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A transcriptome based molecular
classification scheme for
cholangiocarcinoma and subtype-derived
prognostic biomarker

Zhongqi Fan1,6, Xinchen Zou 2,6, Guangyi Wang1, Yahui Liu1, Yanfang Jiang 3,
Haoyan Wang 2, Ping Zhang1, Feng Wei1, Xiaohong Du1, Meng Wang1,
Xiaodong Sun1, Bai Ji1, Xintong Hu3, Liguo Chen3, Peiwen Zhou3, Duo Wang3,
Jing Bai2, Xiao Xiao4, Lijiao Zuo2, Xuefeng Xia2, Xin Yi2,5 & Guoyue Lv 1

Previous studies on the molecular classification of cholangiocarcinoma (CCA)
focused on certain anatomical sites, and disregarded tissue contamination
biases in transcriptomic profiles. We aim to provide universal molecular clas-
sification scheme and prognostic biomarker of CCAs across anatomical loca-
tions. Comprehensive bioinformatics analysis is performed on transcriptomic
data from 438 CCA cases across various anatomical locations. After excluding
CCA tumors showing normal tissue expression patterns, we identify two uni-
versal molecular subtypes across anatomical subtypes, explore the molecular,
clinical, and microenvironmental features of each class. Subsequently, a 30-
gene classifier and a biomarker (called “CORE-37”) are developed to predict
the molecular subtype of CCA and prognosis, respectively. Two subtypes
display distinct molecular characteristics and survival outcomes. Key findings
are validated in external cohorts regardless of the stage and anatomical
location. Our study provides a CCA classification scheme that complements
the conventional anatomy-based classification and presents a promising
prognostic biomarker for clinical application.

Cholangiocarcinoma (CCA), which is the second most common liver
cancer and constitutes ~15% of all primary liver malignancies1, has
currently been a significant public health concern worldwide. Unfor-
tunately, the global incidence and mortality of CCA have continued to
increase in recent years2,3. CCAs can arise anywhere in the biliary tree
and are typically classified into intrahepatic (iCCA), perihilar (pCCA),
and distal (dCCA) subtypes based on their anatomical origin4.

Despite thewidespreaduse of this conventional anatomical-based
classification, it has several limitations. For example, CCA (especially

pCCA) is often diagnosed at an advanced stage, making it challenging
to distinguish between intrahepatic or extrahepatic locations5. Addi-
tionally, there are no apparent pathological or molecular differences
between pCCA and the iCCA with large intrahepatic bile ducts as the
source6. While various molecular targeted treatments have been
approved (e.g., FGFR-1/2/3 inhibitors7,8 for treating iCCA), surgical
resection remains the primary choice for early-stage CCA, and treat-
ment options are limited9. Therefore, it is critical to conduct com-
prehensive molecular studies of CCA to gain a deeper understanding
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of its molecularmechanisms and pathogenesis. Such studies could aid
in developing classification schemes and targeted therapies.

Nevertheless, previous studies on the molecular classification of
CCA have been limited to a certain anatomical site6,9–11. For example,
Montal et al. performed an integrative molecular analysis of 189
extrahepatic CCA tumors and identified four molecular subtypes9,
while Sia et al. identified two molecular classes of iCCA with different
survival outcomes10. Though these studies provide valuable ther-
apeutic choices, the developed classification schemes rely largely on
accurate annotation of the anatomical site of CCA, and some have not
accounted for normal tissue contamination biases in transcriptomic
profiles. However, in the clinic, it was difficult to require entirely pure
anatomical areas and most were mixed with other site contamination.
This could skew the classification outcomes and affect treatment
options.

To address these limitations, we performed whole-genome
expression profiling on 438 CCA patients. By analyzing tumors that
avoided obvious tissue contamination, we identified two universal
molecular subtypes of CCA across anatomical locations that showed
distinct overall survival. We report on the clinical and molecular fea-
tures of these classes and the development of a prognostic scoring
system based on CholangiOcarcinoma anatomy-independent RNA
Expression index including 37 genes (CORE-37).

Results
Clinicopathological characteristics of CCA patients
This study enrolled 438patients diagnosedwith either dCCA, pCCA, or
iCCA (Table S1). Themajority of patients underwent surgical resection,
with 5 and 3 patients receiving surgical biopsy and puncture biopsy,
respectively. Themedian age of the participants was 63 (range, 25–82),
and 67.35% of them were male. With regards to anatomical location,
43.15%were diagnosedwith dCCA, 30.82%with pCCA, and 26.03%with
iCCA. Pathological TNM stage differed by anatomical locations
(Table S1), with IIA/IIB in dCCA, II/IIIC in pCCA, and II/IIIB in iCCA.

Initial transcriptome-based CCA subtypes are biased with tissue
contamination and anatomical location
Based on the technical criteria of pathological specimen collection, in
order to preserve the spatial relationship information between tumor
tissues and adjacent organs to facilitate pathologists in determining
the origin of CCAs and infiltration degree, some FFPE samples una-
voidably containmixed normal tissues, especially in dCCA (Fig. S1). To
evaluate how tissue contamination and anatomical location may
impact molecular subtype classification, we initially conducted an
unsupervised clustering analysis on the transcriptomicdata usingNMF
method (N = 438; Table S1, Table S2, Fig. S2). Our analysis revealed four
molecular subtypes named C1-4 (Fig. S2, Fig. 1a). We observed sig-
nificantly enriched iCCAs in C1 and C4, pCCAs in C3, and dCCAs in C2
(Fig. 1a). Normal tissue contamination significantly impacted mole-
cular classification, with hepatic tissue more predominant in C4 and
pancreatic tissue in C2 (Fig. 1a, Table S3). The subtype preference was
also reflected in the distribution of duodenal, lymphatic and neural
tissues (Fig. 1a, Table S3). Since the anatomical location of the lesions
determines the surgical approach and the extent of tissue con-
tamination, we hypothesized that the bias in this molecular typing is
mainly due to the proportion and type of contaminated tissues in
CCAs.Overall, our initial transcriptome-based classificationwas biased
by the effect of tissue contamination.

Transcriptomic profiling of selected samples identifies two
universal CCA subtypes across different anatomical locations
To reduce the impact of tissue contamination on molecular classifi-
cation of CCAs and find a molecular classification scheme that inde-
pendent on anatomical locations, we selected samples with low overall
contamination proportions from 438 samples for model construction,

while the remaining samples were used as verification cohort. The
overall contamination ratio for each sample was estimated by two
independent pathologists (overall contamination ratio = non-cancer
tissue area /total tissue area ratio, including hepatic, pancreatic, duo-
denal, lymphatic and neural tissues contamination). Given that hepatic
and pancreatic contamination were the most predominant in our
cohort, we collected previously published liver-specific and pancreas-
specific gene markers as templates for NTP analysis (Table S4)12. After
filtrating out samples based on NTP results and overall contamination
proportions (see “Material and Methods”), we retained a total of
164 samples which is referred to as the “purified cohort” for the sub-
sequent analyses, while the other 274 samples were used as the “ver-
ification cohort” (Fig. 1b, Table S1).

Hierarchical clustering analysis on the purified cohort showed
that CCAs with low contamination degree failed to be distinguished by
anatomical location at the transcriptomic level (Fig. 1c), likely due to
low anatomy-related specificity on their transcriptomic profiles. We
thus aimed to explore anatomy-independent molecular classification
scheme, and employed a consensus clustering approach on the pur-
ified cohort. The results strongly supported the existence of two
clusters (Fig. 1d, Fig. S3). Based on the expressed molecular char-
acteristics (detailed later in the text), we categorized these two sub-
types as “Mesenchymal & Immunosupressive-C1” (35.37%) and
“Metabolic & Proliferative-C2” (64.63%). Importantly, we found no
significant correlation between the identified molecular subtype and
the prevalence of tissue contamination as observed in our initial
results (Fig. 1d, Table S5), except for hepatic contamination, which was
significantly more prevalent in the Metabolic & Proliferative-C2 sub-
type than inMesenchymal& Immunosupressive-C1 subtype (Table S5).
Additionally, our analysis of clinical-anatomical characteristics showed
no association between molecular subtype and anatomical location
(Table S5), supporting our hypothesis that the previously observed
significant correlation between molecular subtypes and anatomical
locations was affected by the uneven distribution of tissue con-
tamination across anatomical sites. In summary, we identified two
universal subtypes across anatomical locations by focusing on the
purified cohort of 164 selected CCA tumors.

Transcriptional analysis reveals distinct molecular features and
tumor immune evasion mechanisms between subtypes
We performed gene set enrichment and expression deconvolution
analyses to comprehensively assess the molecular features and tumor
microenvironment of each subtype.

Mesenchymal & Immunosupressive-C1: accounts for 35.37% of the
purified cohort (58/164) and exhibited high activity of the epithelial-
mesenchymal transition (EMT) pathway (Fig. 2a). The aberrant acti-
vation of EMT-related, hedgehog and TNFα signaling pathways, which
previously reported in the mesenchymal eCCA class9, was observed in
this subtype (Fig. 2a). This was in line with a relatively higher stromal
score (Fig. 2b). In addition, immunohistochemistry (IHC) was per-
formed on tissue microarrays to verify the expression level of key
epithelial-mesenchymal transition proteins. E-cadherin is significantly
lower in C1 than in C2, while Vimentin showed higher expression in C1
tumor cells compared to C2, indicating a stronger epithelial-
mesenchymal transition in C1 than C2, although N-cadherin did not
show significant differences between the two groups (Fig. S4). Addi-
tionally, this subtype showed high signals of angiogenesis known to
promote tumor growth and invasiveness, with high activity of the
hypoxia pathway and significantly higher hypoxia signature score
(Fig. 2a, c, Fig. S5). It has been reported that hypoxia can induce the
hypoxia-inducible factors (HIF) system to mediate angiogenesis
process13. Consistently, the subtype had higher mRNA levels of genes
involved in HIF system, such as VEGFA, VEGFC (Vascular Endothelial
Growth Factor A andC), andHIF1A (Hypoxia-Inducible Factor 1 Subunit
Alpha) (Fig. 2d–f, Fig. S1).

Article https://doi.org/10.1038/s41467-024-44748-8

Nature Communications |          (2024) 15:484 2



This subtype was partially categorized as “immunosuppressive”
due to the presence of enriched classical oncogenic signaling path-
ways that are linked to immune evasion, including IL-6/JAK/STAT3 and
Wnt/β-catenin (Fig. 2a)14,15. Several related genes, including IL-6, JAK1,
JAK2 and STAT3, were overexpressed in this subtype (Fig. S6A–D).
Activation of the Wnt/β-catenin pathway is known to create non-
inflammatory tumor microenvironment by (1), enhancing the survival
of regulatory T (Treg) cells; and (2), interacting with tumor-associated

macrophages (TAMs) through Snail (a Zinc finger protein encoded by
Wnt-regulated gene), which can in turn increase β-catenin activity via
IL-1β15–17. Consistent with this, we observed overexpressed SNAI1 and
IL1B genes and predominant infiltration of TAMs and Treg cells (Fig.
S6E, F, Fig. 2g, h). CD163 was used asmarker forM2macrophages, and
it was shown that CD163 expression in C1 was significantly higher than
that in C2. On the other hand, CD8 T cells were found to be more
abundant in C2; However, this difference did not reach statistical
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significance (p =0.08), possibly due to small sample size (Fig. S5).
Moreover, we observed significantly higher T cell exclusion score in
this subtype, consistent with low infiltration level of CD8+ T lympho-
cytes (Fig. 2i, j, Fig. S5). Overexpression of genes encoding co-stimu-
lators/co-inhibitors occurred (Fig. 3a), implying possible immune
evasion mechanisms due to overexpression of immune checkpoints17.
These immune-related mechanisms together could be a particular
immune evasion strategy employed by this CCA subtype. Treatment
with immune checkpoint inhibitors suchasCTLA-4 and PDL1 (encoded
by CD274 gene) blockade may be effective for this subtype. Radio-
therapies and chemotherapies may also be of benefit to treating this
CCA subtype as they have been reported to improve physical prop-
erties of tumor microenvironment and improve the recruitment of
T cells in tumor tissues18–20.

Metabolic & Proliferative-C2: is more prevalent in the purified
cohort (64.63%) and was categorized by enriched metabolism-related
hallmarks such as fatty acid, bile acid and xenobiotic metabolism
(Fig. 2a). Genes encoding the peroxisome, an oxidative organelle
involves in lipid metabolism, were found overexpressed (Fig. 2a)21.
ADH1A andCYP3A4were used asmarkers to detectmetabolic changes
by immunohistochemistry (IHC). Consistent with the transcriptome
analysis results, we found that both ADH1A and CYP3A4 were sig-
nificantly lower in C1 compared to C2 (Fig. S5). These features align
with those showed in previously reported eCCA Metabolic class9. The
Metabolic & Proliferative-C2 subtype also exhibited high mRNA levels
of genes encoding MYC and E2F targets and activation of the G2M
checkpoint pathway, suggesting enriched proliferation-related fea-
tures (Fig. S5). We observed a predominant enrichment of PI3K-AKT-
mTOR and mTORC1 oncogenic pathways, which have been reported
associated with ferroptosis resistance in cancer cells22. Ferroptosis is a
mechanism remaining largely unknown in CCA, which inspired us to
explore if this process varied amongmolecular subtypes. As expected,
the ferroptosis-related genes and ferroptosis signature score were
dramatically lower in this subtype (Fig. 3b, c), demonstrating its
ferroptosis-resistant feature. Interestingly, our molecular subtypes
exhibit great similarity with two ferroptosis-related subtypes thatwere
previously discovered in hepatocellular carcinoma23, encompassing
several characteristics, such as pathway enrichment, tumor immune
microenvironment, and survival outcomes specific to each subtype
(discussed later).

This subtype exhibited relatively high infiltration level of CD8+ T
lymphocytes, CD4+ T memory resting cells and B naïve cells (Fig. 2j,
Fig. 3d, e), though the overall lymphocytic infiltration inferred from
transcriptional profiles did not differ significantly between the two
subtypes (Fig. 3f). Importantly, we found dramatically low expression
levels of MHC-I and MHC-II genes in these CCAs (Fig. 3a), implying a
defective antigen presenting and processing capacity of tumor cells as
a possible intrinsic immune evasion mechanism of this subtype. Che-
motherapies and radiotherapies may also be effective in treating this
subtype of CCAs as they can promote antigen-presenting cell recruit-
ment and boost antigen or receptor expression on the membrane of
tumors or immune cells20.

Survival analysis shows strong differences in survival between
two molecular subtypes
We examined the prognostic relevance of our molecular subtypes by
employing patients from our purified cohort who had available survi-
val information. After excluding patients with other cause of death, we
found that patients in the Mesenchymal & Immunosupressive-C1 class
had significantly poorer survival outcomes (Fig. 4a; log-rank sum test,
p = 1.9 × 10-4 < 0.05; median OS: 376 vs 565 days in the Metabolic &
Proliferative-C2 class), regardless of the anatomical location
(Fig. 4b–d). Univariate Cox proportional hazards regression analysis
revealed significant association between overall survival and anato-
mical location, stage and molecular classification (Table 1). Multi-
variate analysis identified anatomical location (dCCA class as control,
p =0.039 for iCCA and 0.166 for pCCA class), stage (p =0.01), and
molecular classification (p =0.002) as independent prognostic indi-
cators (Fig. 4e, Table 1). Themolecular and clinical features, prognostic
relevance, as well as the potential therapeutic strategies in each sub-
type, are summarized in Fig. 4f.

Design and validation of CCA classifier confirms the
reproducibility of molecular classification
To evaluate the applicability of our classification scheme in indepen-
dent cohorts, we developed a CCA subtype classifier that based on the
impact of genes on signal-to-noise ratio (SNR) scores, genes defining
eachmolecular class were selected to construct the classifier. Our CCA
subtype classifier composed of 20 genes defining Mesenchymal &
Immunosupressive-C1 and 10 genes defining the other subtype (see
“Material and Methods”, Fig. 5a, b). Interestingly, 9 out of 10 genes
defining Metabolic & Proliferative-C2 were mitochondrial-encoded
genes associatedwith cancer progression (Table S6)24, highlighting the
unknown role of mtDNA overexpression during progression of this
CCA subtype. One possible explanation is that activation of cell pro-
liferation and tumor growth in this class demands a large amount of
energy and metabolites, leading to enrichment of metabolism-related
pathways and overexpression of mtDNA driving mitochondrial
respiration and energy production.

This classifier predicted CCA class with a high confidence of 76.8%
in our purified cohort (126/164) and an overall precision of 96.03% (121/
126) (Fig. 5b). The accuracy of predicting a Mesenchymal &
Immunosupressive-C1 sample and Metabolic & Proliferative-C2 sample
was 89.66% and 82.08%, respectively. We further performed validation
on samples from the verification cohort (N = 274: dCCA= 136, pCCA=
51, iCCA=87), TCGA-CHOL project (N = 36: dCCA= 2, pCCA= 4,
iCCA= 30)25, and the Dong study (iCCA= 255)26. The validation results
fromthe verification cohort showed that our classifier could confidently
classify most CCA tumors with severe tissue contamination into a par-
ticular molecular class with overexpression of the corresponding clas-
sifier genes (Fig. S7, Fig. S8). In addition, both molecular subtypes were
successfully identified in the TCGA-CHOL cohort (Fig. S9, Fig. S10) and
the Dong cohort (Fig. S11, Fig. S12, Fig. S13), further revealing the
reproducibility of our molecular classification scheme and its potential
to be applied to other independent cohorts.

Fig. 1 | Correlation between CCA molecular subtypes and clinical and anato-
mical features. a Initial non-negative matrix factorization (NMF) clustering on
transcriptomic data of all samples (N = 438) revealed four molecular classes.
Molecular cluster & Anatomical site, p = 1.00E-06; Molecular cluster & Stage,
p = 1.00E-07; Molecular cluster & Resection method, p =0.0001; Molecular cluster
& Hepatic contamination, p = 2.20E-16; Molecular cluster & Pancreatic contamina-
tion, p = 2.20E-16; Molecular cluster & Duodenal contamination, p = 4.20E-06;
Molecular cluster & Lymphatic contamination, p =0.0036; Molecular cluster &
Neural contamination, p =0.0017. b Sankey diagram representing the select rules
of the “purified cohort” (N = 164) and “Verification cohort” (N = 274). First panel: all
438 CCA cases enrolled in this study; second panel: samples grouped according to

whether the overall tissue contamination proportion >25%; third panel: samples
grouped according to whether the NTP result < = 0.1; fourth column: samples with
FDR < =0.1 in NTP result and with an overall tissue contamination proportion >25%
were selected into the “verification cohort”, while the other samples selected into
the “purified cohort”. c Dendrogram generated based on expression matrix of the
purified cohort (protein-coding genes only; N = 164). d Twomolecular classes were
determined through consensus clustering on the purified cohort (N = 164). Mole-
cular cluster & Stage, p =0.03; Molecular cluster & Liver percentage, p =0.02; P
valueswere calculated by two-sided Fisher’s exact test for categorical variables and
Kruskal–Wallis rank sum test for categorical and continuous data. Red asterisks
indicate variables significantly correlated with molecular classes (p <0.05).
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Fig. 2 |Molecular characteristics and immunemicroenvironmentofCCAclasses.
aHeatmap representing the enrichment of hallmark gene sets. Single-sample gene
set enrichment analysis (ssGSEA) was used to obtain enrichment scores, with
samples from the same subtype indicated with a normalized z-score. Box plots
representing b the estimation of stromal compartment (ESTIMATE package); c the
estimation of hypoxia signature score (ssGSEA) in each class; d relative RNA

expression of VEGFA; e relative RNA expression ofVEGFC; f relative RNA expression
of HIF1A; g the abundance of macrophage M2 (CIBERSORTx); h the abundance of
regulatory T (Treg) cells (CIBERSORTx); i the estimation of T cell exclusion (TIDE
software); j the abundance of CD8+ cytotoxic cells (CIBERSORTx). Box plots show
median, interquartile values, range and outliers (individual points), C1, n = 58; C2,
n = 106. P values were calculated by two-sided Wilcoxon rank sum test.
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Next, we investigated if the main molecular features of two sub-
types identified from the purified cohort were consistent with those
from the verification cohorts and external cohorts. The results fromall
three validation cohorts showed similar pathway enrichment patterns
in each subtype as observed in the purified cohort (Fig. S7B, Fig. S9B,
Fig. S11B). The downregulated expression of ferroptosis-related genes
and MHC-I/MHC-II genes in Metabolic & Proliferative-C2 and over-
expression of genes encoding co-stimulator/inhibitor molecules in
Mesenchymal & Immunosupressive-C1 were observed in some cohorts
(Fig. S8, Fig. S13). However, divergencies were observed in TCGA-
CHOL cohort and Dong cohort (Fig. S10, Fig. S12). These discrepancies
may be attributed, in part, to the bias introduced by tissue con-
tamination in both cohorts.

Owing to available proteomic data from the Dong cohort26, we
were able to validate specific expression patterns in each subtype at
the proteomic level. As expected, proteins encoded by certain classi-
fier genes were overexpressed in the corresponding subtype (Fig.
S11A). The protein levels of MHC-I/MHC-II antigens and co-stimulator/
inhibitor molecules were relatively higher in Mesenchymal &
Immunosupressive-C1 (Fig. S13), which was consistent with our find-
ings at the transcriptomic level.

Overall, the validations confirmed the utility of our classification
scheme, the accuracy of our classifier and the reproducibility of
molecular features in each subtype. Given its prognostic relevance and
independenceon anatomical location and tissue contamination, itmay
supplement the conventional clinical approach of tumor classification
based on anatomical location and aid treatment decision-making.

A prognostic biomarker derived from differential gene
expression analysis between subtypes
As the 30-gene classifier divides samples into two categories, quanti-
fying the relationship between this categorical variable and survival
outcomes can be challenging. To address this issue, we sought to
identify a continuous variable as a prognostic biomarker derived from
subtypes, the value of which is related to survival outcomes in CCA
patients. To achieve this, weperformeddifferential expression analysis
on our purified cohort to identify differentially expressed genes
(DEGs) in each subtype (adj p <0.01 and absolute fold change>2,
Metabolic & Proliferative-C2 class as reference group). We selected 25
DEGs as a C1-like signature and 12 DEGs as a C2-like signature
(Table S8). By combing two signatures and employing ‘Singscores’
method, we were able to quantify C1-like and C2-like status of a tumor
and a unified score for inferring its overall status (see “Materials and
Methods”). The unified-score-basedprognostic evaluation schemewas

termed as “CORE-37” (CholangiOcarcinoma anatomy-independent
RNA Expression index including 37 genes). As expected, CCAs from
C1 class exhibited predominantly C1-like features and a low C2-like
signature score, resulting in a relatively high CORE-37 score, while the
opposite situation occurred in CCAs identified as C2 class (Fig. 5c).

We next investigated prognostic relevance of the CORE-37 score.
Survival analysis in our purified cohort showed that the CORE-37 score
stratified patients in classes with significantly different survival out-
comes (Fig. 5D; log-rank sum test, p = 7 × 10-3 < 0.05). Multivariant Cox
regression analyses further showed that CORE-37 score (either con-
sidered as a continuous variable or categorical variable based on
quartiles) was an independent prognostic biomarker (Fig. 5e, f). We
validated our findings on the verification cohort, Jusakul cohort27, and
Dong cohort26. Consistently, all confirmed that the CORE-37 score was
an independent prognostic factor (Figs. S14–S16). Moreover, we
observed a stepwise increase in hazard ratios with the increase of
categorical CORE-37 score in all the cohorts, highlighting its reliability
as a prognostic indicator. The dysregulation of the composed genes
that compose this score may lead to continuous effects on tumor
malignancy.

We furthermeasured the usefulness of CORE-37 biomarker (Fig. 6,
Table S9). ROC plots suggested that the prediction performance of
CORE-37 biomarker changed as time passed by, with the maximum
AUC occurred at year 4 (Fig. 6a). We validated the predictive ability of
the CORE-37 biomarker through NRI analysis, we compared themodel
considering age and TNM stage (as the control/standard model) with
the one considering age and CORE-37 score (Fig. 6b, Table S9). As
TNM-staging criteria vary between CCAs with different anatomical
location, we separately performed comparisons regarding to different
anatomical locations. The results showed positive NRI values in all
three comparisons, demonstrating that the prediction performance of
CORE-37 prognostic biomarker was superior to that of TNM-staging,
regardless of anatomical location. Additionally, we estimated the
performance of integrated model (involved age, TNM stage, CORE-37
score). The results showed even greater NRI value of this model for
dCCAs and iCCAs when comparing with that ofmodel considering age
and CORE-37 score (Table S9), implying a better performance of the
integrated model for dCCAs and iCCAs.

In summary, the CORE-37 score derived from the molecular sub-
type signatures is a highly reliable prognostic indicator of CCAs,
regardless of stage and anatomical location of tumors. These results
validate the prognostic performance and applicability of CORE-37
score. Sinceour prognostic biomarkers are independent of anatomical
locations and tissue contamination, the CORE-37 score can be used to

Table 1 | Univariate and multivariate analysis for overall survival

Univariate analysis Multivariate analysis

Factor Category N (%) HR (95% CI) p HR (95% Cl) p

Age - - 1.02 (0.99–1.05) 0.176

Sex female 45 (29.0) -

Male 110 (71.0) 1.54 (0.92–2.56) 0.1

Anatomical location Distal 48 (31.0) - -

Intrahepatic 25 (16.1) 2.20 (1.12–4.34) 0.022 2.05 (1.04–4.07) 0.039

Perihilar 82 (52.9) 1.76 (1.04–2.99) 0.036 1.46 (0.85–2.50) 0.166

Stage I + IA/B + II + IIA/B 113 (72.9) - -

IIIA + IIIB + IIIC + IV + IVB 42 (27.1) 2.18 (1.39–3.42) 0.001 1.84 (1.16–2.92) 0.01

Differentiation Low +Medium low 98 (63.2) -

Medium +High 57 (36.8) 0.98 (0.63–1.53) 0.921

Molecular subtype Metabolic & Proliferative-C2 99 (63.9) - -

Mesenchymal & Immunosupressive-C1 56 (36.1) 2.20 (1.43–3.38) <0.001 2.02 (1.30–3.12) 0.002

Thep values are two-sided andp < 0.05was considered significant.Clinical factorswith ap <0.05 (considered significant) in both univariate andmultivariate analysiswerehighlightedbybold style.
CI confidence interval, HR hazard ratio.
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predict the overall survival of CCApatients, even in sampleswith tissue
contamination. This biomarker canbe applied to assess the prognostic
value of CCAs with available transcriptional profiles but vague clinical
annotation.

Discussion
Precise molecular classification of CCA tumors is a critical step, given
the urgent need for targeted molecular therapy and the current lim-
itations in anatomical-based classification5,6,9. While recent molecular
classification schemes forCCA have been developed6,9–11, most of them
fail to consider the effect of normal tissue contamination and are only
applicable toCCAswith a specific anatomical site. Thus, a classification
scheme may be wrongly applied when anatomical location of a CCA
tumor is ambiguous, leading to controversial results and unsatisfac-
tory therapeutic treatment. A molecular classification scheme com-
monly applied to CCA independent of anatomical site may be an
advantage. To solve this obstacle, we have obtained transcriptomic
data of 438 clinically-annotated CCA tumors with different anatomical
sites, which to our knowledge is the largest cohort investigating CCA
molecular classification at transcriptomic level.

We initially identified four molecular subtypes, but found that
molecular classification largely depended on tissue contamination and
anatomical site. In order to reduce the impact of tissue contamination
on molecular classification of CCAs and find a molecular classification
scheme that independent of anatomical location, we retained a total of
164 samples as the “purified cohort”, which were selected by overall
tissue contamination ratio and NTP results, while the other 274 sam-
ples were used as the “verification cohort” (Fig. 1B, Table S1). Based on
the analysis results of the purified cohort, we identified two universal
molecular subtypes across anatomical subtypes (Fig. 4F). These two
subtypes exhibit distinct pathway activities, tumor immune micro-
environment and overall survival. Ferroptosis is a cell-death process
driven by the oxidation of phospholipids in an iron-dependent
manner28. Interestingly, one class also exhibits ferroptosis-resistance
features and low expression levels of ferroptosis-related genes as
reported in hepatocellular carcinoma23. In line with this, the aberrant
activation of PI3K-AKT-mTOR and mTORC1 oncogenic pathways that
suppress ferroptosis is also enriched22, suggesting a critical role of this
process in the progression of this CCA subtype. Thus, ferroptosis
induction as a monotherapy may be less effective in treating
ferroptosis-resistant C2 subtype comparing to treating C1 subtype. As
ferroptosis remains largely unknown in CCA research, our findings
may imply research directions regarding to this process in CCA.
Overall, our results provide a comprehensive understanding of the
molecular characteristics of two common CCA subtypes across dif-
ferent anatomical sites.

The current TNM-staging system for CCA is based on anatomical
location. However, controversies exist when classifying tumors loca-
ted at anatomical border areas. For example, when a tumor is located
near to both the liver parenchyma and the hepatic hilum, it could be
difficult to determine its origin as those at the border between the liver
and hepatic hilum could only be inferred by tumor size. Additionally,
whether a tumor at the junction of the common bile duct and cystic
duct belongs to pCCA or dCCA is still controversial. The classification
method we proposed is independent of anatomical location, thus
overcomes the aforementioned limitations. Additionally, this method
also has clinical application value in guiding personalized and accurate
treatments.

We developed a 30-gene classifier in our purified cohort and
validated our molecular classification scheme in three additional
cohorts. Our results suggest that the classifier can reliably predict the
molecular subtype of a CCA tumor, independent of normal tissue
contamination. The predicted molecular subtypes consistently
exhibited most characteristics as identified in our purified cohort,
further proving the reproducibility and utility of our classification

scheme. One limitation of the validation analysis is the lack of available
transcriptomic data for dCCA and pCCA tumors in two external
cohorts25,26. As our classification scheme was originally developed in
cohort comprising of high number of dCCA and pCCA tumors, it still
has the potential to accurately classify these tumors.

Anothermain contribution of our study is a prognostic biomarker
named CORE-37 score that was derived from the DEGs between the
two subtypes. This biomarker inferred from the expression level of 37
DEGs can stratify patients into groups with distinct survival outcomes,
and is proven in both our cohort and external cohorts to be an indi-
cator independent of sex, stage, and anatomical site. The application
of CORE-37 scheme may be of great interest to clinicians for making
therapeutic decision for patients with CCA.

Several limitations exist in this study. Firstly, though several
potential actionable targets are recommended for each subtype based
on itsmolecular characteristics and tumor immunemicroenvironment
(Fig. 4f), further studies are needed to confirm these findings. Mean-
while, given that targeted treatments for CCA, such as durvalumab,
pemigatinib, futibatinib, dabrafenib plus trametinib, trastuzumab plus
pertuzumab, TdX and others, have already been approved in several
countries, it is imperative to initiate a series of prospective studies to
explore the predictive value of the CORE-37 signal in actionable tar-
geted therapies. Secondly, it is important to note that the proportion
of the three anatomical subtypes of CCA in our cohort is not evenly
balanced. Minimizing the potential quantity bias associated with dif-
ferent anatomical subtypes during model construction could enhance
the model’s quality, even though the CORE-37 classification scheme is
independent of anatomical subtypes. Thirdly, the number of patients
in stage 4 is relatively small in our cohort, there for the predictive
performance of CORE-37 in stage 4 patients still needs to be validated
in larger cohorts. Last but not least, several other important char-
acteristicsmay be hindered as only RNA-sequencing data is available in
this study. Integrative analysis on multi-omics data may provide more
comprehensive information for these subtypes (e.g., at the genomic or
epigenomic level).

The conventional anatomical-based classification of cholangio-
carcinoma is limited to the site contamination, that may interfere the
clinical treatment decisions. Our study provides a CCA classification
scheme independent of anatomical location, which can supplement
the conventional anatomical-based classification and aid in treatment
decision making. Our study also generates a powerful prognostic
biomarker with high potential to be applied in the clinical field for
predicting the survival outcome of patients with CCA.

Methods
This study was conducted in accordance with the Declaration of Hel-
sinki and the Ethical Guidelines for Clinical Studies, and approved by
the Institutional Review Boards of The First Hospital of Jilin University
(No: 2021-768).

Patients and tumor samples
A total of 438 patients with bile duct cancer including iCCA, pCCA and
dCCA, who underwent curative-intent operation between 2016 and
2021 at The First Hospital of Jilin University were involved in this study.
Formalin-fixed, whole slide section paraffin-embedded (FFPE) samples
were obtained from each patient. Pathological diagnosis and the esti-
mation of non-cancer tissue area /total tissue area ratio (including
hepatic, pancreatic, duodenal, lymphatic and neural tissues con-
tamination) for each sample were done by two independent patholo-
gists. This study was conducted in accordance with the Declaration of
Helsinki and was approved by the Institutional Review Boards of The
First Hospital of Jilin University (No: 21Q023-001). Informed consent
was obtained from all subjects involved in the study. The clinical
information of patients in this cohort is provided in Supplemen-
tary Data 1.
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RNA extraction and gene expression profiling
Total RNA was successfully extracted from 438 FFPE samples using
TRIzol and RNeasy MinElute Cleanup Kit (Invitrogen). RNA purity was
assessed using the NanoDrop Spectrophotometer (Thermo Fisher
Scientific™, Waltham, USA). RNA integrity and concentration were
measured with the RNA Nano 6000 Assay Kit of the Bioanalyzer
2100 system (Agilent Technologies, Palo Alto, CA, USA). Subse-
quently, mRNA libraries were created by using the NEB Next Ultra
RNA Library Prep Kit (NEB, Beverly, MA, USA), following the manu-
facturer’s protocol. Geneplus-2000 sequencing platform (Geneplus,
Beijing, China) was utilized to sequence the constructed RNA-seq
libraries. The sequencing reads containing adapter sequences and
low-quality reads were removed to obtain high-quality reads. Reads
passing quality control were aligned to the human genome hs37d5
using STAR software29. Transcript assembly was conducted by using
StringTie230,31.

Cohort stratification and molecular classification
It may not be effective and accurate enough to identify highly con-
taminated samples only based on normal tissue proportions inferred
by anatomical judgment, as contamination degree of one samplemay
be subjectively under-or over-estimated. Given the most severe con-
taminations were hepatic or pancreas tissue, nearest template pre-
diction (NTP) analysis was performed with R package CMScaller
version 2.0.1 to determine samples showed liver-specific or pancreas-
specific expression pattern32,33, which integrated with anatomical
estimation to exclude highly contaminated samples. Samples with
FDR < = 0.1 in NTP result and with an overall tissue contamination
proportion >25% were selected into the “verification cohort”,
while the other samples selected into the “purified cohort”. To mini-
mize the impact of tissue contamination on molecular classification
and the following characterization, the purified cohort was used for
exploration, while the verification cohort involved in validation
analyses.

Non-negative matrix factorization (R package NMF version
0.24.0)34 and consensus clustering method (R package Consensu-
sClusterPlus version 1.58.0)35 were applied to obtain unsupervised
molecular classes from the original and purified cohorts, respectively.
To construct expression-based dendrogram, the Euclidean distance
between samples was calculated and hierarchical cluster analysis was
performed with the “average” cluster method.

Gene set variation analysis and tumor microenvironment
Gene set variation analysis was performed using R package GSVA
version 1.42.036, with method = ’ssgsea’ for 50 hallmark gene sets from
MSigDB collections37 and hypoxia-related38, and method = ’zscore’ for
ferroptosis-related23 gene sets.

To investigate the tumor microenvironment, stromal and
immune scores were calculated using R package ESTIMATE version
1.0.1339. The CIBERSORTx web tool (https://cibersortx.stanford.edu/)
was applied to estimate the abundances of interested immune cells of
interest in the tumor milieu40. Additionally, the Tumor Immune Dys-
function and Exclusion (TIDE) web tool (http://tide.dfci.harvard.edu/)
was utilized to estimate the exclusion of infiltrating CD8+ cytotoxic
T cells41.

Molecular classifier design
To construct a molecular classifier, the Class Neighbors tool from the
GenePattern web (https://cloud.genepattern.org/) was applied to
identify genes that were closely correlated with molecular class
templates42. Based on the impact of genes on signal-to-noise ratio
(SNR) scores, genes defining each molecular class were selected to
construct the classifier, which was further tested on validation cohorts
with the applicationofNTPmodule from theGenePatternweb (https://
cloud.genepattern.org/)42.

Histology and immunohistochemistry (IHC)
Thirty-six representative samples fromC1 (N = 18) and C2 (N = 18) were
selected for tissue microarray (TMA) construction, the TMA is pre-
pared as previously described43. For immunohistochemistry staining,
the sections were stained using anti-Vimentin antibody (Proteintech,
1:2000), anti-Ki67 antibody (Proteintech, 1:5000), anti-Cyclin D anti-
body (Proteintech, 1:1500), anti- E-cadherin antibody (Proteintech,
1:2000), anti- N-cadherin antibody (Proteintech, 1:200), anti-ADH1A
antibody (Abcam, 1:500), anti-CYP3A4 antibody (Proteintech, 1:200),
anti-CD34 antibody (Proteintech, 1:1000), anti-VEGFA antibody (Pro-
teintech, 1:200), anti-CD8-alpha antibody (Abcam, 1:500), anti-CD163
antibody (Proteintech, 1:1000). Images were captured by MoticEa-
syScan (Motic).

Prognostic biomarker construction and validation
To construct subtype-derived prognostic biomarker, R package
DESeq2 version 1.34.0 was used for gene differential expression
analysis between two molecular classes44. Differentially expressed
genes (DEGs) were extracted by filtering for adjusted p < 0.1 and
absolute fold change>1. Top upregulated genes in molecular classes
were used to construct C1-like and C2-like signatures. R package
singscore version 1.14.045,46 was applied to compute sample-wise
enrichment scores for two signatures, which outputted a unified
score for the complete signature (CORE-37 score) as well as scores
for C1-like and C2-like signatures separately. The sign of scores
relative to the Metabolic & Proliferative-C2 signature was changed
for graphical reasons.

The usefulness of CORE-37 biomarker was validated by receiver
operator characteristic (ROC) curve comparison (R package time-
ROC version 0.4) and net reclassification index (NRI) estimation (R
package nricens version 1.6). Patients with unavailable clinical
information or died due to causes unrelated to cancer were
excluded.

Survival analysis
Overall survival (OS) was defined as the duration (days) between sur-
gical resection and death of any cause or the last follow-up. Patients
who died due to causes unrelated to cancer were excluded from sur-
vival analyses to enhance reliability. Survival data were analyzed by
using Kaplan–Meier estimates, log-rank test, univariate and multi-
variate Cox regressions.

Statistical analysis
The computational analysis, statistical analysis and plot generation in
this study were performed using R software version 4.1.2 under the
RStudio environment (https://www.r-project.org/). Association
between categorical variables were analyzed by Fisher’s exact test.
Comparisons of categorical and continuous variables were done by
using Kruskal–Wallis rank sum test andWilcoxon rank sum test. All the
statistical methods were used as appropriate during analyses. All
reported p values are two-sided and p < 0.05 was considered
significant.

External validation
Our constructed classifier and molecular classification scheme were
tested using two external datasets: the transcript per million (TPM)
matrix and clinical information from 36 patients in the TCGA-CHOL
project (dCCA= 2, pCCA = 4, iCCA = 30) were downloaded at https://
www.cbioportal.org;25 the TPM matrix and clinical information from
255 patients in the Dong cohort, as well as the protein expression
matrix available for 214 patients, were downloaded26.

The Dong dataset was also used for prognostic biomarker vali-
dation. Additionally, the clinical information and expression data
available for 115 patients in the Jusakul cohort (iCCA= 81, pCCA= 28,
dCCA= 6) were downloaded for validating biomarker27.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rawTPM expression data of 438 samples employed in this study is
provided in Supplementary Data 1. The raw sequence data reported in
this paper havebeendeposited in theGenomeSequenceArchive (GSA-
Human: HRA004952) that are available under controlled access
[https://ngdc.cncb.ac.cn/gsa-human/browse/HRA004952]47,48. Access
can be requested from Dr Guoyue Lv (lvgy@jlu.edu.cn). There are no
specific restrictions onwhomayapply to for data sharing andhow long
the data may be used after it has been acquired.

The individual de-identified participant data (for the in-house
cohort) can be made available upon request to Dr Guoyue Lv,
(lvgy@jlu.edu.cn). The remaining data supporting the findings of this
study are available within the article, Supplementary Information and
Supplementary Data 1.

Code availability
The source code for bioinformatics analyses can be accessed via:
https://github.com/WangHaoyan6/CCA_project/blob/master/Rcode_
for_github.R.
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