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Hybrid AI-enhanced lightning flash predic-
tion in the medium-range forecast horizon

Mattia Cavaiola1,2,4 , Federico Cassola3, Davide Sacchetti3,
Francesco Ferrari1,2 & Andrea Mazzino 1,2

Traditional fully-deterministic algorithms, which rely on physical equations
and mathematical models, are the backbone of many scientific disciplines for
decades. These algorithms are based onwell-established principles and laws of
physics, enabling a systematic and predictable approach to problem-solving.
On the other hand, AI-based strategies emerge as a powerful tool for handling
vast amounts of data and extracting patterns and relationships that might be
challenging to identify through traditional algorithms. Here, we bridge these
two realms by using AI to find an optimal mapping of meteorological features
predicted two days ahead by the state-of-the-art numerical weather prediction
model by the EuropeanCentre forMedium-rangeWeather Forecasts (ECMWF)
into lightning flash occurrence. The prediction capability of the resulting AI-
enhanced algorithm turns out to be significantly higher than that of the fully-
deterministic algorithm employed in the ECMWF model. A remarkable Recall
peak of about 95% within the 0-24 h forecast interval is obtained. This per-
formance surpasses the 85% achieved by the ECMWF model at the same Pre-
cision of the AI algorithm.

Lightning flashes are severe threats to wildfires, aviation, tele-
communication, electrical infrastructures, and, more generally, to
human life1. Studies conducted on the assessment of the worldwide
impact of lightning concluded that 24,000 deaths and 240,000 inju-
ries occur per year2. Moreover, due to global warming, evidence that
theoccurrenceof lightning has increasedhasbeen reported3. Accurate
forecasts of these extreme events are thus of crucial importance for
decision-makers.

Nowadays, lightning forecasts are based on parameterization
schemes encoded in the numerical weather prediction (NWP)
models4,5, i.e. deterministic prediction models based on partial differ-
ential equations. NWPmodels excel in providing accurate forecasts for
medium to long-range time scales, as they capture the underlying
physical laws and interactions within the atmosphere6. They are
especially reliable for predicting large-scale weather patterns and
phenomena. However, solving complex differential equations requires

significant computational resources7. Over the years, several semi-
empirical parameterizations of lightning flashes have been developed
for numerical cloud models8. Nevertheless, there is still disagreement
about molecular and microphysical processes responsible for initiat-
ing a lightning flash, including the role of turbulence and in particular
of large velocity excursions9. A similar understanding of the role of
turbulence obtained in cloudmicrophysics10 is thus still far from being
achieved in the realm of lightning theory. Theories and laboratory
experiments developed in recent years have formed the basis of
modern lightning parameterizations8,11. However, to set all free para-
meters over a region of interest, a large amount of observed data is
needed, a requirement often difficult to satisfy, lightning flashes being
rare events. In mid-2018, the European Centre for Medium-range
Weather Forecasts (ECMWF) introduced lightning flash density fore-
cast on a global scale in its operational HRES NWP model12,13. In ref. 14
authors evaluate the ECMWF-HRES lightning forecasts over India
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during the pre-monsoon season of 2020 using lightning observation
data. However, this analysis was limited to a period of only 3 months
during which only intense and frequent lightning activity occurred.

Alternative strategies to deal with the issue of forecasting exploit
statistical and artificial intelligence (AI)-based predictions. We use the
definition of AI-based methods to specify data-driven forecasting
systems, i.e. forecasts made solely in terms of the knowledge of field
data. The task of generating the ruling dynamics is done in this case by
the AI which learns how to map observations (or mix of observations
and model-reconstructed fields) into target meteorological fields at
different lead times. Along this line, recently, AI-based methods15 have
shown potential in accelerating weather forecasting by orders of
magnitude, even if the accuracy of the forecasts is not always higher
than that of NWP methods. Very recently, however, an AI-based
method, dubbed Pangu-Weather, was introduced in ref. 16, the accu-
racy of which has been compared with the world’s best ECMWF-HRES
NWP model obtaining stronger deterministic forecast results. In that
strategy, revolutionary in a sense, AI learns the weather dynamics from
ERA5 global reanalysis17. Target variables are thus restricted to those
considered in the ERA5 database (or to a smaller subset as done in
ref. 16). In way of example, lightning flashes are not included in the
forecast chain. Also, ERA5 can hardly be interpreted as the ground
truth of the atmosphere. Indeed, ERA5 combines observations and
model simulations to create a consistent and continuous dataset of
atmospheric variables. In this respect, errors are expected (and actu-
ally identified in ref. 18 where energy-related applications in regions of
complex orography and/or complex sea–land interactions have been
studied using ERA5) in reconstructing fine-structure weather features.
Because the network presented in ref. 16, at least in its present form,
only learnsweather features fromERA5, the same skills shown in ref. 16
must not be taken for granted when the focus is small-scale weather
features or extreme events19. We will discuss further (see the section
“Discussion”) how Pangu-Weather could be used in synergy with our
approach to achieving lightning occurrence predictions at an unpre-
cedented level of accuracy.

AI-based strategies have been widely used in recent years to
predict lightning occurrences only a few hours ahead (nowcasting).
Among the numerousworks in the literature that tackle the problemof
lightning flash forecast from the nowcasting perspective, we mention
some relevant recent examples20–24. Very recently, in ref. 20, authors
present NowcastNet, a neural-network framework with end-to-end
forecast error optimization, which provides skillful forecasts at light-
to-heavy rain rates, associated with convective processes that were
previously considered intractable. In ref. 24, authors address the
nowcasting of extreme weather events by fully data-driven AI algo-
rithms. There, an ensemble method, based on binary classification of
extreme events characterized by a high level of precipitation and
lightning density, has been applied. The forecast of thunderstorms is
addressed in ref. 25 via a binary classification that exploits a convolu-
tional neural network based on satellite images and lightning recorded
in the past. They achieve a probability of detection of more than 94%
for 15-min ahead lightning forecasts. Another example of binary
lightning nowcasting is given in ref. 26, where authors use a deep
learning framework in order to forecast lightning flashes one minute
ahead. In ref. 27, the authors propose a semantic segmentation deep
learning network for cloud-to-ground (CG) lightning nowcasting,
named LightningNet. This network is based on multisource observa-
tion data, including data from a geostationarymeteorological satellite,
Doppler weather radar network, and CG lightning location system.
Results show the ability of LightningNet to achieve goodperformances
in forecasting lightning flashes in the 0–1 h horizon using the
multisource data.

In ref. 28 authors integrate observation and data coming from the
NWPmodel in amethod based on a dual-encoder. The first step of this
method consists of extracting information about the spatio-temporal

distribution of lightning. To do that, both simulations from the
Weather Research and Forecasting (WRF) model29 and observations
have been considered and successively inputted to adual encoder. The
extracted features are then merged and serve as input to a spatio-
temporal decoder to make predictions via convolutional long short-
termmemory (LSTM) up to 6 h ahead. Finally, in30, authors propose an
attention-based dual-source spatio-temporal neural network (ADSNet)
for 12-h ahead lightning forecast. A data-driven neural network is used
for hourly lightning forecasts, which exploit both theWRF simulations
and the recent historical lightning observations.

The vastmajority of existing AI-based lightning forecast strategies
are thus fully data-driven and the focus is restricted solely to now-
casting. This is a serious limitation in view of the many vital applica-
tions related to forecasting lightning flashes some days in advance.

There is thus a research gap within the current body of literature.
To contribute tofilling this gap,wepresent a deep learning framework,
here referred to as FlashNet, able to forecast the lightning flash
occurrence up to 48 h ahead in terms of binary classification. FlashNet
uses features coming from the HRES NWP global model of the inte-
grated forecasting system (IFS) of ECMWF. The results are validated
against the Italian lightning observation network (LAMPINET)31,32,
detailed in the “Methods” section, and we use the lightning flash pre-
dictions provided by HRES (see the “Methods” section) as a relevant
benchmark of our forecast. Our results showa clear added value of our
AI-enhanced, hybrid, strategy, over the fully deterministic approach
exploited in the HRES model for lightning forecasting.

To summarize the current situation, two distinct paradigms of
weather forecasting are available, each with its own level of maturity,
strengths, and weaknesses. As it emerges from ref. 33, the present
situation is more like a competition between AI-based methods and
classical NWPmodels, rather than a synergistic approach. Here, wewill
not contribute to finding a winner between AI and NWP models.
Rather, weproposeaway to integrate AI andNWPmodels basedon the
belief that their integration holds the potential to revolutionize
weather forecasting by combining physics-based understanding with
data-driven insights, ultimately improving our ability to predict and
understand the Earth’s complex atmospheric behavior.

According to the discussions alluded to above, we have classified
our strategy as an AI-enhanced strategy where the AI acts as a post-
processingmethoddownstream from the predicted future state of the
atmosphere. Learning the mapping between large-scale features pre-
dicted byHRES and the ground truth of lightning flashes we are able in
this way to predict lightning flash occurrences where observations
explicitly enter into play bringing a significant added value.

A further advantage of our strategy is that it remains free of the
three potential risks identified in ref. 19 related to AI exploitation for
weather predictions. Namely, (i) undersampling of ‘monster storms’
occurring only a few times a century; (ii) problems in predicting
meteorological features, such as severe storms, fronts, or tropical
cyclones; (iii) possible occurrence of highly erratic predictions when
the AI strategy encounters conditions never encountered before. The
reason is that in our strategy AI is exploited downstream of forecasts
fromNWPmodels: these latter are well-known to be skillful on all three
points raised in ref. 19.

Results
Before delving into the discussion of the results, it is useful to provide
an overview of the methodology that led to these outcomes. Detailed
information can be found in the “Methods” section.

Our approach is based on two fundamental pillars: the availability
of spatially distributed and accurate lightning observations and the
availability of proxies extracted from the output of the global NWP
model ECMWF-HRES, considered important for lightning initiation.
These two pillars are connected through an AI network capable of
learning the highly nonlinear mapping between HRES features and
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observations. Instead of assessing the robustness of the learning pro-
cess by dividing the entire period in which observations and proxies
are available for this study (from2019 to 2021) into training, validation,
and test sets, we opted for a validation strategy that allows for con-
trolling the robustness of the inference phase, thus avoiding conclu-
sions that are toodependent on the specific choiceof the test year. The
tool we deemed most suitable for this purpose is the k-fold cross-
validation (here k = 3), where possible biases caused by a fortunate/
unfortunate choice of the test year are mitigated by selecting all pos-
sible years in turn. For each fold of the k-fold cross-validation, the
predictive skills of our AI strategy will be measured in terms of the
classifier’s ability to correctly classify the presence and absence of
lightning events. The classifier’s ability will be rigorously analyzed,
considering fundamental properties such as its reliability, sharpness,
and, more generally, its capacity to minimize false positives and false
negatives.

The forecast skills will be evaluated for the entire area of interest
depicted in Fig. 1, corresponding to 9975 points covering an area of
997,500 km2 where our predictions will be compared against both the
ground truth and HRES’predictions.

Two datasets will be analyzed in the paper: one representing the
original level of imbalance, characterized by a lightning occurrence
fraction of ~1%, and another that has been artificially balanced to
ensure an equal distribution of lightning presence and absence. The
balanced dataset enhances the learning process allowing the network
to gain insights into both event and non-event scenarios with equal
representation. The results we are going to discuss, concerning the
assessment of the model’s skills, will pertain to both datasets, pro-
viding a comprehensive evaluation of our approach under varying
conditions.

Measuring FlashNet’s success of prediction
Figure 2a reports the Precision–Recall curves (see the “Methods” sec-
tion) obtained from FlashNet’s predictions on both the balanced and
the unbalanced test sets (see the “Methods” section). These curves
have beenproduced by accumulating all 3-hourly forecasts in the0–24
and 24–48 h forecast intervals. The dependence of Precision score on
Prevalence34 (see the “Methods” section for the explicit formula
relating the Precision scores of datasets having different Prevalence) is
clearlydetectable from thefigure. The samedependence also reflected
in the Area-Under-the-Curve (AUC) score, corresponding to the inte-
gral of the Precision–Recall (P–R) curve (see the “Methods” section),
reported as a legend of Fig. 2a, both for the balanced and the unba-
lanced dataset. AUC score dramatically reduces passing from the
balanced test set (AUC=0.93, for the test in 2021 in the0–24 h forecast
interval) to the unbalanced one (AUC =0.18 for the test in 2021 in the
0–24 h forecast interval). Contrary to what may be inferred from
Fig. 2a, it is not at all true that our model’s performance is strongly
dependent on the dataset’s imbalance. In fact, the opposite is true:
once trained in a balanced training set, our predictive model performs
comparably whether it is applied to a balanced or an imbalanced test
set. The crux of the matter is discussed in the “Methods” section
(Eq. (8)). This formula, whichdoes not appear to bedocumented in the
literature, explains how the P-R curve scales when transitioning from
one prevalence value (and therefore, a specific level of imbalance) to
another while keeping the model’s predictive abilities invariant by
changing the prevalence. Unlike precision, note that the Recall value is
invariant by changing the dataset level of imbalance (again assuming
model-invariant skills by changing prevalence). The low AUC values in
the case of the imbalanced dataset are simply a consequence of
the high dataset imbalance, not an indication of the poor predictive

Fig. 1 | TheLAMPINETdetection system.The case study area is reported togetherwith the locationsof IMPACTESP sensors (red circles) used todetect lightningflashes in
the LAMPINET detection network.
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capabilities of our model. To demonstrate the validity of this state-
ment, we use Eq. (8) to rescale the P–R curve from all cases with small
prevalence to the corresponding balanced cases. The rescaled curve is
depicted as solid orange lines (dashed and dot-dashed) and closely
aligned with the corresponding blue lines/open circles. This serves as
evidence for the truthfulness of our earlier assertion.

It is also worth interesting that passing from the 0–24 h to the
24–48 h forecast interval only slightly deteriorates the AUC score. This
is an indication that the strategy might be successfully extended to
longer forecast horizons.

Figure 2b shows the AUC for each forecast lead time, separately
obtained from the three years of the 3-fold cross-validation (red, blue,
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and green lines). Here, the AUC is normalized with the Prevalence (see
the “Methods” section) evaluated for each forecast lead time. From
Fig. 2b, the added value brought out by FlashNet is largely appreciable,
the resulting AUC reaching values up to about 40 times the one cor-
responding to the random model detailed in the “Methods” section
(red line to be compared with the black dashed line). Also of interest
from Fig. 2b is the correlation between the resulting AUC and the
diurnal cycle, with lower skills occurring during nighttime hours
compared to daytimehours. As wewill explore further in the following
sections, this characteristic appears to be a consequence of the diurnal
cycle-dependent nature of HRES’s skills.

Assessing FlashNet’s reliability
FlashNet’s forecast reliability is assessed via the reliability diagram
introduced in the “Methods” section. The plot is reported in Fig. 3 for
the two forecast horizons 0–24 h (left panel) and 24–48 h (right panel).
The bisector corresponds to perfectly calibrated forecasts (defined in
the “Methods” section) while the shaded region represents the skill
area35 indicating that the forecasts below thedashedhorizontal line are
not better than the reference forecast based on Prevalence.

As one can easily see, our FlashNet network produces forecasts
well within the skill area, the hallmark of reliability, even if a tendency
to overestimate lightning occurrence can be detected: the actual
proportion of lightning events is generally lower than estimated. Only
a single point displays amean reliability value just outside the skill area

(year 2020, forecast lead time 24–48 h). However, the 95% bootstrap-
derived error bar does overlap with the skill region.

Overall, according to the categorization of reliability reported in
Fig. 2 of ref. 35 the reliability of FlashNet can be defined as “very useful
for decision making”.

Also shown in the two panels of Fig. 3 (as insets) is the sharpness
diagram relative, for the sake of example, to the year 2021. Sharpness
diagrams36 show the relative frequency with which the lightning
occurrence has been predicted (over the test set) with different levels
of probability. In both insets, the majority of forecasts predict low
probabilities for lightning occurrence. Our network is also capable of
predicting relatively high probabilities of lightning events, but such
forecasts are less common. Forecast systems that are capable of pre-
dicting events with probabilities different from the Prevalence fre-
quency are said to have ‘sharpness’—and our forecasts thus exhibit
sharpness.

Having demonstrated that FlashNet is reliable and much more
skillful than a simple Prevalence-based random model, in the next
section we compare FlashNet’s skills against those of HRES in pre-
dicting lightning flash occurrence.

FlashNet against HRES: skills evaluation
No well-documented attempts to exploit NWP models and AI in con-
cert for predicting lightning flashes in the forecast horizon up to sev-
eral days ahead seem to be present in the current peer-reviewed

Fig. 2 | Assessing FlashNet’s predictive skills. a Precision−Recall curves for the
balanced test sets (blue curves/markers) and the original unbalanced test sets (red
curves/markers). Continuous lines refer to the predictions in the 0–24h forecast
horizon; open circles refer to the 24–48 h forecast horizon. The three panels refer
to the three folds of the 3-fold cross-validation considered in the present study. The
unbalanced dataset Prevalence is: 1.2% (year 2019), 0.9% (year 2020), and 0.9%
(year 2021). All balanced datasets have a Prevalence close to 50%. All curves cor-
responding to all imbalanced cases (red lines/symbols) have been rescaled
according to Eq. (8) to the prevalence value of the corresponding balanced cases

(blue lines/symbols). The rescaled curves are in orange, dash-dotted/dotted lines.
When doing that, an almost perfect superimposition between the curves is
observed, confirming FlashNet’s capability to work properly in both balanced and
imbalanced cases. b The AUC score is reported normalized by the Prevalence as a
function of different forecast lead times for the three folds of the cross-validation.
The blue, red, and green lines are from FlashNet’s forecasts; the dashed line cor-
responds to the forecasts obtained from the Prevalence-based random model
discussed in the main text. Source data are provided as a Source Data file.

Fig. 3 | Assessing FlashNet’s reliability. The reliability diagram is shown for the
three unbalanced folds of the 3-fold cross-validation we have considered in the
present study. Confidence bars are also shown and correspond to the 95% boot-
strap confidence interval around the mean. Panel a covers the forecast horizon
from 0 to 24 h, while panel b spans the 24–48-h period. Shaded regions show the
area of skillful forecasts. The horizontal and vertical lines show the prevalence-

basedprobabilitiesof theevent for forecasts andobservations. The two insets show
the sharpness diagram (relative to the test in 2021) illustrating the relative fre-
quency of lightning occurrence predictions (abbreviated as 'Count') at different
probability levels. These two diagrams also provide the number of sampling
(Count) used to compute the 95% bootstrap confidence interval alluded to above.
Source data are provided as a Source Data file.
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literature. We came across an attempt documented in conference
proceedings37 which, however, does not allow for detailed information
extraction. This limits the possibility of doing comparisons of our
strategywith other AI-enhanced forecast approaches.We can however
compare part of our results with the deterministic predictions from
the world-leading forecast model HRES operational at ECMWF.

Precision and Recall scores can be easily computed from HRES
through the ‘litota3’ variable38 (see the “Methods” section). The
resulting scores are summarized in Table 1 for the three folds of the
3-fold cross-validation in the 0–24 and 24–48 h forecast intervals, for
both balanced and, actual, unbalanced datasets. For the sake of clarity,
to calculate the Precision in the 0–24 h forecast interval, the ‘true
positive’, TP, of all 3-h sub-interval forecast intervals are summed up to
define the total number of TP in the 0–24 h forecast interval. The same
holds for calculating FP and FN entering in the Precision and Recall
scores (see the “Methods” section). A similar procedure holds for the
24–48 h forecast interval. While the Precision score depends on Pre-
valence (see again the “Methods” section), this is not for the Recall34

score which is the same passing from the balanced to the unbalanced
dataset.

Since HRES does not provide a probabilistic forecast, the P-R
curve cannot be computed from HRES, making it impossible for a
direct comparison against our curves. Rather than comparing those
curves, we can compare the resulting FlashNet’s Recall once the Pre-
cision score is fixed to the value of HRES. It is indeed worth remem-
bering that FlashNet is a fully probabilistic network and by varying the
probabilistic threshold of lightning detection we can easily set our
model Precision to coincide with the one of HRES. Why we do not
follow the opposite option (i.e. fixing the model Recall at the one of
HRES) is related to the highly sensitive character of our prediction.
Failing to predict the occurrence of lightning can indeed cause more
serious consequences than erroneously predicting its occurrence.
Minimizing false negative events (FN) is thus of imperative importance
in the forecast problem at hand.

Figure 4a shows the resulting FlashNet’s Recall score (blue curve)
together with the one from HRES (orange curve). Both scores are
plotted as a function of the forecast lead time, up to 48 h. The test set
corresponds to the whole years 2019, 2020 and 2021 of the exploited
3-fold cross-validation, on the whole area of Fig. 1. It is a huge test set
formed by a total of about 70million prediction–observation couples.
The insets highlight the added value brought out by FlashNet in terms
of FlashNet’s Recall skill score (see the “Methods” section) using HRES
as a reference.

Several remarks fromFig. 4a areworth discussing. It is remarkable
that FlashNet reaches values of the Recall score up to 95% against the
85% of HRES. The higher Recall possessed by FlashNet is however
systematic, being valid for each forecast lead time and each fold of the
cross-validation. Passing from the 0–24 h to the 24–48 h forecast
interval, as for HRES, also for FlashNet a reduction of the skills can be
observed. However, FlashNet in the 24–48 h forecast interval is not
only superior to HRES in the corresponding interval, but it also over-
performs HRES in the 0–24 h interval. Interestingly, the skills of HRES
display a clear dependence on the diurnal cycle, with poorer skills

during nighttime hours compared to daytime hours. This phenom-
enon is well-documented in the literature39 and is attributed to insuf-
ficient nighttime convection, a known shortcoming in IFS cycle 47r2
forecasts of convective activity.

Worth remarking is also the behavior similarity between Flash-
Net’s and HRES’ Recall curves. This is however not surprising: FlashNet
indeed uses the features from HRES (except for the variable ‘litota3’)
and thus its skills are intrinsically linked to those of HRES (see again
Fig. 2b) with its peaks qualitatively reflecting thoseof HRES in Fig. 4a. If
lightning proxies were poorly predicted by HRES, there would be no
way for FlashNet to learn the mapping between HRES features and
lightning occurrences. From this perspective, having accurate predic-
tions of the lightning proxies forecasted by HRES is a necessary (but
not sufficient) condition for the good predictive performance of
FlashNet. The skills of our network are thus an indirect way to assess
the skills of HRES in relation tometeorological variables triggering the
lightning occurrence.

Our network is however appreciably more skillful than the HRES
algorithm in mapping the skillful meteorological features from HRES
into a dichotomous index for detecting lightning occurrence. Finally,
from the insets of Fig. 4a, we only note a slight reduction of the
resulting Recall skill scores passing from the 0–24 h to the 24–48 h
forecast interval. This tells us that learning the mapping between
meteorological features and lightning occurrence can be a successful
task even for longer temporal horizons. Although the absolute skill in
predicting lightning occurrence decreases with the forecast lead time,
the added value brought by FlashNet persists. Table 2 summarizes the
resulting Recall scores from FlashNet for the three folds of the 3-fold
cross-validation in the 0–24 and 24–48 h forecast intervals, for both
balanced and, actual, unbalanced datasets.

We now focus on evaluating the performance of FlashNet and
HRES under different prediction conditions over the sea and land. The
convection mechanisms in these regions are indeed different, and it is
of interest to examine whether the model’s skills vary. It should be
noted that the training of FlashNet was conducted without distin-
guishing between sea and land; the differentiation is made only during
the testing phase. The predictive capacity of FlashNet can only further
improve by conducting separate training for sea and land. In Fig. 4b,
we present the Recall (with FlashNet’s Precision fixed to that of HRES)
for FlashNet and HRES over the sea (dashed lines) and over land (solid
lines) in two forecast intervals: 0–24 and 24–48 h (upper panels). The
lower panels depict similar curves but for Precision, with FlashNet’s
Precision determined by fixing the Recall to the value of HRES. In all
cases, we fused the three folds and analyzed the indices month by
month. Several comments are worth discussing. The most evident is
that both over sea and land, FlashNet outperformsHRES, both in terms
of Precision and Recall. The reason behind the lower skill scores
observed for the Precision index can once again be explained through
Eq. (8) and, ultimately, by the low prevalence of the dataset. Another
interesting aspect is the more pronounced improvement brought by
FlashNet on land compared to over the sea. This aspect does not seem
surprising: predicting convection triggered by orographic effects is
clearly challenging for a model like HRES, which has a resolution of

Table 1 | The Precision and Recall scores computed from the HRES ‘litota3’ variable are reported for the two forecast intervals
0–24 and 24–48h

0–24h 24–48h

Balanced Unbalanced Balanced Unbalanced

2019 2020 2021 2019 2020 2021 2019 2020 2021 2019 2020 2021

Precision 0.92 0.91 0.90 0.11 0.10 0.09 0.92 0.91 0.90 0.11 0.09 0.08

Recall 0.72 0.74 0.67 0.72 0.74 0.67 0.67 0.70 0.62 0.67 0.70 0.62

Results are reported for both the balanced and unbalanced datasets, and separately for the years 2019, 2020, and 2021.
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approximately 10 km in the areaof interest. In contrast, FlashNet learns
these effects from the observed data during the training period.

Regarding the trends of these indices in different months of the
year, there are no particular trends observed, except for a slight

tendency (highlighted by the skill scores reported in the insets)
towards increased predictive skills of FlashNet compared to HRES in
the summer/autumnmonths. This seems tohold truebothover the sea
and over land.

Fig. 4 | Assessing FlashNet’s predictive skills against the ECMWF-HRES model.
a The Recall score vs. the forecast lead time from FlashNet (blue curve) and from
HRES (orange curve). From left to right, the 3 test sets. They correspond to the 3
(naturally unbalanced) years 2019, 2020, and 2021 of the 3-fold cross-validation.
Insets: FlashNet’s Recall skill scores using HRES' Recall as reference. b The Recall,
with FlashNet’s Precision fixed to that of HRES, for FlashNet and HRES over the sea

(dashed lines) andover land (solid lines) in two forecast intervals, 0–24 and24–48h
(upper panels), are shown. The lower panels depict similar curves but for Precision,
with FlashNet’s Precision determined by fixing the Recall to the value of HRES. In all
cases, we fused the three folds and analyzed the indices month by month. Source
data are provided as a Source Data file.
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In Table 3, we have shown the skill withwhich theHRESmodel and
our FlashNet network replicate the Prevalenceof the observed dataset.
To achieve this, we calculated, for the forecast intervals of 0–24 and
24–48 h, the mean difference between observed and predicted light-
ning occurrence (i.e., sequence of 0s and 1s) by HRES and FlashNet.
This observable measures the disparity between the Prevalence of the
observed dataset and the one reconstructed from the forecasting
models (HRESor FlashNet). InTable 3, wewill refer to this difference as
BIAS for brevity. The table also shows the F1 score (see the “Methods”
section) for both HRES and FlashNet. For the latter model, the F1 score
has been minimized in the validation set by selecting the optimal
probability decision threshold. The resulting sequences of 0s and 1s
are determined from FlashNet based on this threshold, with 1 being
selected when the predicted probability crosses the threshold, and 0
being assigned when the predicted probability is below the same
threshold. FlashNet exhibits a clear superiority over HRES in terms of
both BIAS and F1 score across all years and forecast intervals.

Up to this point, we have assessed the performance of both HRES
and FlashNet using highly quantitative errormetrics. We conclude this
section with a qualitative comparison that provides an overall view of
FlashNet’s superiority over HRES. To achieve this, we fused the data
from the three test folds and accumulated all the resulting 0s (no
lightning) and 1s (occurrence of at least one lightning event) for each
trimester of the resulting ’typical’ year. A given integer value in the
maps thus tells us how many events containing at least one lightning
flash in 1 hour occur. For FlashNet, the sequences of 0s and 1s have
been determined by selecting the probability decision thresholdwhich
minimizes the F1 score in the validation set. In Fig. 5 we present the
accumulated 0/1 values across the entire analyzed domain. This
aggregation step is essential due to the rarity of lightning occurrences,
which represent <1% of the total events. For each trimester, we display
threemaps (one for HRES, one for FlashNet, and one for observations)
side by side, facilitating visual comparison. This comprehensive view
seems toqualitatively affirmwhat all the quantitative statisticalmetrics
we employed had previously established: FlashNet’s superiority over
HRES in predicting lightning occurrences.

Discussion
A hybrid AI-enhanced methodology, which we have dubbed FlashNet,
has been presented and tested to predict the occurrence of lightning

flashes in the 0–48 h forecast horizon. Our method is not purely data-
driven; instead, features from the ECMWF world-leading NWP model
HRES are mapped onto the probability of lightning flash occurrence
via a training set where the truth corresponds to the lightning occur-
rence from the LAMPINET detection system covering the whole Italian
territory. Fromour results, the superiority of FlashNet predictions over
HRES’ predictions based on the fully deterministic paradigm clearly
emerges. FlashNet systematically outperforms HRES in predicting
lightning occurrence, the conclusion being valid for each forecast lead
time and each fold of the cross-validation. Rather impressive is the
peak achieved for the Recall, of about 95% against the 85% of HRES,
occurring around noon in the 0–24 h forecast interval.

Also remarkable is the fact that FlashNet in the 24–48 h forecast
interval not only overcomes HRES in the corresponding interval, being
also superior when the comparison is done with respect to the HRES’
Recall in the 0–24 h interval. Our results suggest that learning the
mapping between meteorological features and lightning occurrence
might be a successful task even for forecast horizons longer than the
0–48 h considered in the present study. Although the absolute skill in
predicting lightning occurrence is expected to decrease with the
forecasthorizon, the addedvaluebrought byFlashNetwouldpersist as
observed in the present study passing from the 0–24 h to the 24–48 h
forecast interval. This aspect opens up promising avenues for future
research, particularly in extending the forecast horizon beyond 48h.

But why is FlashNet successful? A significant portion of the credit
goes to HRES: as the best existing deterministic model, it provides
excellent large-scale proxies for lightning. We refer, e.g., to thermo-
dynamic and variables, cloud microphysics representation, and con-
vection proxies. Furthermore, despite its simplicity, the FlashNet
architecture has proven to be robust against overfitting, demonstrat-
ing excellent generalization of its performance from one fold to
another. Conversely, HRES employs a deterministic and relatively
simple lightning initiation model that is, as a result, unable to fully
capture the complexity of the initiation phenomenon.

Our strategy also significantly outperforms the prediction of
lightning occurrence made in terms of a simple Prevalence-based
random model. Finally, FlashNet is also calibrated, and thus reliable:
the resulting reliability diagram tells us that our network is “very useful
for decision making” according to the criteria for classifying forecast
skill into five categories based on the slope of the reliability line in the

Table 2 | For each fold of the 3-fold cross-validation, shown are the Recall scores in the two forecast intervals 0–24 and
24–48h, from FlashNet and HRES

0–24h 24–48h

Balanced Unbalanced Balanced Unbalanced

2019 2020 2021 2019 2020 2021 2019 2020 2021 2019 2020 2021

FlashNet 0.86 0.88 0.81 0.86 0.88 0.81 0.78 0.82 0.76 0.79 0.82 0.76

HRES 0.72 0.74 0.67 0.72 0.74 0.67 0.67 0.70 0.62 0.67 0.70 0.62

Results for both the balanced and the unbalanced test sets are displayed. The probability threshold is fixed in the FlashNet network in a way that the resulting Precision equals the one from HRES
reported in Table 1.

Table 3 | The mean difference between observed and predicted lightning occurrence (0 and 1 representing no lightning
occurrence in 1 h while 1 denotes the occurrence of at least one lightning flash in 1 h) by HRES and FlashNet (BIAS in short) is
reported

0–24h 24–48h

2019 2020 2021 2019 2020 2021

F1 Bias F1 Bias F1 Bias F1 Bias F1 Bias F1 Bias

FlashNet 0.37 −0.005 0.38 −0.013 0.36 −0.005 0.37 −0.008 0.38 −0.017 0.36 −0.008

HRES 0.19 −0.066 0.17 −0.056 0.15 −0.059 0.18 −0.062 0.17 −0.054 0.15 −0.055

Also reported is the F1 score from HRES and FlashNet.
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reliability diagram35. The strategy we have proposed and validated can
be easily generalized to other regions in theworld and also using other
lightning flash detection systems for training and testing. In its present
form, our AI-enhanced strategy could already be used as a post-
processing of the outputs operatively produced byHRES in the 0–48 h
forecast horizon. Moreover, because it emerges from our study that a
necessary condition for accurate predictions by FlashNet is to have
accurate forecasts of proxies relevant to lightning initiation, in this
perspective, having an even more accurate model than HRES could
lead to overall more accurate results. Considering the success of
Pangu-Weather16 discussed in the introduction, it emerges as an ideal
candidate to take this further step.

A further line of generalization for our work is to incorporate
observed features alongside those extracted from model forecasts to
further enhance the quality of lightning predictions, specifically for
short-term temporal horizons. Among the features of interest, obser-
vations from the LAMPINET network are certainly an option to be

considered. Additionally, aerosol-related features also merit attention
in order to more effectively elucidate lightning mechanisms, as
demonstrated in ref. 40. In the present study, a short-term forecast
refers to the initial few forecast hours (e.g., 1 or 2 hours after the
analysis at 00 UTC) of the night following the 00 UTC analysis. This
suggests that incorporating observations might provide some benefit
for the first (or at least a portion of it) forecasted night. Unfortunately,
we firmly exclude the same potential benefit for the night in the
24–48 h forecast horizon (and,more generally, after the first few hours
from the analysis time), as such a lead time is too distant from the
observation time tomaintain a relevant correlationwith it, as explicitly
shown by Casciaro et al.41 in relation to wind forecasts.

Because of the generality of our approach, the present work is
expected to open new avenues of research and activities in all
environmental fields dealing with rare events, including floods and
extreme temperatures/winds, issues becoming more and more
important in a climate change scenario. Furthermore, having

Fig. 5 | Spatial distributionof lightningflashoccurrence.Thedata from the three
test folds have been fused and the resulting 0s (no lightning) and 1s (occurrence of
at least one lightning event) accumulatedpoint-by--point across the entire analyzed
domain, for each trimester of the three considered years. For each trimester, we

display the four maps for LAMPINET network (the ground truth), FlashNet, and
HRES.Different colors represent different numbers of events according to the color
bar reported for each panel row. The reported domains extend from 36.0°N to
47.0°N in latitude and from 7.5°E to 19.0°E in longitude.
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demonstrated FlashNet’s capability in predicting lightning flash
occurrence, the challenge of predicting the actual density of
lightning can be now addressed by transitioning from a classifica-
tion problem to a regression-oriented approach.

Methods
The LAMPINET detection system
The Italian lightning network31,32, reported in Fig. 1, is based on Vaisala
technology, with 15 IMPACT ESP sensors uniformly distributed over
the national territory, and operative since 2004. It is based both on
magnetic direction finding (MDF) and Time Of Arrival (TOA) techni-
ques. LAMPINET network can reach a detection efficiency of 90% for
intensity (I) > 50 kA, and location accuracy of 500m over the whole
Italian territory31, thus much higher than the HRES’ spatial resolution.
Since 2021, LAMPINET sensors have become part of the European
EUCLID network42.

The global ECMWF HRES model
The HRES model is currently run by ECMWF12 with outputs organized
on a constant 0.1° × 0.1° lat/lon grid, corresponding to about 10 km
resolution, horizontally, in the considered area of Fig. 1. For the pre-
sent study, forecast data relative to the entire Italian territory and for
the same time span of the observed data fromLAMPINET are collected
every 3 h. The ECMWF conducts four daily runs of the HRES model.
These runs start from the so-called ‘analysis’ (i.e. the initial conditions)
at the synoptic hours 00:00 UTC, 06:00 UTC, 12:00 UTC, and 18:00
UTC. For our experiments, we have chosen the 00:00 UTCmodel run,
since it plays a pivotal role in shaping early morning and daytime
weather predictions, making it of paramount importance in the
operational weathermodel’s daily cycle. HRES provides a considerable
number of meteorological variables, both two-dimensional (either
surface fields or fields integrated along the column) and fully three-
dimensionalfields varying onmultiple pressure levels, constituting the
predicted state of the atmosphere up to 10 days ahead. The features
we have collected to train FlashNet are listed in Table 4. For each
model grid point, we extracted 9 two-dimensional fields and 5 vertical
profiles defined on 7 pressure levels. Moreover, from the extracted
variables we derived other variables (see again Table 4).

For the training phase of the neural network, the selected HRES
gridded data sampled every 3 h and belonging to a domain extended
from36.0°N to 47.0°N in latitude and from7.5°E to 19.0°E in longitude,
for two different forecast intervals, 0–24 and 24–48 h, have been
considered. Among other meteorological variables provided by HRES,
worthy of attention is a family of variables encoded with the root
‘litota’38. These variables, available since mid-2018, account for the
averaged total (cloud-to-cloud and cloud-to-ground) lightning flash
density in different time intervals. In the HRES model, the total light-
ning flash density is calculated using an empirical formula involving
convective cloud and precipitation information, convective available
potential energy (CAPE), and convective cloud base height diagnosed
by the convection scheme43. The HRES lightning flash forecast pro-
vided by ‘litota3’, i.e. the averaged total lightning flash density in 3 h, is
used to obtain a benchmark of FlashNet’s predictions (see next sec-
tion). It is worth noting that ‘litota3’ (or other variables with the root
‘litota’) is not used as a feature to train our neural network.

Lightning dataset creation
In the present study, the complete LAMPINET archive of the lightning
flash detection recorded from 1 January 2019 to 31 December 2021 has
been used. Raw LAMPINET data contains a continuous-in-time map-
ping (in terms of lat-lon coordinates) of lightning activity across the
geographic area of Fig. 1, including information on the type of lighting

Table 4 | Features used to train FlashNet

List of gridded features

CAPE index (convective available potential energy)

cp—convective precipitation

tcw—total cloud water

tp—total precipitation

mslp—mean sea level pressure

hcc—high cloud cover

sp—surface pressure

w925—vertical velocity at 925 hPa

w850—vertical velocity at 850hPa

List of derived gridded features

capetp—product between CAPE and tp

Δt1—temperature difference between 925 and 850hPa

Δt2—temperature difference between 850 and 700hPa

Δt3—temperature difference between 700 and 600hPa

Δt4—temperature difference between 600 and 500hPa

Δt5—temperature difference between 500 and 400hPa

Δt6—temperature difference between 400 and 300hPa

Δq1—specific humidity difference between 925 and 850hPa

Δq2—specific humidity difference between 850 and 700hPa

Δq3—specific humidity difference between 700 and 600hPa

Δq4—specific humidity difference between 600 and 500hPa

Δq5—specific humidity difference between 500 and 400hPa

Δq6—specific humidity difference between 400 and 300hPa

Δθ1—potential temperature difference between 925 and 850hPa

Δθ2—potential temperature difference between 850 and 700hPa

Δθ3—potential temperature difference between 700 and 600hPa

Δθ4—potential temperature difference between 600 and 500hPa

Δθ5—potential temperature difference between 500 and 400hPa

Δθ6—potential temperature difference between 400 and 300hPa

List of gridded features corresponding to vertical profiles

q—specific humidity

gh—geopotential height

t—temperature

u—wind speed eastward component

v—wind speed northward component

List of derived features from vertical profiles

uq—eastward component of the q-vector

vq—northward component of the q-vector

θ—potential temperature

gradθ—vertical gradient of potential temperature

pv—potential vorticity

Other features

cosð2πH=24Þ —H being the hour of the day

sinð2πH=24Þ —H being the hour of the day

cosð2πm=12Þ —m being the month of the year

sinð2πm=12Þ —m being the month of the year

lat—latitude

lon—longitude

z—surface geopotential

For all gridded features, we also calculated the mean, maximum, minimum, and standard
deviation over a region of 11 × 11 grid points around the reference HRES’grid point. The features
extracted in the form of vertical profiles refer to the pressure levels 925, 850, 700, 600, 500,
400, and 300hPa.
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(cloud-to-cloud or cloud-to-ground) and their amperage. These
information have been aggregated in time, on time intervals of three
hours, and in space, by arranging them on the same grid on which
the HRES’ output is available. In plainwords, for eachHRES’ grid point,
we counted thenumber of lightningflashes that occurred in a regionof
an area of 10 km× 10 km around the grid point. Each map obtained in
this way has then been converted into a map of ‘0’ and ‘1’, the former
being associated with the absence of lightning in 3 h in the 10 km×
10 km area around a given grid point, the latter telling us that at least
one lightning event occurred in three hours in the same area around
the grid point. A similar dataset of ‘0’ and ‘1’ has been created starting
from the ‘litota3’ HRES’s variable38.

The resulting dataset is strongly unbalancedwith only about 1% of
events. Using a similar dataset for the learning stage of our AI-based
strategy is challenging. The AI network indeed sees too few 1-type
events, compared to the 0-type events, to learn the mapping of HRES’
features onto the probability of lighting flash occurrence without
biases. To overcome this problem, different techniques have been
exploited here, such as “oversampling”44, “undersampling”45, “syn-
thetic minority oversampling technique” (SMOTE)46. We provide
details solely on the undersampling strategy which has been the one
giving the best results. Accordingly, our resulting balanced dataset
contains all lightning events while picking at random in the whole
original dataset a number of 0-type events in a way that the final
number of these latter equals the number of lightning occurrences.
The resulting LAMPINET balanced dataset contains for the years 2019,
2020, and 2021 a total number of about 2 million samples, all years
contributing almost equally to this number.

k-fold cross-validation
Having created a balanced dataset of lightning occurrence, we have
performed k-fold cross-validation (with k = 3) to train/test the network.
Accordingly, each of the 3 years (2019, 2020, and 2021) is sequentially
taken as the test set with the remaining two serving for training.
Variability and robustness of FlashNet’s skills can be thus assessed in
this way. While the training set in the k-fold cross-validation is always
balanced, the test has been carried out both in its balanced and in its
actual unbalanced form (i.e. testing the entire year with its natural
degree of unbalance).

The FlashNet deep learning framework
Figure 6 shows a schematic representation of the ensemble deep
learning framework we propose here to predict lightning occurrence
in the 0–48 h forecast horizons, starting frommeteorological features
from the ECMWF-HRES weather model. Figure 6a reports the network
architecture constituting the single ensemble member. To properly
deal with both local and nonlocal features (i.e. accounted by vertical
profiles other than by point-wisemeteorological information), a multi-
head structure is exploited where one head is based on a neural net-
work composed of four fully connected hidden layers. The input of the
layer dealing with point-wise data is made by different gridded data
provided by HRES at a given forecast lead time. Moreover, for each
feature, we calculate the mean, standard deviation, maximum, and
minimum value over an area of 11 × 11 grid cells around the selected
grid point, which allows us to take into account large-scale spatial
effects. The head dealing with non-local features is based on one-
dimensional convolutions which take as input vertical profiles built
fromsevendifferentHRES’pressure levels at a givenpoint and forecast
lead time. The selected variables are reported in Table 4. The final
layers of the two heads are concatenated, followed by two fully con-
nected layers leading to the final node output. Since we face a binary
classification, the output is provided by a single neuron that exploits
the sigmoid activation function in order to get a value between 0 and 1
which represents the probability associated with the lighting flash
occurrence.

To train FlashNet we adopt an ensemble strategy. The idea is to
combinemultiple neural networks, where each network is trainedwith
bootstrap replicas with a replacement of the original dataset. In addi-
tion, to maximize the independence of each model of the ensemble,
each ensemble member has its own standardization for the features in
input to the network. Then, the final probability output is obtained by
averaging the outputs of the network as sketched in Fig. 6b. The
number of hidden layers and neurons for each hidden layer, the
number of filters for each convolutional layer, activation functions,
level of dropout, and batch size have been chosen in order to prevent
the overfitting of the single member. Each member of the ensemble
network has been trained with early stopping and learning rate
reduction by monitoring the out-of-bag loss. FlashNet’s architecture is
available in the on-line repository47. We trained 20 members on the
training set of the 0–24 h forecast horizon, and the same ensemble
networks have also been used to make predictions in the 24–48 h
forecast horizon. Since we adopt an undersampling strategy to train
FlashNet, there is a modification of the distribution of classes in the
training set, which consequently biases the posterior probabilities of a
classifier48, although the bias due to undersampling does not affect the
ranking order returned by the posterior probability. For this reason, at
the FlashNet’s output (see Fig. 6b), we use the Bayes minimum risk
method (BMR) described in49 in order to get reliable output
probabilities.

Neural network details. Each member of the ensemble (see Fig. 6b)
shares the same architecture, as depicted in Fig. 6a. The architecture
comprises two heads. The head that takes point-wise data as input is
followed by dropout, with a rate of 0.1, which acts on the 472 input
features. This is followed by four fully connected layers interspersed
with dropouts. We refer to the fully connected layers as Densei, with i
denoting the ith dense layer, as illustrated in Fig. 6a, progressing from
left to right. Specifically, Dense1 consists of 1416 nodes, utilizes the elu
activation function, and has a dropout rate of 0.5. Dense2 has 2832
nodes, uses the relu activation function, and has a dropout rate of 0.6.
Dense3 also has 2832 nodes, utilizes the elu activation function, and
has a dropout rate of 0.6. Finally, Dense4 consists of 500 nodes and
uses the swish activation function.

The head that takes vertical profiles (10 profiles on 7 pressure
levels) as input is based on one-dimensional convolutions. In this case,
as well, the input is followed by dropout with a rate of 0.1. This is
followed by Conv1D1 consisting of two one-dimensional convolutions
using 40 filters with a kernel size of 3 and padding set to the same. The
elu activation function is applied, followed by MaxPooling1D with a
pool size of 2 and dropout with a rate of 0.5. This is followed by
Conv1D2, which consists of two one-dimensional convolutions using
80 filters with a kernel size of 3, padding set to same, elu activation
function, MaxPooling1D with a pool size of 2, and dropout with a rate
of 0.55. Finally, a flattening operation is applied to Conv1D2, followed
by a fully connected layer consisting of 500 nodes with the swish
activation function (Dense5).

The twoheads are linked by concatenating the layersDense4 and
Dense5. After concatenation, a dropout with a rate of 0.5 is applied.
This is followed by a fully connected layer (Dense6) with 500 nodes,
the swish activation function, and a dropout rate of 0.2. Finally, the
last layer, Dense7, consists of 250 nodes using the relu activation
function. The output node applies the sigmoid activation function
and L2 regularization with default values provided by TensorFlow.
Each network in the ensemble is trained using the Adam optimizer
with a learning rate of 0.0001. The loss function employed is theBrier
score:

BS =
1
N

XN
i= 1

ðpi � oiÞ2 ð1Þ
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Here, p represents the predicted probability, and o corresponds to the
observed 0/1 label. For each member, training is performed on boot-
strap replicas with replacement of the original dataset, and each
member has its own standardization for the input features. Addition-
ally, we trained the networks using early stopping with a patience of 15
epochs and learning rate reduction with a patience of 10 epochs,
employing a reducing factor of 0.1. The out-of-bag loss threshold for
learning rate reduction is set at 0.0001. The hyperparameters of the
network have not been individually fine-tuned, as such an approach
would have been prohibitively resource-intensive. Instead, these
hyperparameters, as well as architecture settings, have been manually
selected, aiming to discover configurations that would reliably yield a
high degree of generalization across training and validation datasets.

Statistical indices to assess forecast skills
Precision and Recall scores. As customary when dealing with unba-
lanced datasets, the model skill evaluation is built in terms of the
scores ‘Precision’, [Eq. (2)], related to the false alarm ratio (FAR) by the
relation Precision = 1−FAR, and ‘Recall’, also known as sensitivity or

probability of detection, POD, [Eq. (3)]50,51, here denoted by P and R,
respectively:

P =
TP

TP+FP
ð2Þ

R=
TP

TP + FN
ð3Þ

In Eqs. (2) and (3), TP refers to the true positives (i.e. an outcomewhere
the model correctly predicts the event occurrence), FP refers to the
false positives (i.e. an outcome where the model incorrectly predicts
the event occurrence), and FN refers to the false negatives (i.e. an
outcome where the model incorrectly predicts the negative class
corresponding to the absence of the event). Of course, an optimal
prediction would have P =R = 1. To identify TP, FP, and FN a threshold
from 0 to 1 must be set in order to define event ‘1’ (occurrence of
lightning) and event ‘0’ (no lightning occurrence), starting from the
event probability outputted from FlashNet (see again Fig. 6). One

Fig. 6 | A schematic representation of the FlashNet ensemble network. Panel
a refers to a singlemulti-headmemberof theensemble. Panelb illustrates howeach

member contributes to the final outcome corresponding to the prediction of the
lightning flash occurrence probability.
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additional score have been employed to assess the model’s classifica-
tion performance: the F1 score, which is the harmonic mean of Preci-
sion and Recall and is defined as F1 = 2 P R/(P + R).

The areaunder theprecision–recall curve (AUC). Once the threshold
in the probability outputted from FlashNet is varied from 0 to 1 to
identify a set of precision–recall couples, these latter can be arranged
in the so-called Precision (along the ordinate)—recall (along the
abscissa) plot, whose integral is the AUC score. AUC is ametric used to
evaluate the performance of binary classification models, particularly
when dealing with imbalanced datasets where one class is much more
prevalent than the other52. Unlike the area under the ROC curve (AUC-
ROC), which uses the receiver operating characteristic curve53, the
precision–recall AUC uses the precision–recall curve to assess the
model’s ability to correctly classify positive instances while consider-
ing precision and recall trade-offs.

A perfect classifier with maximum precision and recall would
have an AUC of 1. A random classifier that makes predictions
without considering the actual class distribution would have an
AUC close to the proportion of positive instances in the dataset (i.e.
the Prevalence, see next subsection). An AUC value between 0 and 1
indicates themodel’s ability to achieve a balance between Precision
and Recall.

The precision–recall AUC score is calculated using the built-in
function in scikit-learn python-based library54, taking the precision and
recall values as arguments.

Prevalence-based random model. Prevalence, denoted here by ℘, is
defined as the ratio of the number of positive observed events, N1, to
the total number of events,N1 +N0. Namely,℘ =N1/(N1 +N0). Given the
Prevalence obtained from the observations and given the threshold
Pth∈ (0, 1) to identify the event ‘1’ via a random generator uniform in
the interval (0, 1), it is easy to realize that the resulting probability of
lightning occurrence would get P =N1/(N1 +N0) =℘ and R = Pth. Also,
the resulting AUC from the random model is simply AUC=℘. These
simple predictions are useful benchmarks to assess the added value
brought by more complex prediction strategies as the one
presented here.

Explicit formula for the dependence of precision score on Pre-
valence. The formula we are going to derive allows a quantitative
comparison between precision scores which refer to datasets of
observations having different Prevalence. The problem of cross-
dataset comparisons of precision being of general interest, espe-
cially to evaluate clinical tests55, its derivation deserves a dedicated
section.

Let us imagine to have a dataset with N1 ‘1’ events (lightning
occurrence here) and N0 ‘0’ events (no lightning occurrence), corre-
sponding to a Prevalence℘ =N1/(N1 +N0) (e.g.,℘≪ 1 corresponding to
an unbalanced dataset). Let us now imagine to construct another
dataset containing the same N1 ‘1’ events while picking at random ‘0’
events from the previous dataset until a certain eN0 is obtained. The
new dataset has a Prevalence e}=N1=ðN1 + eN0Þ (e.g., e} = 1=2, corre-
sponding to a balanced dataset).

Our aim is to determine how the Precision score, P, changes by
passing from℘ to e} (i.e. by reducing the number of ‘0’ events fromN0

to eN0 =αN0,α<1). In doing that, it is easy to realize that TP cannot vary
fromone dataset to the other (N1 indeed remains unchanged)whilefFP,
the falsepositive in the newdataset,mustproportionally reduce (there
are indeed less ‘0’ and thus it is more difficult to fail to predict type-1
events). Namely,

fFP = FP
N0

eN0 =αFP ð4Þ

The resulting Precision, eP, thus reads: eP =TP=ðTP+αFPÞ from which,
after simple manipulation, one gets:

eP =
P

α + ð1� αÞP ð5Þ

We now need to express α in terms of ℘ =N1/(N1 +N0) and
e}=N1=ðN1 + eN0Þ. Simple algebra leads to the following relationship:

e}=
1

1
} + 1

} � 1
� �

ðα � 1Þ ð6Þ

from which we obtain:

α � 1 =
}� e}
e}ð1� }Þ ð7Þ

Plugging α from Eq. (7) into Eq. (5) we get the final result:

eP =
P

1 + }�e}e}ð1�}Þ ð1� PÞ ð8Þ

It is easy to verify that this expression holds in general, irrespective of
the way one follows to change the dataset unbalance.

Assessing reliability. Let us now pass to discuss how we assessed the
reliability of FlashNet’s forecasts. The concept of reliability is related to
the one of calibration, meaning that a reliable forecast denotes the
goodness of calibration56. Calibration pertains to the agreement
between a forecaster’s predictions and the actual observed relative
frequency of a given phenomenon57. Focusing on the problem at hand,
a forecast is perfectly calibrated if it predicts a set of caseswith, say, x%
probability of being a lightning event, and the frequency of lightning
events contained in that set is equal to x%.

To assess calibration, for each test set of the 3-fold cross-valida-
tion we have computed the probabilities of having a lightning event
and we have successively partitioned the probabilities of having a
lightning event into a number of 9 subsets in which each subset
represents a disjoint interval of probabilities between 0 and 1. For each
subset, we computed the relative frequency of examples corre-
sponding to lightning occurrence (fraction of positive events in short)
and plotted it vs. the computed relative frequency of lightning events
(mean predicted probability in short). These are the instructions we
followed to construct the reliability diagram.

The skill score index. To highlight the predictive skills of a forecast
model against a reference, we resort to the well-known skill-score
index58,59. The latter index is defined as

SS =
a� aref

aopt � aref
ð9Þ

where a is an error index to assess the forecast quality, aref is the error-
index associated with a reference forecast, and aopt refers to the index
value corresponding to optimality. In the present study, a is the Recall
score from FlashNet, aref is the Recall score from HRES, and aopt = 1,
corresponds to the optimal Recall.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
For training and testing FlashNet, we downloaded a subset of theHRES
dataset, totaling ~176GB, from the ECMWF forecast archive catalog,
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which is accessible at https://apps.ecmwf.int/archive-catalogue/?
class=od&stream=oper&expver=1. Additionally, we acquired the
LAMPINET data from the Italian Air Force Meteorological Service
(Servizio Meteorologico dell’Aeronautica Militare). These data are
freely available for research purposes upon request to the Italian Air
Force Meteorological Service via email at dati.meteo@aer-
onautica.difesa.it. The data volume for the area considered in our
study is ~250Mbper year. We have prepared a smaller dataset by post-
processing the original LAMPINET data and combining them with
HRES’ output. This dataset consists of samples taken every 3 h within a
domain spanning from 40.7°N to 42.0°N in latitude and from 12.1°E to
14.4°E in longitude. We have made this smaller dataset available along
with the code (detailed in the next section) for the forecast horizon of
0–24 h, enabling exploratory analysis. The dataset (compressed ver-
sion size of about 23Gb) can be accessed in the on-line repository47.
Figure Source data are provided with this paper.

Code availability
In the on-line repository47, FlashNet’s code and the pre-trained AI-
network are accessible. The code is based on TensorFlow, a Python-
based library for deep learning. We also used other Python libraries,
such as NumPy, SKlearn, and Matplotlib. We release both the trained
ensemble and the inference code. All the details, including network
architecture, modules, optimizations, and hyperparameters, are also
available in the repository. The trained FlashNet is now ready for
operational use, also serving as a valuable resource for researchers
across diverse fields.
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