fluxes90 were all crucial upgrades of reanalysis
systems leading to more reliable ocean heat content reconstructions.
For instance, it was found that a successive vintage of reanalyses
compared to that of ORA-IP improved the accuracy of the repre-
sentation of ocean heat content variability91, especially in extra-
tropical regions57.

Furthermore, the CIGAR reanalysis is specifically designed for
OHC investigations, unlikemany other reanalyses included in theORA-
IP intercomparison exercise35, which were built for initializing long-
termprediction systems, and not as a climatemonitoring tool, and did
not account for a robust spinup procedure (most of themcold-starting
in 1993 without any stabilization or spinup protocol). CIGAR has been
instead spun up to avoid any possible drift (see the section “Sources of
uncertainty and ensemble generation”). Additionally, it is known that
one of the main causes of spurious variability in reanalyses is the
assimilation of altimetry35,92, which often leads to noisy or spurious
deep ocean increments when the interior ocean is not constrained by
in-situ profiles (i.e., before the Argo float deployment). Our system
does not include the assimilation of altimetry data because it is
designed to span more than 60 years (and will be further extended in
the past); consequently, it cannot reproduce any possible problem
during the altimetry era.

Data availability
OHC ensemble data from CIGAR generated in this study have been
deposited in the Storto and Yang (2023) database in Zenodo [https://
doi.org/10.5281/zenodo.8395297]. The latest version of the dataset
includes the gridded OHC dataset together with the diagnostics on
which the figures of this article are based. Description of the dataset,
instructions, and contact form for requesting other variables are
available through the website http://cigar.ismar.cnr.it/.

Code availability
The ocean model code is NEMO (v4.0.7), which is available for down-
load from https://forge.ipsl.jussieu.fr/nemo/changeset/15813/NEMO/
releases/r4.0/r4.0-HEAD?old_path=%2F&format=zip. Our modifica-
tions to this version of the NEMO model (for data assimilation pur-
poses, stochastic physics, and several other enhancements) are
available from https://git.isac.cnr.it/storto/nemo_4.0.7_orca1_cnr. The
variational data assimilation code is available fromhttps://baltig.cnr.it/
nemo_ismar-rm/3dvar_histrea.
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