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Patterns of tropical forest understory
temperatures
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Temperature is a fundamental driver of species distribution and ecosystem
functioning. Yet, our knowledge of the microclimatic conditions experienced
by organisms inside tropical forests remains limited. This is because ecological
studies often rely on coarse-gridded temperature estimates representing the
conditions at 2mheight in anopen-air environment (i.e.,macroclimate). In this
study, we present a high-resolution pantropical estimate of near-ground
(15 cm above the surface) temperatures inside forests.We quantify diurnal and
seasonal variability, thus revealing both spatial and temporal microclimate
patterns. We find that on average, understory near-ground temperatures are
1.6 °C cooler than the open-air temperatures. The diurnal temperature range is
on average 1.7 °C lower inside the forests, in comparison to open-air condi-
tions. More importantly, we demonstrate a substantial spatial variability in the
microclimate characteristics of tropical forests. This variability is regulated by
a combination of large-scale climate conditions, vegetation structure and
topography, and hence could not be captured by existing macroclimate grids.
Our results thus contribute to quantifying the actual thermal ranges experi-
enced by organisms inside tropical forests and provide new insights into how
these limits may be affected by climate change and ecosystem disturbances.

Tropical forests host up to half of Earth’s biodiversity1–3. However, the
climatic conditions encountered by organisms in the tropical forests
are not yet well understood. Temperature patterns are a fundamental
factor defining the survival, growth, and reproduction rate of
organisms4,5, shaping the occupancy, distribution, and diversity of
species6–9. Therefore, to better comprehend the ecological niches of
species, temperature becomes the most important determinant10–12.

Despite the importance of temperature in ecosystem functioning
and services, currently available climate datasets cannot properly
capture the range and variability of temperature in tropical forests.
The vast majority of products available at regional or global scales
provide estimates of open-air temperature, which accurately represent

the conditions over open, well ventilated, homogeneous areas at 2
metres above the ground. These measurements represent the tem-
perature experienced outside the canopy of tropical forests, and they
can differ by several degrees from the conditions experienced at
understory level below the forest canopy (i.e., the microclimate)13,14.

Forest structure is a prominent factor driving the fine-scale hor-
izontal and vertical variation in understory temperature15,16. During a
clear-sky day, most of the incoming shortwave solar radiation is either
absorbed or reflected by the forest canopy, which, along with evapo-
transpiration cooling and damped air mixing, helps to reduce
understory temperature15,17. At night, on the other hand, forest canopy
helps to retain outgoing longwave radiation, leading to a warmer
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temperature as compared to open-field conditions15. At larger scales,
topographic factors such as elevation, slope, and aspect also influence
microclimate patterns18,19. For example, the pooling of cold air in low-
lying terrains, aspect-related exposure to solar radiation, and the
temperature lapse rate due to elevation differences are all well
documented20–23.

Although microclimate has been of long-standing interest in
ecology, earlier studies had limited scope as they were based on field
measurements at single point locations24–26. Recent advances in
remote sensing, big-data processing, and the growing availability of
ready-to-use fine-resolution remote sensing datasets have created a
renewed interest in microclimate ecology9,27,28. By employing these
advanced techniques, ecologists are gaining new insights into the
processes underlying microclimate variability at continental scale and
postulating the consequences on forest habitats in nexus with chan-
ging climate14,18,29.

In recent years, efforts have been made to reveal the global pat-
terns of understory and near-surface temperatures. The SoilTemp
initiative, for instance, pools microclimate data from thousands of
temperature sensors spread across the word30. Using this database,
multiple understory bioclimatic variables have been developed for
European Forests at 25m spatial resolution14,31. Similarly, global esti-
mates of soil temperature at a 1 km resolution were also developed
based on this database32. Nonetheless, this latter study is known to
largely extrapolate the estimates in tropical forests, given that the
training dataset for the models used in the study weremostly situated
in temperate and boreal regions32. Furthermore, the spatial resolution
of 1 km is also insufficient for many micro-scale ecological studies33.
Consequently, to date, the spatial and temporal patterns of tempera-
tures inside tropical forests remain unquantified.

Bridging this knowledge gap is fundamental to foster a next
generation of ecological and biophysical models in tropical regions,
and thus improve our understanding on how living organisms will
respond to climate change. In this study, we present fine scale esti-
mates of understory air temperature (i.e., 15 cm above ground) for the
global tropical forest. We used a machine learning model trained with
in situ temperature data collected between 2016 and 2021 by 180
microclimate sensors spread across three continents (Fig. 1a). The
model was driven by satellite observations of forest structural and
functional traits, topographic variables, as well as macroclimatic con-
ditions retrieved fromatmospheric reanalysis data.Weproduced 30m
spatial resolution estimates of microclimate temperatures, providing
information on both diurnal and seasonal variability, thus providing
the understory thermal ranges. Furthermore, we evaluated day-time
and night-time temperature offsets (i.e., the difference between
macro- and microclimate temperatures), to quantify the capacity of
tropical forests to buffer large-scale climate variability. Finally, we
demonstrate that our estimates of understory temperature reveal
spatial heterogeneity patterns that are otherwise masked in macro-
climate datasets.

Results
We produced pantropic estimates of daily average (Tdaily), day-time
(Tdt) and night-time (Tnt) understory temperature at 30m spatial
resolution. As a snippet to the modelling results, Fig. 1b–d shows the
spatial variation of annualmeanTdaily in three continents within a 10° ×
10° area selected around the equator. Monthly variations of tem-
peratures for each selected area are shown in Fig. 1e–g. For the
selected areas, the average Tdaily, Tdt, and Tnt in Central Amazoniawere
24.5 ± 0.5 °C (standard deviation over a 10° × 10° area), 26.1 ± 0.7 °C,
and 23.3 ± 0.5 °C, respectively (Fig. 1e). Understory temperatures
were slightly cooler in the central areas of the Congo basin compared
to Central Amazonia (Tdaily = 23.9 ± 0.6 °C, Tdt = 25.5 ± 0.8 °C,
Tnt = 22.6 ± 0.6 °C) (Fig. 1f). We observed a higher spatial variability of
Tdaily in the forests of Borneo Island (Fig. 1g), largely due to the strong

topographic heterogeneity; however, temporal variability was low
compared to the other two regions (Tdaily = 23.9 ± 1.6 °C,
Tdt = 25.3 ± 1.7 °C, and Tnt = 22.9 ± 1.7 °C) (Fig. 1g).

The temperature offset (ΔT), which represents the difference
between the expected understory temperature and open-air tem-
perature, also showed large spatial and temporal variability (Fig. 2).
Southeast Asia showed a relatively stable daily mean ΔT (ΔTdaily)
throughout the year, with only subtle seasonal and latitudinal changes.
Nonetheless, some areas of Southeast Asia presented exceptionally
positive ΔTdaily (i.e., understory temperatures warmer than the mac-
roclimate), where positive ΔTdaily values were observed during the dry
season between May and September (Table S1). On the other hand,
ΔTdaily, as well as the day-time offset (ΔTdt), remained negative
throughout the entire year across South America and Central Africa
(Figs. 2 and S1). Forests in Africa had some of the highest intra-annual
ΔTdaily variability, while lowest values were observed in the forests of
Southeast Asia (Table S1).

In South America, areas near the equator displayed little intra-
annualfluctuation inΔT. However, in the southernparts of theAmazon
basin, a strong seasonal signal was observed, with ΔTdaily declining
during the dry season from July to November. A similar pattern was
observed in Africa, with seasonal stable offsets closer to the equator,
and amplified seasonal signals at higher latitudes (e.g., beyond 5° S and
5° N). Overall, elevationwas an important feature regulating the spatial
patterns of ΔTdaily and ΔTdt, with larger offsets (negative values) often
observed at higher elevations (Tables S1 and S2).

The night-time offset (ΔTnt) showed a more diverse spatio-
temporal pattern primarily driven by elevation and seasonality. In low-
elevation forests of South America and Africa near the equator, the
ΔTnt values remained negative during the entire year (Table S3).
However, in northern parts of theAmazon Forest (e.g., FrenchGuinea),
night-time understory temperatures were warmer during wet seasons
(e.g., 0.25 °C warmer between May–Jul and 0.37 °C warmer between
Dec–Feb) (Fig. S2g). In Borneo,ΔTnt was on average 0.87 °C during the
wet season (from Nov–Mar) (Fig. S2i). In mid-elevation forests of
Eastern Indonesia (above 5° South), ΔTnt showed a significantly posi-
tive signal during the dry season (from Jun–Oct) (Fig. S2l). Across all
three continents, intra-annual variability of ΔTnt was notable in mid-
and high-elevation forests located above 5° in both directions of the
equator (Table S5).

The spatial patterns of diurnal understory temperature range (RT)
during themonths of January andAugust, aswell as themonthly values
of RT at selected locations, are presented in Fig. 3. In South America,
some forests north of the equator (e.g., in FrenchGuinea) showed a bi-
annual seasonal pattern, with the first RT peak around March, and the
second aroundOctober (Fig. 3g). These peaks were at the onset of wet
seasons. The southern part of the Amazon basin had maximum RT

during the local dry season, between August and September. A similar
pattern was observed on the African continent, with higher RT values
during the dry seasons (Fig. 3h, k, Table S6), which alternated between
the Northern and Southern hemisphere. In Southeast Asia, forests in
north Borneo showed no pronounced RT peak with only slight fluc-
tuations in various months (Fig. 3i). The forests of Eastern Indonesia
showed maximum RT in November before the start of a rainy season
(i.e., from Dec–Mar). Despite the differences in intra-annual patterns,
average RT values in all continents fluctuated between 1.5 and 5 °C
(Fig. 3, Table S6), whereas macroclimate RT ranged between 3
and 7.5 °C.

The spatial heterogeneity of the understory temperatures was
assessed using empirical semivariograms fitted with exponential
model functions (Fig. 4). The distance at which the semivariograms
flatten represents the minimum-distance where observations are no
longer spatially-autocorrelated (d). The d for understory temperatures
(dunder) was substantially lower than for open-air temperature (dopen)
across all continents, thus providing quantitative evidence that
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microclimate patterns display a higher spatial heterogeneity thanwhat
can be inferred from themacroclimate data. These results highlighted
that accounting for the effects of vegetation biophysical character-
istics and topographic features in regulating temperatures sub-
stantially contributes to revealing subtle spatial patterns of thermal
traits across tropical forests.

Discussion
Our study provides the first global estimate of near-ground air tem-
peratures in tropical forest understories, providing a crucial founda-
tion to quantifying the conditions experienced by many organisms in
some of the most biodiverse places on Earth. The results reiterate that
currently available gridded macroclimate data fail to accurately por-
tray the spatiotemporal patterns and magnitudes of understory
temperatures19,34,35. We demonstrate that, although the average

understory temperatures in tropical forests are often cooler compared
toopen-airmeasurements, the characteristicsof these differences vary
substantially across different continents, seasons, and time of the day.
Temperature offsets, as well as their seasonal fluctuations, were less
pronounced near the equator.

At night-time, understory temperatures were often warmer than
the macroclimate in some regions. The presence of night-time warm-
ing in those regions (Fig. S2) is linked to the shortwave energy
absorption by the canopy during the day-time, which is released in the
form of longwave radiation at night. Higher heat capacity of forest
biomass also helps to dissipate stored energy more slowly making
understory warmer at night17,36,37. The more energy forests can store
within their canopies, the stronger the night-time warming. Further-
more, the retention of surface emitted longwave radiation by forest
canopy also contributes to night-time warming15. Nevertheless, major

Fig. 1 | Studyarea,measurement sites, andmodellingoutput.Panel adepicts the
locations of the sampling regions and the distribution of selected measurement
points within each region. Panels b–d illustrates the annual mean spatial variations
of modelled understory air temperature within a 10° × 10° area block selected
around the equator in South America (b), Africa (c), and Southeast Asia (d). Panels
e–g present the monthly variation of modelled understory air temperature for

selected regions of South America (e), Africa (f), and Southeast Asia (g). Each line
graph depicts the spatially averaged values for its respective region. The solid red
line indicates themeandaily temperature, and the shaded region denotes the range
of day-time (upper bound) and night-time (lower bound) air temperatures under
the canopy.
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parts of tropical forest still demonstrate night-time cooling (Table S3)
that is in-line with previous research findings13,17. Nocturnal
transpiration38 affecting the night-time ambient energy balance39 is
likely the main cause of the observed cooling at night. Studies have
reported high nocturnal transpiration rate with increased soil
moisture40,41. Our results, specially at high latitudes, show profound
night-time cooling during wet seasons while understory observe
warming during dry season nights (Table S3).

The day-time cooling inside forests can be attributed to the direct
effect of biophysical factors on the partitioning of incoming solar
radiation between latent and sensible heat32. The process of evapo-
transpiration (ET) transfers soil water into the atmosphere through the
combined effects of plant transpiration and surfacewater evaporation.
The evaporation of soil moisture absorbs the latent heat from the
surrounding causing a local cooling effect under the canopy17,42,43.
Studies have reported a positive relationship between leaf area index
(LAI) and ET, ultimately affecting understory cooling44,45.

Our results showed stronger day-time negative offsets in regions
experiencing well-defined dry seasons. These regions are mostly
located above 5° in both directions away from the equator (Fig. S1,
Table S2), for instance, the southern Amazon basin. Although dry
seasons are characterized by lower rainfall water intake, the complex
root system of tropical forests can access the deep soil water to
maintain ET rates46–48. Hence, asmacroclimate temperature during dry
seasons tends to be higher, the offset in these areas is magnified.

The day-time/daily understory warming in certain regions was
also observedduring the dry season (Tables S1 and S2).However, these
non-intuitive offsets could potentially result from the uncertainties
present in the model’s input data. For instance, the macroclimate data
used in this study is fromERA5-Land, a data source that inherits its own
modelling uncertainties. To illustrate the uncertainty tied to ERA5-
Land temperature dataset, we compared the monthly temperatures
from weather stations with their corresponding ERA5-Land pixel
values and reported the correlation and bias for each location
(Fig. S12). Although a high correlation exists between weather station
data and ERA5-Land data, overall, an underestimation of 1–2 °C is
associated with the ERA5-Land temperature data. To overcome this
limitation for local applications of the dataset, ground observations
from weather stations could be used to bias-correct the open-air
temperature from the reanalysis data and thus the temperature offset
reported in our study (Fig. S13). Future studies with incorporation of
new data from understory loggers installed in diverse conditions will
also enable us to overcome the sparse ground data limitation present
in this study (Table S5).

Our approach employed remote sensing data in combinationwith
machine learning methods, which allowed us to quantify the impor-
tance of biophysical and climatic variables in governing the spatio-
temporal behaviours of understory temperatures. Topography
(elevation), canopy structure (LAI and Fraction of Absorbed Photo-
synthetically Active Radiation (FAPAR)), and open-air temperature

Fig. 2 | Spatial and temporal variation of mean daily temperature offset. The
offset (ΔTdaily) was calculatedby subtracting open-air temperature (i.e., ERA5-Land)
from modelled understory air temperature. Panels a–f show the pixel-level varia-
tions of ΔTdaily for two months of the year. To present monthly variation, six
locations (each of the size 1° × 1° area) were randomly selected on both sides of the
equator in South America (a), Africa (b), and Southeast Asia (c). Panels g–l depict

the intra-annual fluctuations of ΔTdaily at the selected locations. Panels
g–i representmonthlyΔTdaily variation for the selected locations in the North while
panels j–l represent ΔTdaily variation in the South. In line graphs, the shaded region
around the solid (red) line represents the spatial variation within the selected block
of each location.
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emerged as the key climatic and biophysical variables controlling fine-
scale variability of understory microclimates across the pan-tropics
(Fig. S6). Elevation exhibited a negative relationship, while open-air
temperature demonstrated a positive correlation with microclimate.
Although it is expected that higher LAI/FAPAR values lead to lower
understory temperatures49, we observed a positive relationship. This
partial dependency of themodel ismerely due to the characteristics of
the sample data used for training, which were all located in areas with
high vegetation density. The empirical relationship between LAI/
FAPAR and microclimate as reported by Hardwick et al.49, can only be
achieved if sensors are installed at larger range of LAI conditions at
similar elevations. Nevertheless, theML approach adopted in the study
was able to comprehend the overall importance of canopy structure
variables while adapting to with the variables’ noncollinearity.

Our model was calibrated under certain biophysical conditions,
and predictions outside these conditions are likely to contain higher
uncertainties, as machine learning approaches are known to extra-
polate estimates outside the boundaries provided during training. To
minimize this problem, our training data was gathered considering a
large range of geographical settings, across all continents assessed in
this study, and different topographical gradients. For instance, our
training data from East Africa included microclimate observations
collected in tropical forests on Mt Kenya, over an elevational gradient
from 1730 to 2450m a.s.l. We also considered forests under different
levels of disturbances, with sensors located in controlled

fragmentation experiments in the Amazon50,51 and Southeast Asia52.
Consequently, our estimates by a vast majority (e.g., 83% of the total
pixels had a degree of interpolation ≥90%) were within the conditions
represented in our training data, with only small areas, mainly high-
elevation regions, being extrapolated (Fig. S9). As these uncertainties
were quantified and mapped, the degree of interpolation can be used
tomask or downweight pixels with larger uncertainties when using the
provided maps in ecological applications (Fig. S9).

We have demonstrated through semivariogram analysis that
microclimate-informed temperature datasets can unveil spatially
independent and heterogeneous habitat conditions. The results of this
study provide scientists with more reliable temperature data to sup-
port regional, continental, or global assessments in tropical forests.
This is a crucial advancement in ecological and global change research
as the discrepancies between macroclimate and microclimate tem-
peratures can be substantial in the tropics, leading to biases and
erroneous interpretations. For instance, microclimate-informed spe-
cies distributionmodels28,29 have the potential to disclosemore robust
insights into the various processes underlying species vulnerability to
climate change53. Climate change exposure can be buffered by
microclimate, nonetheless, climate sensitivity can cause microclimate
variations impacting the ability of species to cope with it54. Further-
more, microclimatic variations affect the spatial patterns of adaptive
genetic variation and thus the ability of a population to survive climate
change55,56. Microclimate also controls the seasonal movements of

Fig. 3 | Spatial and temporal variation of diurnal temperature range. The
temperature range (RT) was calculated by subtracting night-time understory air
temperature from day-time understory air temperature. Panels a–f show the pixel-
level variations of RT for twomonths of the year. To present themonthly variation,
six locations (each of the size 1° × 1° area) were randomly selected on both sides of
the equator in South America (a), Africa (b), and Southeast Asia (c). Panels

g–l depict the intra-annual fluctuations of RT at selected locations. Panels
g–i represent monthly RT variation for the selected locations in the North while
panels j–l represent RT variation in the South. In line graphs, the shaded region
around the solid (red) line represents the spatial variation within the selected block
at each location.
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species within an ecosystem and thus directly impacts distribution
capacity and populations especially in fragmented terrains57,58. Com-
prehending how these activities function with microclimate to shape
species’ cohorts59 and their exposure to climate change is essential to
forecasting range dynamics60,61.

Methods
Study region and temperature data
This study covered the global tropical region between 23° 27′ in the
North to 23° 27′ in the South. Within this region, we collected
microclimate temperature time-series data with 180 TOMST TMS
(Temperature-Moisture-Sensor) dataloggers62 installed at various
locations over the three continents with tropical forests (Fig. 1,
Table S5). The temperature data used in this study spans a total of 8
years (i.e., from 2015 to 2022) but the duration of the records differs
for each measurement location, ranging from a minimum of
8 months to a maximum of 26 months (Table S5). The TMS loggers
are designed to record near-surface soil, surface, and air temperature
(°C) every 15min. In this study, we focused on air temperature
measurements, which represent conditions at 15 cm above the
ground62. The air temperature data from TMS loggers were averaged
to hourly dataset in order to be consistent with the temporal reso-
lutionof ERA5-Landdata. The logger datawas converted fromUTC to
local time zones. The localized hourly mean temperature was then
converted to monthly data by averaging (a) 24-h daily temperature
(Tdaily), (b) day-time temperature (Tdt)—temperature records

between 6:00 am to 6:00pm local time, and (c) night-time tem-
perature (Tnt)—temperature records between 6:00 pm to 6:00 am
local time.

Explanatory variables
The biophysical variables to include in the modelling were selected
based on their relevance to influence forest microclimate based on
literature18,63, spatial resolution, and availability at global scale. In total,
9 biophysical variables (including climatic data) that cover topo-
graphy, forest phenology and regional macroclimate were used in the
study. Topographic layers were derived from a digital elevationmodel
(DEM) of Shuttle Radar Topography Mission (SRTM) at 30m spatial
resolution. Three DEM-based topographic variables, i.e., slope (°),
aspect (°) and elevation (m), were used in the model. Forest structural
and functional attributes represented by LAI (-), FAPAR (-), and canopy
height (CH) (m) were integrated in the model to encompass the forest
cover interactions with incoming solar radiation. The LAI and FAPAR
data were downloaded from the Copernicus Global Land Service
(CGLS) at 300m, and CH data developed by GLAD (The Global Land
Analysis and Discovery) laboratory64 at a 25m were used in this study.
The LAI and FAPAR data are based on the observations fromSentinel-3
OLCI and PROBA-V satellites65 whereas CH is based on The Global
Ecosystem Dynamics Investigation (GEDI) sensor onboard of the
International Space Station. A nearest neighbour interpolation
approachwas used to harmonize the spatial resolution acrossdifferent
variables.

Fig. 4 | Semivariogram analysis between macroclimate and microclimate
datasets. Panels a–c and d–f present the spatial variability of open-air and
understory temperatures, respectively. For semivariogram analysis, a 5° × 5° area
was selected over three continents (e.g., as depicted in panels a–c, Central Ama-
zonia in South America, Congo basin in Africa, and Borneo in Southeast Asia).

Panels g–i depict the semivariogram analysis performed on selected regions of
South America (g), Africa (h), and Southeast Asia (i). An exponential model was
fitted to the experimental/sample variogram (shown as points in g–i) values to
define sill (ɣ) and minimum-distance (d) for each dataset.
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Thehourly griddeddata fromERA5-Land reanalysis (from2000 to
2021) at spatial resolution of 0.1° × 0.1° were used as a macroclimate
predictor. Three climatic variables, air temperature at 2m above the
land surface (°C), total precipitation (mm), and surface net solar
radiation (J m−2) were used as model predictors. Twenty-two years
average macroclimate conditions were used in modelling to account
for inter-annual variabilities. All the hourly macroclimate variables
were in UTC, which were converted to local time using longitudinal
information. The local hourly macroclimate variables were then con-
verted to monthly level data as per the average scheme of the micro-
climate data. Location of microclimate sensors were used to extract
the information of biophysical and macroclimate predictors for the
training of themachine learningmodel. The Tree Canopy Cover (TCC)
version 4 for the year 2015 at 30mwas used to mask out non-forested
area in the region66. A threshold of 40% TCC was used for masking the
non-forest land. The overall flow diagram of material and method for
estimating understory air temperature is shown in Fig. S3.

Thermal traits: offset, range and spatial heterogeneity
Wegeneratedmonthly temperatureoffsets (ΔT) by usingmicroclimate
(i.e., understory air temperature at 15 cm above the ground modelled
in this study) (Tunder) and macroclimate (i.e., open-air temperature at
2m above ground provided by ERA5-Land reanalysis) (Topen) tem-
perature measurements (ΔT = Tunder – Topen) in order to quantify the
difference between microclimate and macroclimate across space and
seasons. Positive ΔT values thus indicate warmer forest microclimate
conditions, whereas negative values point to a colder forest micro-
climate. The ΔT was calculated at daily (ΔTdaily), day-time (ΔTdt), and
night-time (ΔTnt) level for each month. To better understand the
thermal ranges of understory environments, we also estimated the
temperature range (RT) using Tdt and Tnt (RT = Tdt – Tnt). The analysis of
RT values will help us to better understand the thermal variations
between day-time and night-time across space and seasons. For a
detailed study of ΔT and RT across space and time, we divided ΔT
datasets into three spatial scales based on elevation (i.e., low-elevation
(0–500m a.s.l.), mid-elevation (500–1000), and high-elevation
(>1000)) and six scales based on latitude (i.e., low (0°–5° north and
south), mid (5°–10° north and south), and high (>10° north and south)
latitudes). In total, 18 spatial zones were generated for in-depth ana-
lysis of thermal traits (Fig. S14, Table S6).

Finally, a semivariogram analysis was performed on both mod-
elled dataset Tunder and Topen provided by ERA5-Land reanalysis to
quantify the spatial heterogeneity of each dataset. For this purpose, a
5° × 5° block near the equator was selected on each continent. The
semivariogram analysis was done at a 10 km spatial resolution to keep
the pixel size consistent across the datasets. The semivariogram ana-
lysis demonstrates the ability to reveal spatially independent thermal
conditions by each dataset. As a pre-requisite to semivariogram ana-
lysis, detrendingof thedatasetswas carried out by subtracting thebest
fit surface from the actual data67. A linearmodel was used to define the
best fit surface for each dataset using the information of latitude,
longitude, and temperature. This process of detrending was instru-
mental in addressing the dominant physical process that was evident
in both datasets and predictably influenced the temperature values68.
The detrending results of the two datasets (open-air and understory
temperature) are shown in Fig. S4. The semivariogram analysis was
performed on the residuals of both datasets. Furthermore, the beha-
viour of experimental/sample variograms were analysed using differ-
ent combinations of distance and directions (Fig. S5). The
semivariogramgraph in Fig. 4 is based on 400 kmdistance in east-west
direction (i.e., 90° as shown in Fig. S5). An exponential model curve
was used to define the minimum-distance (also called range) and sill
parameters which reflect the similarity/heterogeneity of a dataset69,70.
The point on the fitted curve that corresponds to maximum semivar-
iogram value define the sill (on the y-axis) and minimum-distance (on

the x-axis) for eachdataset (Fig. 4). Theminimum-distance is a distance
at which dataset in question become spatially independent71.

Machine learning model
The aim of the study was to maximize the predictive capacity within
the biophysical domain covered by the training data. We selected a
machine learning (ML) approach as it offers more predictive power
compared toother statisticalmodels suchasgeneralized linearmodels
(GLMs) or generalized additive models (GAMs), which are more effi-
cient in exploring predictor inferences72. We used a bootstrap aggre-
gating (bagging) regression approach to model understory
temperature using the nine macroclimatic and biophysical predictors.
The bagging regression model randomly ensembles multiple sets of
weak learners and datasets to train the learners in parallel. The model
response for new data is generated by aggregating predictions from
each weak learner in the ensemble73. The bagging algorithm works to
minimize the variance and avoid overfitting. It is less prone to outliers
and capable to uncover nonlinear/complex relationships of predictors
with the response variable (Fig. S6) and can also handle multi-
collinearity among the predictors (Fig. S7). A 5-fold cross-validation
was used to train and test the model performance. Three hyperpara-
meters of ML model, namely (a) minimum leaf size (2–8), (b) number
of learners (10–500), and (c) number of predictors to the sample (1–8)
were optimized using a grid search approach74. A separate ML
regression model was ensembled to estimate understory temperature
for each temporal scale (i.e., mean monthly daily, mean monthly day-
time, and mean monthly night-time).

Spatial evaluation of model
TheMLmodels are known to be less accurate in extrapolating beyond
the boundaries set by the training datasets75 and should be quantified
to indicate model’s spatial certainty76. Generally, ML models when
applied at large spatial scales, are expected to encounter input data
that fall beyond the spatial extent encompassed by the training data. In
such a situation, a fraction of predictions may fall under the category
of the model’s extrapolation. To quantify the model spatial certainty,
we performed a spatial assessment out-lined by van den Hoogen
et al.76, that quantifies the degree of interpolation and extrapolation at
pixel-level. This assessment was done at themonthly level. It helped us
to identify the regions that fell outside the bounds of the training data.
For model’s spatial assessment, monthly-level training data points and
the pixels of composite raster were transformed into the same Prin-
cipal Component (PC) space76. Based on our dataset, the first 6 PC axes
explained ~93% of the data variation. By combining these 6 PC axes, a
total of 15 bivariate spaces were generated; the combinations of these
bivariate spaces were as follows: PC1 × PC2, PC1 × PC3, PC1 × PC4, …,
PC5 × PC6. For each of these 15 combinations, every pixel in the
composite raster (Fig. S8a)was scored asone if it fell within, or zero if it
fell outside the convex hull enclosing the training dataset within that
PC combination space (Fig. S8b, c). Pixels falling inside the convex hull
were classified as interpolated (Fig. S8d, red points), pixels outside the
convex hull were classified as extrapolated (Fig. S8d, blue points). The
average of all 15 combinations was taken to quantify the degree of
interpolation for each month. At the end, 12 maps of monthly-level
spatial extents of interpolation/extrapolation were averaged to pre-
sent an overall picture of each model’s spatial accuracy (Fig. S9).

Finally, to cater the possibility of exaggerated model accuracy
because of spatial autocorrelation, we performed a spatial leave-one-
out cross-validation analysis to reflect more conservative accuracy
parameters for each ML model76,77. Under this analysis, a test location
was selected, and a buffer zone was established around it. The data
points that fall outside of the predefined buffer radius were used to
train the model and the test location was used to validate the model
prediction. This was repeated for each of the 180 TMS data points.
Because of expected spatial autocorrelation close to the validation
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point, this processwas repeatedwith an increasing buffer zone around
the validationpoint, each time removingdata points that fellwithin the
defined buffer zone from the training data. This method allowed
assessing the influence of spatial autocorrelation on the evaluation
parameters of eachmodel. The stabilizing of accuracy parameters with
increasingbuffer radiuswas an indication ofmore stable/robustmodel
accuracy indicators (Fig. S10). In addition to above mentioned model
evaluation approaches, an independent validation of modelled Tdaily,
Tdt, and Tnt was carried out by comparing the results with new inde-
pendent groundmeasurements.More details of the data used for blind
validation are provided in the supplementary text.

Data availability
The modelled understory temperatures are made available through
the national Finnish Fairdata services (https://www.fairdata.fi/en/).
Following link can be used to access the outputs of this study (https://
doi.org/10.23729/dd3de08e-39a1-46b0-b28a-7bc577b6c914)78. Data in
the online repository consists of (a) modelled understory monthly
temperatures at 300m spatial resolution, (b) an index file for 30m
modelled temperatures, and (c) a location file for TMS loggers used in
this study. A request for 30mmodelled data using the index file can be
made through the corresponding author. The actual logger data canbe
accessed through SoilTemp platform (https://www.soiltempproject.
com/). The details of other model’s input variables are mentioned in
the ‘Methods’ section.

Code availability
Modelling pipeline written in a MATLAB script is available at the fol-
lowing link (https://doi.org/10.23729/dd3de08e-39a1-46b0-b28a-
7bc577b6c914)78. The script has five parts. The description of each
model section is added in the script. Pipeline folder contains test data
to understand the modelling flow.

References
1. Hamilton, A. J. et al.Quantifyinguncertainty in estimationof tropical

arthropod species richness. Am. Nat. 176, 90–95 (2010).
2. Pillay, R. et al. Tropical forests are home to over half of the world’s

vertebrate species. Front. Ecol. Environ. 20, 10–15 (2022).
3. Raven, P. H. et al. The distribution of biodiversity richness in the

tropics. Sci. Adv. 6, eabc6228 (2020).
4. Bennett, J. M. et al. The evolution of critical thermal limits of life on

Earth. Nat. Commun. 12, 1198 (2021).
5. Sullivan, M. J. et al. Long-term thermal sensitivity of Earth’s tropical

forests. Science 368, 869–874 (2020).
6. Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological

and evolutionary impacts of changing climatic variability. Biol. Rev.
Camb. Philos. Soc. 92, 22–42 (2017).

7. Weiskopf, S. R. et al. Climate change effects on biodiversity, eco-
systems, ecosystem services, and natural resourcemanagement in
the United States. Sci. Total Environ. 733, 137782 (2020).

8. Woodward, F. I. The impact of low temperatures in controlling the
geographical distribution of plants. Philos. Trans. R. Soc. Lond. B,
Biol. Sci. 326, 585–593 (1990).

9. Zellweger, F. et al. Forest microclimate dynamics drive plant
responses to warming. Science 368, 772–775 (2020).

10. Brown, J. H. Why are there so many species in the tropics? J. Bio-
geogr. 41, 8–22 (2014).

11. Cerezer, F.O. et al. Latitudinal gradient of termitediversity indicates
higher diversification and narrower thermal niches in the tropics.
Glob. Ecol. Biogeogr. 29, 1967–1977 (2020).

12. Löffler, J. & Pape, R. Thermal niche predictors of alpine plant spe-
cies. Ecology 101, e02891 (2020).

13. De Frenne, P. et al. Global buffering of temperatures under forest
canopies. Nat. Ecol. Evol. 3, 744–749 (2019).

14. Haesen, S. et al. ForestTemp–Sub‐canopy microclimate tem-
peratures of European forests. Glob. Change Biol. 27,
6307–6319 (2021).

15. De Frenne, P. et al. Forest microclimates and climate change:
importance, drivers and future research agenda.Glob. Change Biol.
27, 2279–2297 (2021).

16. Kašpar, V. et al. Temperature buffering in temperate forests: com-
paring microclimate models based on ground measurements with
active and passive remote sensing. Remote Sens. Environ. 263,
112522 (2021).

17. Li, Y. et al. Local cooling and warming effects of forests based on
satellite observations. Nat. Commun. 6, 6603 (2015).

18. Jucker, T. et al. Canopy structure and topography jointly constrain
the microclimate of human‐modified tropical landscapes. Glob.
Change Biol. 24, 5243–5258 (2018).

19. Macek, M., Kopecký, M. & Wild, J. Maximum air temperature con-
trolled by landscape topography affects plant species composition
in temperate forests. Landsc. Ecol. 34, 2541–2556 (2019).

20. Dobrowski, S. Z. A climatic basis for microrefugia: the influence of
terrain on climate. Glob. Change Biol. 17, 1022–1035 (2011).

21. Maclean, I. M., Mosedale, J. R. & Bennie, J. J. Microclima: an r
package formodellingmeso‐andmicroclimate.Methods Ecol. Evol.
10, 280–290 (2019).

22. Meineri, E. & Hylander, K. Fine‐grain, large‐domain climate models
based on climate station and comprehensive topographic infor-
mation improve microrefugia detection. Ecography 40,
1003–1013 (2017).

23. Pastore, M. A., Classen, A. T., D’Amato, A. W., Foster, J. R. & Adair, E.
C. Cold‐air pools as microrefugia for ecosystem functions in the
face of climate change. Ecology 103, e3717 (2022).

24. Camargo, J. L. C. & Kapos, V. Complex edgeeffects on soilmoisture
and microclimate in central Amazonian forest. J. Trop. Ecol. 11,
205–221 (1995).

25. Geiger, R. & Bouyoucos, G. J. The climate near the ground. Am. J.
Phys. 19, 192–192 (1951).

26. Hay, J. E. & McKay, D. C. Estimating solar irradiance on inclined
surfaces: a review and assessment of methodologies. Int. J. Sol.
Energy 3, 203–240 (1985).

27. Jucker, T. et al. A research agenda for microclimate ecology in
human-modified tropical forests. Front. For. Glob. Change 2,
92 (2020).

28. Lenoir, J., Hattab, T. & Pierre, G. Climatic microrefugia under
anthropogenic climate change: implications for species redis-
tribution. Ecography 40, 253–266 (2017).

29. Lembrechts, J. J., Nijs, I. & Lenoir, J. Incorporatingmicroclimate into
species distribution models. Ecography 42, 1267–1279 (2019).

30. Lembrechts, J. J. et al. SoilTemp: a global database of near‐surface
temperature. Glob. Change Biol. 26, 6616–6629 (2020).

31. Haesen, S. et al. ForestClim—Bioclimatic variables for microclimate
temperatures of European forests. Glob. Chang Biol. 29,
2886–2892 (2023).

32. Lawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. The
unseen effects of deforestation: biophysical effects on climate.
Front. For. Glob. Change 5, 49 (2022).

33. Pincebourde, S., Murdock, C. C., Vickers, M. & Sears, M. W. Fine-
scalemicroclimatic variation can shape the responses of organisms
to global change in both natural and urban environments. Integr.
Comp. Biol. 56, 45–61 (2016).

34. De Frenne, P. & Verheyen, K. Weather stations lack forest data.
Science 351, 234–234 (2016).

35. Faye, E., Herrera, M., Bellomo, L., Silvain, J.-F. & Dangles, O. Strong
discrepancies between local temperature mapping and inter-
polated climatic grids in tropical mountainous agricultural land-
scapes. PLoS ONE 9, e105541 (2014).

Article https://doi.org/10.1038/s41467-024-44734-0

Nature Communications |          (2024) 15:549 8

https://www.fairdata.fi/en/
https://doi.org/10.23729/dd3de08e-39a1-46b0-b28a-7bc577b6c914
https://doi.org/10.23729/dd3de08e-39a1-46b0-b28a-7bc577b6c914
https://www.soiltempproject.com/
https://www.soiltempproject.com/
https://doi.org/10.23729/dd3de08e-39a1-46b0-b28a-7bc577b6c914
https://doi.org/10.23729/dd3de08e-39a1-46b0-b28a-7bc577b6c914


36. Houspanossian, J., Nosetto, M. & Jobbágy, E. G. Radiation budget
changes with dry forest clearing in temperate Argentina. Glob.
Change Biol. 19, 1211–1222 (2013).

37. Meier, R., Davin, E. L., Swenson, S.C., Lawrence, D.M. &Schwaab, J.
Biomass heat storage dampens diurnal temperature variations in
forests. Environ. Res. Lett. 14, 084026 (2019).

38. Dawson, T. E. et al. Nighttime transpiration in woody plants from
contrasting ecosystems. Tree Physiol. 27, 561–575 (2007).

39. Jordan, D. & Smith, W. Energy balance analysis of nighttime leaf
temperatures and frost formation in a subalpine environment.
Agric. For. Meteorol. 71, 359–372 (1994).

40. Rosado, B. H., Oliveira, R. S., Joly, C. A., Aidar, M. P. & Burgess, S. S.
Diversity in nighttime transpirationbehavior ofwoodyspeciesof the
Atlantic Rain Forest, Brazil. Agric. For. Meteorol. 158, 13–20 (2012).

41. Zeppel, M. J. et al. Interactive effects of elevated CO2 and drought
on nocturnal water fluxes in Eucalyptus saligna. Tree Physiol. 31,
932–944 (2011).

42. Lejeune, Q., Davin, E. L., Guillod, B. P. & Seneviratne, S. I. Influence
of Amazonian deforestation on the future evolution of regional
surface fluxes, circulation, surface temperature and precipitation.
Clim. Dyn. 44, 2769–2786 (2015).

43. Mildrexler, D. J., Zhao, M. & Running, S. W. A global comparison
between station air temperatures and MODIS land surface tem-
peratures reveals the cooling role of forests. J. Geophys. Res. Bio-
geosci. 116, G03025 (2011).

44. Baker, J. C. A. & Spracklen, D. V. Climate benefits of intact Amazon
forests and the biophysical consequences of disturbance. Front.
For. Glob. Change 2, 47 (2019).

45. Iida, S. I. et al. Evapotranspiration from the understory of a tropical
dry deciduous forest in Cambodia. Agric. For. Meteorol. 295,
108170 (2020).

46. Christina, M. et al. Importance of deep water uptake in tropical
eucalypt forest. Funct. Ecol. 31, 509–519 (2017).

47. Germon, A., Laclau, J.-P., Robin, A. & Jourdan, C. Deep fine roots in
forest ecosystems: Why dig deeper? For. Ecol. Manag. 466,
118135 (2020).

48. Maeda, E. E. et al. Evapotranspiration seasonality across the Ama-
zon Basin. Earth Syst. Dyn. 8, 439–454 (2017).

49. Hardwick, S. R. et al. The relationship between leaf area index and
microclimate in tropical forest and oil palm plantation: Forest dis-
turbance drives changes in microclimate. Agric. For. Meteorol. 201,
187–195 (2015).

50. Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-
year investigation. Biol. Conserv. 144, 56–67 (2011).

51. Maeda, E. E. et al. Shifts in structural diversity of Amazonian forest
edges detected using terrestrial laser scanning. Remote Sens.
Environ. 271, 112895 (2022).

52. Ewers, R. M. et al. A large-scale forest fragmentation experiment:
the Stability of Altered Forest Ecosystems Project. Philos. Trans. R.
Soc. B: Biol. Sci. 366, 3292–3302 (2011).

53. Pacifici, M. et al. Assessing species vulnerability to climate change.
Nat. Clim. Change 5, 215–224 (2015).

54. Vinod, N. et al. Thermal sensitivity across forest vertical profiles:
patterns, mechanisms, and ecological implications. N. Phytol. 237,
22–47 (2023).

55. De Kort, H. et al. Pre‐adaptation to climate change through topo-
graphy‐driven phenotypic plasticity. J. Ecol. 108, 1465–1474 (2020).

56. Graae, B. J. et al. Stayor go–how topographic complexity influences
alpine plant population and community responses to climate
change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).

57. Chen, J. et al. Microclimate in forest ecosystem and landscape
ecology: variations in local climate can be used to monitor and
compare the effects of different management regimes. BioScience
49, 288–297 (1999).

58. Frey, S. J., Hadley, A. S. & Betts, M. G. Microclimate predicts within‐
season distribution dynamics of montane forest birds. Divers. Dis-
trib. 22, 944–959 (2016).

59. King, R. B. Temperature‐induced multi‐species cohort effects in
sympatric snakes. Ecol. Evol. 12, e8601 (2022).

60. Miller, D. A. et al. Quantifying climate sensitivity and climate-driven
change in North American amphibian communities. Nat. Commun.
9, 3926 (2018).

61. Schurr, F. M. et al. How to understand species’ niches and range
dynamics: a demographic research agenda for biogeography. J.
Biogeogr. 39, 2146–2162 (2012).

62. Wild, J. et al. Climate at ecologically relevant scales: a new tem-
perature and soil moisture logger for long-term microclimate
measurement. Agric. For. Meteorol. 268, 40–47 (2019).

63. Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D.
Advances in microclimate ecology arising from remote sensing.
Trends Ecol. Evol. 34, 327–341 (2019).

64. Potapov, P. et al. Mapping global forest canopy height through
integration of GEDI and Landsat data. Remote Sens. Environ. 253,
112165 (2021).

65. CGLS. Copernicus Global Land Service. Providing Bio-Geophysical
Products of Global Land Surface. https://land.copernicus.eu/
global/themes/vegetation (2022).

66. Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree
cover: Landsat-based rescaling of MODIS vegetation continuous
fields with lidar-based estimates of error. Int. J. Digit. Earth 6,
427–448 (2013).

67. Wu, J., He, J. & Christakos, G.Quantitative Analysis and Modeling of
Earth and Environmental Data: Space-time and Spacetime Data
Considerations (Elsevier, 2021).

68. Dale, M. R. & Fortin, M.-J. Spatial Analysis: A Guide for Ecologists
(Cambridge University Press, 2014).

69. Cressie, N. The origins of kriging. Math. Geol. 22, 239–252 (1990).
70. Cressie, N. Statistics for Spatial Data (John Wiley & Sons, 2015).
71. Lamorey, G. & Jacobson, E. Estimation of semivariogram para-

meters andevaluation of the effects of data sparsity.Math.Geol.27,
327–358 (1995).

72. Ij, H. Statistics versus machine learning. Nat. Methods 15,
233 (2018).

73. Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).
74. Liashchynskyi, P. & Liashchynskyi, P. Grid search, random search,

genetic algorithm: a big comparison for NAS. Preprint at https://
arxiv.org/abs/1912.06059 (2019).

75. Hengl, T., Nussbaum,M., Wright, M. N., Heuvelink, G. B. & Gräler, B.
Random forest as a generic framework for predictive modeling of
spatial and spatio-temporal variables. PeerJ 6, e5518 (2018).

76. van den Hoogen, J. et al. A geospatial mapping pipeline for ecolo-
gists. Preprint at BioRxiv https://doi.org/10.1101/2021.07.07.
451145 (2021).

77. Ploton, P. et al. Spatial validation reveals poor predictive perfor-
mance of large-scale ecological mapping models. Nat. Commun.
11, 4540 (2020).

78. Ismaeel, A. & Maeda, E. E. Tropical Forest Microclimate Maps.
national Finnish Fairdata services (https://www.fairdata.fi/en/).
https://doi.org/10.23729/dd3de08e-39a1-46b0-b28a-
7bc577b6c914 (2023).

Acknowledgements
This research was partially funded by the Academy of Finland
(decision numbers 318252, 319905 and 345472). We are thankful to
Thomas Kuiyava from New Guinea Binatang Research Center, who
assisted with logistics in Papua New Guinea. K.S. and H.M.
acknowledge Starting ERC grant 805189 for funding. J.A., J.D. and
M.K. were supported by the Czech Science Foundation (projects

Article https://doi.org/10.1038/s41467-024-44734-0

Nature Communications |          (2024) 15:549 9

https://land.copernicus.eu/global/themes/vegetation
https://land.copernicus.eu/global/themes/vegetation
https://arxiv.org/abs/1912.06059
https://arxiv.org/abs/1912.06059
https://doi.org/10.1101/2021.07.07.451145
https://doi.org/10.1101/2021.07.07.451145
https://www.fairdata.fi/en/
https://doi.org/10.23729/dd3de08e-39a1-46b0-b28a-7bc577b6c914
https://doi.org/10.23729/dd3de08e-39a1-46b0-b28a-7bc577b6c914


no. 24-11954S and 23-05272S) and the RVO 67985939 project from
the Czech Academy of Sciences. M.S. was supported through a
grant from the Ministry of Education, Youth and Sports of the
Czech Republic (INTER-TRANSFER grant no. LTT19018). R.M. and
R.P. were funded by the Ministry of Education, Youth and Sports of
the Czech Republic (grant INTER-TRANSFER no. LTT20017). J.J.
Lembrechts was supported by the Research Foundation Flanders
(FWO, grants 12P1819N, W001919N and 1512720N), as well as by the
BiodivERsA-project ASICS (BiodivClim call 2019-2020;
G0H6720N). T.A. acknowledges funding from Alexander von
Humboldt Foundation.

Author contributions
E.E.M. andA.I. conceptualized andorganized the study. E.E.M. supervised
the work. A.I. analysed the data, designed the methodology, performed
themodelling, andwrote the codes. A.I. and E.E.M.wrote themanuscript.
A.P.K.T., E.G.S., H.M., I.A., J.A., J.D., J.J.L., J.L.C., J.Aa., K.S., L.C.A.N., M.K.,
M.S., M.H.N., R.M., R.P. and T.A. contributedwith data collection from the
various locations in the Tropics. All the coauthors contributed to the
manuscript revision and drafting rebuttal to the reviewers.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-44734-0.

Correspondence and requests for materials should be addressed to
Eduardo Eiji Maeda.

Peer review information Nature Communications thanks Holger Lange
and Martijn Slot for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

1Earth and Environmental Sciences Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China. 2State Key Laboratory of
Agrobiotechnology, and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China. 3Department of
Geosciences and Geography, University of Helsinki, P.O. Box 68, FI-00014 Helsinki, Finland. 4Institute of Entomology, Biology Centre of the Czech Academy
of Sciences, České Budějovice, Branisovska 31, CZ 370 05, Czech Republic. 5Faculty of Science, University of South Bohemia, Branisovska 1760, CZ 370 05,
České Budějovice, Czechia. 6School ofGeoSciences, University of Edinburgh, Edinburgh EH89XP,UK. 7Institute of Botany of theCzechAcademyof Sciences,
Zámek 1, CZ-252 43, Průhonice, Czech Republic. 8Faculty of Forestry andWood Sciences, University of Life Sciences Prague, Kamýcká 129, CZ-16521, Praha
6-Suchdol, Prague, Czech Republic. 9Research Group Plants and Ecosystems, University of Antwerp, 2610 Wilrijk, Belgium. 10Biological Dynamics of Forest
Fragment Project (BDFFP) - National Institute of Amazonian Research (INPA), CP 478, 69067-375, Manaus, AM, Brazil. 11Finnish Meteorological Institute,
P.O. Box 503, FI-00101 Helsinki, Finland. 12Associação SOS Amazônia, Rio Branco, AC 69.905-082, Brazil. 13Department of Forest Botany, Dendrology and
Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic. 14Department of
Geographical Sciences, University of Maryland, College Park, MD 20742, USA. 15Department of Environmental Informatics, Faculty of Geography, Philipps
Universität-Marburg, Deutschhausstrasse, 12, 35032 Marburg, Germany. e-mail: eduardo.maeda@helsinki.fi

Article https://doi.org/10.1038/s41467-024-44734-0

Nature Communications |          (2024) 15:549 10

https://doi.org/10.1038/s41467-024-44734-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:eduardo.maeda@helsinki.fi

	Patterns of tropical forest understory temperatures
	Results
	Discussion
	Methods
	Study region and temperature�data
	Explanatory variables
	Thermal traits: offset, range and spatial heterogeneity
	Machine learning�model
	Spatial evaluation of�model

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




