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Online legal driving behavior monitoring for
self-driving vehicles

Wenhao Yu1,5, Chengxiang Zhao2,5, HongWang 1 , Jiaxin Liu 1, Xiaohan Ma2,
Yingkai Yang1, Jun Li1, Weida Wang2, Xiaosong Hu 3 & Ding Zhao4

Defined traffic lawsmust be respected by all vehicleswhendriving on the road,
including self-driving vehicles without human drivers. Nevertheless, the
ambiguity of human-oriented traffic laws, particularly compliance thresholds,
poses a significant challenge to the implementation of regulations on self-
driving vehicles, especially in detecting illegal driving behaviors. To address
these challenges, here we present a trigger-based hierarchical online monitor
for self-assessment of driving behavior, which aims to improve the rationality
and real-timeperformance of themonitoring results. Furthermore, the general
principle to determine the ambiguous compliance threshold based on real
driving behaviors is proposed, and the specific outcomes and sensitivity of the
compliance threshold selection are analyzed. In this work, the effectiveness
and real-time capability of the onlinemonitorwere verified using bothChinese
human driving behavior datasets and real vehicle field tests, indicating the
potential for implementing regulations in self-driving vehicles for online
monitoring.

Legal driving is a prerequisite for the widespread adoption of self-
driving vehicles (SVs) to ensure the safety of future transportation1.
Independent online monitoring of the driving behavior of SVs is not
only an essential means for government regulation of autonomous
driving, such as provides substantial evidence for the traceability of
traffic incidents, but also can provide warnings of violations to auton-
omous driving algorithms, helping improve their compliance with
regulations. Currently, human-oriented traffic laws contain numerous
ambiguous expressions, leading to varying interpretations by enter-
prises, and consequently, divergent behaviors in self-driving vehicle
(SV) systems2–4. The implementation of human-oriented traffic laws for
real-time vehicle driving remains a challenge. Until now, independent
online legal drivingbehaviormonitoring that seamlessly integrates into
AVs and covers the entire road network is still lacking considering the
rational and machine-interpretable compliance thresholds.

In the field of autonomous driving, most regulation-related
research begins with the formalization of regulations. The teams of

Althoff and Bin-Nun made major pioneering contributions to the for-
malization of traffic laws and subsequent applications. In early studies,
simple logic formulas were used to formalize traffic laws, such as first-
order logic5, deontic-order logic6,7, and high-order logic8,9. However,
these methods cannot describe the sequential nature of the typical
driving behavior of traffic laws10. Recently, temporal logic-based
methods such as linear temporal logic (LTL)11 have gained traction
because of their expressiveness in traffic-law representation. Exten-
sions such as signal temporal logic (STL)12,13 are additionally equipped
with legality robustness degree, and metric temporal logic (MTL)14–16

can further specify intervals for property fulfillment. Censi et al. pro-
posed the concept of a hierarchical model for traffic law violation by
implementing liability, ethics and culture-aware behavior specification
as Rulebooks17. The primary applications of formalized traffic laws
include monitoring, control synthesis, and formal verification18. Mon-
itoring refers to checking the current or recorded driving behaviors of
SVs violate traffic laws11,19. The control synthesis aims to solve a vehicle
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controller to plan an optimal trajectory within traffic laws
restrictions20–23. Specifically, Xiao et al. implemented the traffic laws
into an online real-time planner by specifying their priorities by con-
structing a priority structure called Total Order over eQuivalence
classes (TORQ)21. Formal verification aims to theoretically prove or
ensure the legality of all possible behaviors of a given SV system24–26.
Most applications focus on enhancing the compliance of SVs within
the current traffic-law framework, and only a few are dedicated to
offering independent and reliable sources of compliance monitoring
data for government regulation and enterprise analysis. The latter goal
requires that themonitor encompasses all traffic-law articles, operates
continuously to cover all road sections without interfering with the SV
system’s decisions, and provides rational judgments based on the
genuine driving behaviors of vehicles.

The understanding of ambiguous traffic laws varies significantly
among individuals, and the key challenge in achieving rational judg-
ments is the selection of thresholds for ambiguous articles, such as
that the vehicle behind shall overtake fromthe left sideof the vehicle in
front after making sure that there is sufficient safe space, and that the
vehicles making a turn may not interfere the vehicles and pedestrians
that are let go straight forward. Many researchers have attempted to
select thresholds for ambiguous articles, and some researchers27

sought relevant guidance from suggestive documents, such as driver
guides28,29. These suggestions are often derived from previous driving
experience. The prevailing approach for threshold analysis is based on

theoretical models that specify thresholds using pre-designed models
with kinematic principles. For example, the driver reactionmodel with
the maximum brake distance11,12,30,31 or the set-base prediction
model32–34, can be used to specify the safe distance. Thresholds from
models are usually conservative owing to strict constraints that are
applicable for decision-making to ensure legality. Recently, studies
performed by Belta et al.35,36 demonstrated the potential of con-
structing data-based models from datasets. Additionally, Bogdoll
et al.37 attempted todetermine the threshold for the followingdistance
based on the Waymo dataset, which accommodates variations in the
behaviors of different traffic participants. However, the driving gui-
dance cannot be utilized to determine whether a violation has occur-
red. Moreover, safety models tend to be conservative, making it
difficult to blame aggressive drivers for not adhering to the safety
model unless an incident has occurred. Thus, it is imperative to
establish rational thresholds based on driving behavior to ensure that
they align with the distribution of the majority of human drivers’
behavior.

The focus of this study was to develop a fact-based online legal
driving behavior monitoring system with the primary purpose of
providing comprehensive, authentic feedback data for government
regulations and violation alerts to improve traffic-law compliance
(Fig. 1). Our approach focuses on creating a trigger-based hierarchical
online monitoring architecture that is compliant with the semantic
types of the traffic law and selecting compliance thresholds that are
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Fig. 1 | Online traffic-law violation monitor for AVs. This monitoring system is
capable of deployment within the SV and monitors the SV’s adherence to traffic
laws. It receives real-time data from the SV system and provides continuous mon-
itoring results of the ego vehicle. The monitoring system has a trigger-based

hierarchical architecture that ensures structural integrity (e.g., drive on lane line
(a2)⊆make lane-change (b1 & b3)⊆overtake (c1) or keep lateral
distance(a3)⊆ encounter (b2)), which enhances the rationality of the monitoring
results and simplifies maintenance in later stages.
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consistent with the distribution of real human driving behavior. This
distinguishes our monitor from existing traffic-law compliance veri-
fiers and trajectory safety checkers. While the latter are mainly
designed to validate trajectory compliance with specific traffic-law
articles or tomake safety-related decisions that require prediction and
decision-making data, our monitor is dedicated to comprehensive
traffic law compliance judgment utilizing only driving behavioral data.
When applied in the open environment, othermethodsmayencounter
challenges in triggering correct law article monitoring in specific sce-
narios or in aligning with the behavior of the majority of traffic parti-
cipants. This work has three key features that address these concerns.

(1) Trigger-based hierarchical online monitor architecture. This
allows the continuous differentiation of the operational environ-
ment and behaviors of the surrounding traffic participants
encountered by the ego vehicle, facilitating the correct monitor-
ing of relevant law articles.

(2) Fact-based logical judgment and data-based thresholds. By
analyzing the behavior of most traffic participants, compliance
thresholds aligned with real-world behavior are obtained.

(3) Sensitivity analysis of thresholds. Through a sensitivity analysis,
compliance monitoring thresholds are fine-tuned to strike a
balance between false negatives (non-compliance but judged as
compliance) and false positives (compliance but judged as non-
compliance).

Erroneous triggers for compliance assessments in online mon-
itoring can lead to inaccurate and misleading results. For example, if
the monitoring system incorrectly triggers left-turn violation mon-
itoring when the vehiclemakes a left turnwithout entering or exiting a
designated no left-turn zone, it can lead to conflicting internal infor-
mation within the SV system; if this result is taken into the con-
sideration of decision-making system, this will potentially result in
unexpected behaviors. These outcomes are unacceptable to govern-
ment authorities and enterprises. The challenge arises from the
environmental specificity of traffic laws that typically regulate vehicle
behavior within operational environments. To address this, each
traffic-law article requires a detailed breakdown of its operational
environment specifications and behavioral judgments. In conjunction
with historical and real-time vehicle state information, operational
environment specifications are designed as tailored trigger conditions
for each corresponding legal article, and computableminimumatomic
propositions are proposed, along with the formulation of input
information requirements for the autonomous driving system (Fig. 1).
Trigger-based hierarchical online monitoring allows real-time deter-
mination of the regulations that need to be monitored in the current
scenario. This triggers only the articles that should be monitored to,
increase the accuracy and rationality of monitoring. After all the arti-
cles are systematically organized, a hierarchical architecture based on
common trigger relationships between regulations can further
enhance the real-time performance. It also facilitates program mod-
ification, addition, and maintenance following subsequent traffic-law
adjustments.

Traffic laws may explicitly state precise constraint values, such as
maximum speed limitations or requirements to stop at red lights,
leading to consistent formalization expressions and fewer con-
troversies over judgment outcomes. However, in cases where traffic
laws lack clarity and are ambiguously expressed, establishing rational
judgment thresholds during the formalization process presents a
challenge. While thresholds not explicitly designed for government
regulationhave exhibitedpositive impacts on complianceand safety in
self-driving, persuading individuals who are considered to be in vio-
lation—particularly when penalties are involved—can be challenging if
these thresholds do not align with the behavior of the majority of
drivers. The thresholds intended for government oversight should be

conservative and align more closely with driver behavior. To address
these challenges, we propose two general principles to determine the
ambiguous compliance thresholds.

1. "No Crashes”: For safety, there should be no crashes with other
vehicles. This is ensured through safety-related indices suchas the
Time to Collision (TTC), Responsibility Sensitive Safety (RSS) and
other kinematics models.

2. "No Changes”: The ego vehicle’s behavior should not be the rea-
son to cause the change of other vehicles’ behavior, which can be
established by assessing nearby vehicles whose trajectories
intersect with the ego vehicle. If no significant braking or steering
responses are observed, we assume that the surrounding vehicle
is not affected by the ego vehicle.

By applying these principles to real-world datasets, we can effec-
tively identify parameter distributions related tounsafe and interfering
behaviors. This helps to determine the range of compliance thresh-
olds. Owing to the numerous factors that influence the behavior of
each traffic participant, even when mathematical combinations of key
factors are employed, eliminating the impact of other factors remains
difficult. Therefore, establishing a sound threshold based on the
information perceptible to the ego vehicle to effectively differentiate
between compliant and non-compliant behaviors is a challenge. Sen-
sitivity analysis is essential for determining the trade-off between false
negatives and false positives within a given compliance-threshold
range. Considering that the online monitoring system is designed to
enforce government regulations, a lower tolerance for false-positive
errors is preferred. During the data analysis process for selecting sui-
table thresholds, we evaluated the false-positive rates and the corre-
sponding false-negative rates, ultimately establishing the final
threshold values based on the cost function. Building on the afore-
mentioned online monitoring system, we utilized Chinese-specific
highway and intersection datasets to verify the feasibility of the sys-
tem.The results indicated that the proposed onlinemonitoring system
effectively triggered the monitoring of corresponding articles and
correctly produced violation judgments.

To evaluate the effectiveness of our approach and its real-time
capabilities, the proposed online legal driving behavior monitor was
deployedon an industrial personal computer (IPC) and then integrated
into the FAW Jiefang commercial SV. Our online monitor receives the
required information from the SV system to monitor traffic-law viola-
tions and then provides feedback to the SV system. Three typical
traffic-law violation scenarios based on highway field test conditions
were considered. The results indicated that under real-world condi-
tions, our online monitoring system can consistently provide stable
and accurate outputs with a computation time of approximately 1.3
ms. The system is designed for seamless integration with various SV
systems as long as the required information is supplied; thus, it cannot
only be used for government supervision but also can serve as a traffic-
law compliance advisor by incorporating prediction and decision data.

Results
Traffic law articles
Countries and regions around the world have their own distinct road
traffic laws shaped by local cultures, histories, and social backgrounds.
Although there are variations in laws among countries, these differ-
ences primarily lie in the thresholds of constraints on different beha-
viors. The behaviors constrained by the traffic laws and the meanings
of the constraints are generally consistent. This consistency makes it
possible to utilize a formalized framework of laws to solve the for-
malization problem of different laws in different regions. The specific
analyses of the traffic laws can be found in the SupplementaryMethod.

Traffic laws in most countries and regions limit driving behavior
primarily through the following four aspects: vehicle speed, distance,
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driving action, and right-of-way as shown in Fig. 2. Consider the Reg-
ulation on the Implementation of the Law of the People’s Republic of
China on Road Traffic Safety38 as an example. In Chapter 4 (Road
Traffic Regulations), there are 49 traffic articles, but only 25 are related
to motor vehicle driving behaviors. These 25 articles are subdivided
into 93 articles, including 23 articles related to speed limits, 7 articles
related to distance restrictions, 33 articles related to maneuvering
restrictions, and 18 articles related to right-of-way. The detailed clas-
sification is shown in Fig. 2.

Six representative articles were selected that satisfied the
requirements. i.e., they (1) included all constraint types, (2) involved
both precise and ambiguous thresholds, (3) involved real-time and
continuous state constraints, and 4) could be analyzed and validated
using the available datasets. Four articles on highway regulations were
selected according to these requirements.

Article 44: The vehicle that intends to switch to another vehicle
lane may do so on condition that it does not impede the normal run-
ning of other vehicles in the relevant lanes.

Article 78: When running on highway …, where there are two
vehicle lanes in the samedirection, theminimumspeed for the left lane
is 100 kilometers per hour…, where there is any discrepancy between
the speed indicated by a speed limit sign put up on a road and the
driving speedsmentioned above, amotor vehicle shall be driven at the
speed indicated by the speed limit sign on the road.

Article 80: … when the speed is lower than 100 kilometers per
hour, the distance from the vehicle in front may be narrowed appro-
priately, but the minimum distance may not be less than 50 meters.

Article 82.6: When driving a motor vehicle on the highway, the
driver shall not drive over or on the dividing line of vehicle lanes or on
the shoulder.

The thresholds for the speed limit and following distance are
specified precisely. However, the not impede and drive over or on the
dividing line behaviors are ambiguous and need to be defined.

Two key articles on intersection regulations were selected.
Article 38.1: When the green light is on, the vehicles are allowed to

pass; when the yellow light is on, the vehicles that have gone beyond
the stop line may continue to pass; when the red light is on, the vehi-
cles are prohibited to pass.

Article 38.2: The vehicles making a turn may not interfere the
vehicles that are let go straight forward.

Article 38.1 involves both real-time and continuous state behavior
constraints, which are precisely defined. However, the not interfere
behavior regarding right-of-way is ambiguous.

Datasets
We utilized two datasets for verification: The AD4CHE (Aerial Dataset
for China Congested Highway and Expressway) dataset39 and the SIND
(Signalized INtersection Dataset) dataset40. AD4CHE lasted approxi-
mately 307 mins, covering a trajectory length of 6540.7 km and
encompassing 53,761 trajectories, including 68 records captured on
four Chinese highways. Compared with the HighD dataset41, AD4CHE
covers intricate road structures, including curved roads, on/off ramps,
multiple lanes, and various traffic flow states, as shown in Fig. 3(a–d),
with abundant vehicle coordinate system parameters. In addition, we
collected vehicle trajectories and traffic signal status information from
four urban intersections to create the SIND dataset. This dataset
encompassed four two-phase signalized intersections situated in dif-
ferent Chinese cities spanning 2300 km. The SIND dataset lasted for
approximately 957 mins, encompassing 30,953 trajectories, including
53 records and involving 7 types of traffic participants (cars, buses,
trucks, motorcycles, bicycles, tricycles, and pedestrians), as shown in
Fig. 3(e–h). All available data were utilized to validate the online
monitor. For further details, please refer to the source data.

Threshold analysis
According to the selected articles, there are four thresholds in
ambiguous expressions that need to be determined: the maximum
allowable time of driving on the lane line (tcl max) was determined to
specify the expression drive over or on the dividing line in Article 82.6;
when making lane-change, the minimum allowable TTC with the pre-
ceding vehicle (TTCcl min) and the minimum allowable distance from
the rear vehicle in the target lane (dcl min) were determined to specify
the expression not impede in Article 44; and the minimum allowable
time difference between a left-turn vehicle and a straight-moving
vehicle to the intersectionpoint (TTIdiff min) was determined to specify
the expression not interfere in Article 38.2. The last three thresholds
relate to the risk of collision with other vehicles, so in the analysis, we
considered the general principle of “No Crashes” and “No Changes”.

The maximum allowable time of driving on the lane line tcl max

was determined utilizing the AD4CHE dataset with the “No Crashes”
principle. Because of the fact-based monitoring, only vehicle behavior
data can be utilized, the trigger condition for monitoring is that the
ego vehicle’s bounding box overlaps with the lane lines, this process is
considered a lane-change process in this article. Similar to the lane
change maneuver (LCM) defined in the regulation UN ECE R15742, as
shown in Fig. 4a. In the dataset, 3510 instances were recorded in which
a vehicle implemented a lane-change. Among them, 1753 instances
involved complete lane-change trajectories. According to the collected
data, the duration of all types of vehicles crossing lane lines during a
lane-change was statistically analyzed, and the statistical results are
shown in Fig. 4c. The statistical results followed an inverse Gaussian
distributionwith fitted parameters of μ = 2.791 and λ = 20.689. Vehicles
crossed lane lines for durations up to 6 s in 99.04% of the cases.
Therefore, tcl max was determined to be 6 s, ensuring that standard
lane-changemaneuvers occurred within this specified time. This result
differs from that in regulation UN ECE R7943, as tcl max is defined as the
timewhen a vehicle overlaps the lane lines, rather than the entire lane-
changing duration.
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Theminimumallowable TTCwith the preceding vehicle TTCcl min

was determined utilizing the AD4CHE dataset to resolve the not
impede issuewith preceding vehicles using the “NoCrashes” principle.
A total of 1015 instances out of 1753 complete trajectory data were
utilized that the preceding vehicle was slower than the ego vehicle
when the ego vehicle made a lane-change. The trigger condition for
initiating monitoring is that the bounding box of the ego vehicle
overlaps the lane lines and there is a preceding vehicle, the TTC
between the ego vehicle and the preceding vehicle is defined as the
initial TTC (TTCini). Considering that during the LCM period, TTCini

should not be less than its timeof drivingon the lane line (tcl), therewill
be a high risk of collisions that impede the preceding vehicle without
any additional significant actions (Fig. 4b). TTCini and tcl were calcu-
lated, and their ratio was plotted on the coordinate axis, as shown in
Fig. 4d, and fitted. The fitting curve represents the relationship
between TTCini and tcl thatmost drivers follow during the lane-change
period. The TTCini at the intersection point of the fitted curve and the
limiting value is 1.8 s, indicating that most drivers maintained a
TTCcl min of 1.8 s with the preceding vehicle during the LCM. This is
more conservative than the value of 2 s in ECE R157 results, given that
ECE R157 considers a deviation of 0.375 m from the lane center line as

the starting point, whereas we utilize the moment of overlapping with
the lane line as our starting point, andonly a fewvehicles can cross that
gap by 0.2 s.

The minimum allowable distance from the Rear Vehicle in the
Target Lane (RVTL) dcl min is determined utilizing the AD4CHE dataset
to solve the not impede issuewith theRVTLusing the “NoCrashes” and
“NoChanges” principles. Two indicators were established to exemplify
the “No Changes” principle: the RVTL’s minimum acceleration and its
deviation from the centerline. These indicators are utilized to evaluate
interference by the ego vehicle in both the longitudinal and lateral
aspects of the RVTL’s behavior. Drawing from the regulation UN ECE
R1344, when the deceleration is less than 0.7 m/s2, the braking signal
should be suppressed. We adopt this threshold to discern instances of
significant braking by theRVTL. This criterion is in accordancewith the
distribution of theminimum acceleration observed in the RVTL during
the LCM of the ego vehicle, as shown in Fig. 5a. Regarding lateral
maneuvers, the lateral displacements of lane-keeping vehicles from
the lane centerline during the driving process were counted, as shown
in Fig. 5b. The 2σ interval ([–0.58, 0.37] m) is used as the acceptable
wandering zone (WZ) for lane-keeping vehicles, any departure of the
RVTL from this defined rangeduring the LCMperiod of the ego vehicle

Fig. 3 | Illustrationfigures of the Datasets. Road structure in AD4CHE39. a Curved
road. b Curved road with export and import. c Straight road with export and
import. d Straight road. Intersections in SIND40. e Intersection in Changchun
(43.88∘N, terrain of low hills with a population of 9.05 million). f Intersection in

Tianjin (39.08∘N, low-lying terrain of coastal plains with a population of 13.63 mil-
lion). g Intersection in Xi'an (34.15∘N, terrain of plains and hills with a population of
12.99 million). h Intersection in Chongqing (29.35∘N, mountainous and hilly terrain
with a population of 32.13 million).

Initial TTC when LCM start

99.04%

TTCini = 1.8s

Initial TTC when LCM start

99.04%

TTCini = 1.8s

Fig. 4 | Threshold analysis of the maximum allowable time of driving on the
lane line tcl max and the minimum allowable TTC with the preceding vehicle
TTCcl min. a Trigger condition activation period. The trigger is active when the ego
vehicle’s bounding box overlaps with the lane lines. b TTCini with the preceding

vehicle. Once the trigger is active, the TTC with the preceding vehicle is defined as
TTCini. c Distribution of the time of driving on the lane line. d The ratio of tcl to
TTCini in different TTCini data points andfitting curve. Source data are provided as a
Source Data file.
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qualifies as interference. RSS distance was utilized as an indicator to
exemplify the “No Crashes” principle. The longitudinal and lateral RSS
distances were calculated. The ratios of the current longitudinal and
lateral distances between the ego vehicle and RVTL to their corre-
sponding RSS distances were utilized to determine whether the ego
vehicle and RVTL maintained a sufficient safety distance.

The corresponding trigger condition is activated when the
bounding box of the ego vehicle overlaps the lane line. Once triggered,
the ego vehicle and RVTL states were obtained from the dataset. This
was calculated, and Fig. 5c shows the distance dcl between the ego
vehicle and RVTL when the trigger is activated and the mean relative

speedΔv between the ego vehicle andRVTL during the LCMof the ego
vehicle. The figure also includes color-coded markers of RVTL beha-
vior during the ego vehicle’s LCM. RVTLs exhibit various complex
behaviors and situations. For example, someRVTLs start to decelerate,
while others decelerate continuously; some start to run exit of the
wandering zone, while others remain outside the wandering zone or
deviate from the centerline within the wandering zone; some attempt
to overtake the ego vehicle, while others make lane-change; and some
are not on the main road but in a deceleration lane or a deceleration
section. These complex behaviors significantly impact the threshold
analysis. Consequently, the data are filtered to retain instances with

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
Minimun acceleration (m/s 2)

0

50

100
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200
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Fig. 5 | Threshold analysis of the minimum allowable distance from the rear
vehicle in the target lane dcl min. a Distribution of the minimum acceleration of
the RVTL during the LCM. b Lateral displacement of lane-keeping vehicles.
cDifferent RVTLdriving behaviors and theirdcl � Δv data pointswhen the trigger is
first activated. d Instances retained when the RVTL maintains the target lane
throughout the LCMprogress. e Instances are retainedwhere the RVTL iswithin the
wandering zone when the trigger is first activated. f Instances are retained where

RVTL deceleration is less than 0.7 m/s2 when the trigger is first activated. g RVTL'
dcl � Δv data pointsmarkedwith different interfered RVTL and dcl/dRSS value levels
of the normal drive RVTL when the trigger is first activated in selected instances.
h Optimal threshold line and RVTL' dcl � Δv data points marked with different
compliance states when the trigger is first activated in selected instances. Source
data are provided as a Source Data file.
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complete and reasonable behavior to analyze the rational compliance
threshold, according to the following criteria: 1) the ego vehicle per-
forms a successful LCM, and 2) the RVTL maintains a constant vehicle
ID throughout the scenario (Fig. 5d), 3) the RVTL is within the wan-
dering zone when the LCM starts (Fig. 5e), 4) the RVTL deceleration is
less than 0.7 m/s2 when the LCM starts (Fig. 5f). Using these criteria,
767 instances were preserved, and 33 RVTLs were clearly interfered
with, as shown in Fig. 5g, detailed calculation can be found inMethod.
Most instances were safe with regard to lateral distances but did not
satisfy the longitudinal RSS requirements. The ratios between dcl and
the corresponding longitudinal RSS distances dRSS are marked in dif-
ferent colors. Owing to the differences in driver aggressiveness levels,
many instances without clear interference were found within the
densely populated regions of the interfered instances. Additionally,
when driving on highways, vehicles generally do not brake sharply;
therefore, most vehicles maintain a small distance that cannot satisfy
the RSS distance requirements. However, in the lower-left corner of
Fig. 5g, there are no normal driving or non-interfered data points
below a certain straight line; thus, people also follow a certain time
relationship when making lane-change. Accordingly, different com-
mon types of fitting functions are utilized to fit the data, while the
linear function performs the best and is defined as a threshold
line type, according to sensitivity analysis and Supplementary Result.
The final filtered data were optimized using a genetic algorithm with
the optimization objective set tominimize the false-negative ratewhile
ensuring a false-positive rate. The resulting threshold line is shown in
Fig. 5h. Finally, when monitoring, the dcl min value was determined as
follows:

dcl min =

50, Δv<� 10:7

�3:4Δv+ 13:6, �10:7≤Δv ≤4

0, Δv>4

8><
>: ð1Þ

where Δv represents the speed difference in m/s between the ego
vehicle and RVTL at each sample time when the trigger is activated.

The minimum allowable time difference to intersection point
TTIdiff min is determined using the SIND dataset, and it addresses
whether left-turning vehicles do not interfere with straight-moving
vehicles at an intersection with shared traffic lights for left-turning and
straight-moving vehicles. Using the SIND dataset, data instances were
retained in which the time interval between left-turning and straight-
moving vehicles passing through the intersection point of their tra-
jectories was less than 5 s, resulting in 554 recorded instances. Utilizing
the filtered instances, the positions of the intersection points of the
left-turning and straight-moving vehicle trajectories were obtained.
The time sequences TTIleft and TTIstr required for the left-turning
vehicle and straight-moving vehicles to reach their corresponding
intersection pointwere calculated according to the speed anddistance
to the intersection point in each frame. The TTIleft and TTIstr for each
instance are presented in Fig. 6a. Circularmarker points correspond to
the data points in Fig. 6b. As shown, in scenarios involving conflicts
between left-turning and straight-moving traffic, two main typical
situations exist: 1) Straight-moving vehicles pass the conflict zone first
(including left-turn vehicles give way). 2) Left-turn vehicles pass
through the conflict zone first (including the left-turn vehicle rush). To
assess compliance with intersection regulations, it is customary to
establish virtual lane boundaries to analyze vehicle movements. For a
typical unprotected left-turn intersection, anexample conflict scenario
between left turning and straight movement is shown, and the corre-
sponding virtual lane lines are presented in Fig. 6c.

The trigger condition was active when the bounding box of the
left-turn vehicle overlapped with the conflict area. When the trigger
starts to activate, according to the principle of “No Crashes”,
the adaptive RSS distance daRSS of the straight-moving vehicle and the
current distance drealstr from the straight-moving vehicle to the

intersection point are calculated, as well as the TTIleft,act and TTIstr,act at
the trigger activation time. All the data from the filtered conflict sce-
narios are shown in Fig. 6b, where TTIdiff = TTIstr,act −TTIleft,act. daRSS is
utilized to determine whether a straight-moving vehicle has a suffi-
ciently safe distance when the trigger is activated. If drealstr � daRSS is
less than zero, a straight-moving vehicle is regarded as unsafe.
According to the principle of “NoChanges”, theminimumacceleration
amin of the straight-moving vehicle is calculated when the trigger is
activated until the left-turning or straight-moving vehicle reaches the
intersection point, as shown in Fig. 6d. amin is utilized to determine
whether the left-turning vehicle interferes with the straight-moving
vehicle. In accordance with the ECE R13 guidelines, if amin is less than
-0.7 m/s2, the straight-moving vehicle is regarded as being interfered.
When left-turning vehicles cross the conflict area ahead of the others,
there is a potential for violations—particularly when left-turning vehi-
cles rush through. Therefore, a threshold analysis based on the data
where left-turning vehicles take precedence was conducted, and 341
instances remained. Utilizing the data of the 341 instances when the
trigger was activated, the difference time TTIdiff was calculated. Uti-
lizingTTIdiff as thehorizontal axis and thedifferencebetweendaRSS and
drealstr as the vertical axis, Fig. 6e was created. The data points are
color-coded to indicate the safety or interference of straight-moving
vehicles. This clearly illustrates that data points that cannot meet the
“No Crashes” and “No Changes” principles mainly fall within the TTIdiff
interval of 3–5 s. Some drivers exhibit aggressive driving behavior,
even when TTIdiff is small, implying that they do not take precautions.
In contrast, some drivers adopted a relatively conservative approach,
making noticeable avoidance maneuvers even when TTIdiff was rela-
tively large. Through sensitivity analysis, the TTIdiff min was selected as
3.4 s. It is worth noting that, the slope of threshold line of dcl min

indicates a time relationship between the ego vehicle and RVTL is also
3.4s. This is not a coincidence. It shows that regardless of the road
structure and the scene, the acceptable time difference for mutual
impede and interference is consistent.

Sensitivity analysis
A sensitivity analysis was performed on key thresholds such as dcl min

and TTIdiff min. For dcl min, our goal is to find an optimal function that
maximizes the weighted sumof the true positive (non-compliance and
judged as non-compliance) number and truenegative (complianceand
judged as compliance) number, while ensuring a certain false-positive
rate, as explained in Method Eqs. (21) and (22). The optimal cost and
corresponding false-positive rate and false-negative rate results for
different maximum allowable false-positive rates (0% to 30%) are
shown in Fig. 7b, and part of the optimal threshold line dcl min are
shown in Fig. 7a. As the data points are closer to the lower-left corner,
the corresponding lane-change maneuvers pose a higher risk. Conse-
quently, to reduce false-negative outcomes under different false-
positive tolerances, the threshold linewas gradually shifted toward the
upper-right corner. It is evident that as the false-positive requirements
becomemore relaxed, the false-negative rate decreases, and the result
exhibits a staircase pattern. The maximum cost is 1010.7 with a 24%
false-positive rate and the numbers of false-positive and false-negative
are 160 and 8. In the next step platform, the false-positive rate will
become greater than the false-negative rate, which is not what we
expect. Consequently, the dcl min threshold line was selected accord-
ing to a 24% false-positive rate, as shown in Eq. (1).

For TTIdiff min, as the function form is fixed, there is no need for
algorithmic optimization. Therefore, We statistics the weighted sum
values (Method Eq. (22).) and corresponding false-negative rates at
different false-positive rates, as shown in Fig. 7d. Under the different
false-positive rates (0% to 20%), the thresholds are illustrated in Fig. 7c.
The maximum cost is 297.8 with a 6% false-positive rate and the
numbers of false-positive and false-negative are 9 and 42. When the
false-positive rate exceeds 18%, the false-positive rate will become
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greater than the false-negative rate. Therefore, TTIdiff min of 3.4 swith a
false-positive rate of 6% was selected as the threshold.

Monitoring results on datasets
According to the thresholds and MTL expression, an online monitor
was utilized for every vehicle in the dataset. The selected vehicle was
treated as the ego vehicle, whereas the other vehicles in the scenario
were treated as surrounding vehicles. All the necessary information
was transmitted to the online monitor by the designed data bus in a
dataset sampling time sequence that contained ego vehicle para-
meters, traffic signs, traffic participants, and map data. According to
the selected traffic-law articles, six types of violation behaviors were
monitored. The statistical results are shown in Table 1. Figure 8a pre-
sents the count of activated trigger conditions for eachmonitor type in
a bar chart. The number of vehicles that violate the corresponding
article during trigger condition activation is color-coded and accom-
panied by a corresponding percentage.

For the AD4CHE dataset, in vehicles with corresponding trigger
condition activated, there are a total of 18017 vehicles counting for
95.06% violate the speed limitation, a total of 15423 vehicles counting

for 84.46% violate the following distance limitation, a total of 169
vehicles counting for 4.04% violate the drive on lane line limitation,
and a total of 718 vehicles counting for 19.25% violate the lane-change
limitation. Because of the slight congestion on the road, it is difficult
for most vehicles to satisfy the minimum speed and distance
requirements, resulting in a large proportion of violations. When
making lane-change and overtaking, fewer vehicles violate the laws.
Approximately 4.04% of vehicles drive on lane lines for over 6 s, which
may be caused by a curved road, making it difficult to drive in the lane.
Out of 718 instances of lane-change violations, there are 704 vehicles
that keep an insufficient distancewithRVTLbecause aggressive drivers
cannotmaintain a sufficient safe distance from the RVTL whenmaking
lane-change.

Statistical violation results for the 25th fragment in the AD4CHE
dataset and typical illegal examples are shown in Fig. 8b. This fragment
lasted 290 s and contains 786 trajectories. The statistics for each type
of violationwere counted at intervals of 5 s. Among them, vehicle 9629
ran in the second inner lane at a speed of 55.5 km/h (far lower than the
minimum speed limitation of 100 km/h) with a following distance of
19.7m (far shorter than theminimumcompliance followingdistanceof

Intersection pointVirtual lane line of ego
vehicle

Virtual lane line of
straight-moving vehicle

Trajectory of ego vehicle

Trajectory of straight-
moving vehicle

Conflict area

Ego vehicle

Straight-moving vehicle

3.4

-0.7

Fig. 6 | Threshold analysis of the minimum allowable time difference between
left-turn vehicle and straight-moving vehicle to intersection point TTIdiff min.
a Times to the intersection point of left-turn and straight-moving vehicles. As the
vehicle moves towards the intersection point, the data points also move along the
curve towards the horizontal or vertical axis. The marked data points on each line
correspond to the data points in Fig. 6b. b Safety distance indicator of straight-
moving vehicles at the time of activation of the trigger condition. Points below 0m

are considered unsafe. c Virtual lane lines and conflict areas of a left-turn and
straight-moving conflict scenario. d Interference indicator of straight-moving
vehicles at the time of activation of the trigger condition. The points below –0.7
m/s2 are regarded as interfered. e States of straight-moving vehicles when left-
turning vehicles pass the conflict zone first. Source data are provided as a Source
Data file.
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50 m). Vehicle 9929 violated the lane-change article because of its
short distance from the RVTL according to the compliance threshold
in Eq. (1). Vehicle 10053 drove on the lane line for approximately 7.4 s,
which exceeded the compliance threshold of 6 s.

For the SIND dataset, in vehicles with the corresponding trigger
condition activated, there are a total of 1288 vehicles counting for
9.91% violating the traffic light limitation, and a total of 101 vehicles
counting for 1.85% violate the right of way limitation. More detailed
statistics on different types of violations related to traffic lights in
different regions can be found in Supplementary Result. The statistical
violation results for the 8_2_1 fragment in the SIND dataset are pre-
sented in Fig. 8c. This fragment lasted 1200 s and contained 611 tra-
jectories. The statistics of the intersection violations for each type at
intervals of 20 s are presented. Among them, vehicle 78 violated the

right-of-way with a TTIdiff of 3.2 s, interfering with the straight move-
ment of vehicle 73. Vehicle 365 violated the traffic light law, it ran the
yellow light after the yellow light turned on 0.93 s ago. Vehicle 481
violated the traffic light laws. It crossed the stop line when the red
light was on.

Field testing
To demonstrate the rationality and real-time capabilities of the pro-
posed online legal driving behavior monitor, the monitoring system
was developed using C++ and integrated into an IPC installed in a FAW
Jiefang commercial SV (Fig. 9a). A data-transmission bus was estab-
lished to satisfy the specific data requirements. Real-time information
exchanges between the autonomous driving and online monitoring
systems via in-vehicle Ethernet, adhering to the data bus format. This
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Fig. 7 | Sensitivity analysis of the minimum allowable distance from the rear
vehicle in the target lane dcl min and the minimum allowable time difference
between the left-turning vehicle and straight-moving vehicle to intersection
point TTIdiff min. a Threshold lines under different maximum allowable false-

positive rates. b False-negative rate and the cost under different maximum allow-
able false-positive rates. c Thresholds under different false-positive rates. d False-
negative rates and the cost under different false-positive rates. Source data are
provided as a Source Data file.

Table 1 | The counts of vehicle violations on datasets

Traffic law violation behaviors Number of traffic law
violation instances

Percentage of traffic law
violation instances

Number of total monitoring
instances

Speed violation 18017 95.06% 18,953

Following distance violation 15,423 84.46% 18,261

Driving on lane line 169 4.04% 4181

Lane-change
violation

Insufficient TTC with front vehicle& insuf-
ficient distance with RVTL

7 0.19% 3729

Insufficient TTC with front vehicle 7 0.19% 3729

Insufficient distance with RVTL 704 18.88% 3729

Traffic light
violation

Run the yellow light 218 1.68% 12,994

Run the red light 545 4.19% 12,994

On stop line at the yellow light 54 0.42% 12,994

On stop line at the red light 471 3.62% 12,994

Right-of-way violation 101 1.85% 5467
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exchange included the vehicle configuration, status of the ego vehicle
and surrounding objects, map data, and trajectory of the ego vehicle.
Real-vehicle tests were conducted at the Intelligent Connected Vehicle
(ICV)TestingBase (Fig. 9b). Three typical traffic-law violation scenarios
were considered to verify the effectiveness and real-time capabilities

of the online monitoring system. The replay video can be found in the
Supplementary Movie 1– 4.

Distance limitation violation: The target vehicle (TV) occupied the
same lane as the ego vehicle and was placed 60m ahead. Both vehicles
began to move simultaneously. The TV accelerated to 30 km/h and
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ID: 9929 Frame: 4087
Speed: 72.86km/h
Distance with RVTL: 2.59m

ID: 10053 Frame: 5503
Start driving on lane line

ID: 10053 Frame: 5725
Time on lane line: 7.4s

Driving on lane line (DLL)Driving on lane line (DLL)

ID: 78 Frame: 1379
TTI difference: 3.2s

ID: 481 Frame: 9559
Red light on 4.7s ago
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Yellow light on 0.93s ago
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Fig. 8 | Results of dataset validation. a Statistical online monitoring results of
dataset validation. b Statistical online monitoring results and typical illegal exam-
ples for the 25th fragment in the AD4CHE dataset. c Statistical online monitoring

results and typical illegal examples for the 8_2_1 fragment in the SIND dataset.
Source data are provided as a Source Data file.
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maintained this speed,whereas the target speedof the SVwas 60km/h,
as shown in Fig. 9c. The trigger condition for distance limitation vio-
lationmonitoringwas activatedwhen the vehiclewas on a highway and
a preceding vehicle was detected in the same lane. The following dis-
tance was reduced to 50 m at 23.3 s, and the monitor accurately
identified the SV violating the regulation to maintain a safe following
distance. The violation persisted until 32.5 s when the SV made a left
lane-change and there was no longer a preceding vehicle in the
same lane.

Lane-change violation: TheSVperformeda lane-changemaneuver
by cutting in front of the TV, as shown in Fig. 9d. The trigger condition
for illegal lane-change monitoring was activated when the SV over-
lapped the lane line andhada lateral velocity. ARVTLwasdetected and
the relative distance and velocity between the SV and RVTL were cal-
culated. The calculation results fell below the compliance threshold,
indicating an illegal lane-change violation at 34.7 s.

Driving on lane line violation: The SV initially traveled along the
centerline of the lane but then deviated leftward, causing its left
boundary to cross into the left lane; thus, it drove on the lane line, as

shown in Fig. 9e. The trigger condition for long-term driving on lane
line monitoring was activated when the SV overlapped the lane line
at 30 s. The SV continued to drive along the lane line. 6 s later (at
36 s), the monitor detected a violation of long-term driving on the
lane line.

Discussion
In this work, a trigger-based hierarchical onlinemonitorwas proposed,
along with driving behavior-based ambiguous compliance thresholds
determination, to ensure the rational and fact-based legal judgments
align with common understanding. This work has three notable
advantages. First, a trigger-based hierarchical structure for the online
monitoronly triggers the articles that shouldbemonitored andutilizes
the driving behavior to increase the rationality of monitoring. Second,
ambiguous human-oriented traffic laws can be implemented into this
online monitor via compliance threshold determination utilizing gen-
eral principles. Finally, themonitor results based on the dronedatasets
and field test demonstrate the feasibility and rationality of the pro-
posed online legal driving behavior monitor.
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Fig. 9 | Field testing and results. a Test commercial vehicle with the online legal
driving behavior monitor. b Test section at Intelligent Connected Vehicle Testing
Base of Shandong Expressway in China. c Images, trigger time, and monitoring

result of distance limitation violation. d Images, trigger time, andmonitoring result
of lane-change violation. e Images, trigger time, andmonitoring result of drivingon
lane line violation. Source data are provided as a Source Data file.
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However, the process of establishing precise, specific com-
pliance thresholds for evaluating complex behaviors of traffic par-
ticipants requires further data validation. Constructing and
updating joint distribution parameters45,46 for critical behavioral
variables and deriving specific probabilities of behavioral violations
from a larger dataset of real-world violations may yield more robust
results. Equally important is the need for feedback mechanisms
involving government agencies and various stakeholders to colla-
boratively define the ultimate compliance threshold for widespread
implementation in SVs.

It is essential to acknowledge that traditional traffic laws,
designed for human drivers, may not fully satisfy the requirements
of SVs in the future. Leveraging the quantitative data processing
capabilities of SVs, we have the opportunity to develop more
detailed traffic regulations tailored specifically to them. These
regulations can strike a balance between safety, efficiency, and
compliance in complex scenarios while taking into account human
factors and ethical considerations, thereby promoting the legal
implementation of SVs.

Methods
Metric temporal logic
Temporal logic has been widely utilized in studies on traffic law for-
malization. Because the proposed monitor contains continuous state
judgments, we utilized MTL to interpret the definitions of the trigger
conditions and logic judgments. MTL introduces more temporal
operators and performs well in describing the relationship between
behavioral logic within limited temporal and spatial coordinates.

Given a set AP of atomic propositions, where each atomic pro-
position σi∈AP represents a Boolean statement, the MTL formula φ is
defined as follows:

φ :: = σij:φjφ1 ^ φ2jφ1 _ φ2jφ1 () φ2jφ1 ) φ2j
GI ðφÞjFI ðφÞjPI ðφÞjOI ðφÞjφ1Uφ2

ð2Þ

where ¬, ∨, and∧ are the Boolean operators,φ1⇔φ2 indicates thatφ1

is equivalent to φ2, and φ1⇒φ2 indicates that when φ1 is satisfied, it is
necessary thatφ2 is satisfied.G, F, P, andO are temporal operators. The
subscript I represents the interval R≥0, which expresses the time
constraints relative to the current time. The global operator G indi-
cates thatφ holds throughout the entire time sequence, and the future
operator F indicates thatφ holds within a time interval for some future
states. The previous operator P states that φ holds within a time
interval for the previous state, and the once-operatorO specifies thatφ
holds at least once before a certain point in time. The until operator U
specifies that a property holds true until another property
becomes true.

Trigger-based hierarchical online monitor architecture
We established a standardized process for formalizing traffic laws,
and the detailed steps are presented in detail in the Supplementary
Method. This process facilitates the conversion of each regulator
into a corresponding MTL. When systematically considering all
articles, it is important to recognize that different articles may
share common elements. Some articles may even include simpler
ones, as depicted in the lower-left corner of Fig. 1. Complete
overtaking behavior comprises two lane-changing processes, each
involving a driving segment on the lane line. Therefore, we
designed the monitoring system with a trigger-based hierarchical
monitoring architecture. Each MTL expression of an article is
represented as Trigger condition⇒ Logical judgment, where the
sequence of atomic propositions in Trigger condition should be
strictly adhered to, as it signifies the hierarchical relationship

among various triggering conditions:

ð3Þ

Consider a set S2 = {T1, T2} as the trigger set of article A2, where trigger
set S1⊆ S2 represents the trigger set of articleA1. Then,A2 is the parent
article of A1. When the monitoring system receives the input require-
ments information, it evaluates the triggers in the bottom-level
articles. If the specified conditions are satisfied, the article is
monitored, and the input information is transmitted to its parent
article for evaluation of any remaining trigger subsets. This compre-
hensive trigger-based hierarchical relationship can be expressed as
T 1 ) L1
� � ^ T2 ) L2
� �^…∨; Tn⇒ Ln, as depicted at the bottom of
Fig. 1. This systematic approach ensures that each layer is progressively
traversed. Therefore, real-time monitoring is necessary only for
articles relevant to the current situation and scenario, to optimize
computational resource utilization. Table 2 presents the trigger
conditions and logical judgments of the articles considered in
this study.

Many regulations involve the attributes of road networks that are
difficult to obtain solely through vehicle perception. Considering the
need for SVdeployment,weobtain roadnetworkattribute information
through either maps or vehicle perception systems if the required
information can be provided. For highways, each lane has an ID L and
road type RT. We have RT= {M, R, A, D, E}, which represents the
mainline, ramp, acceleration lane, deceleration lane and emergency
lane, respectively. L of the innermost lane in the same direction is 1,
and the IDs of the other lanes increase outward. Each lane’s left lane
line ID is consistent with the lane ID. The lane linewith ID i is expressed
as y(i) and is represented by a cubic fitting curve. In addition, the
content information of traffic signs must be provided.

The information of the other traffic participants is represented in
the vehicle coordinate system. The coordinate origin is located at the
center of the bounding box. The state x = [X, Y, θ, vx, vy] of a vehicle
consists of the longitudinal coordinates X, lateral coordinates Y,
heading angles θ, longitudinal velocities vx and lateral velocities vy.
The operator x(obj) denotes the value of the state x for participant obj.
According to the geometrical parameters and heading angle θ of obj,
the planar area occupied by obj, which is denoted as Area(obj), can be
calculated according to the geometric parameters and heading angleθ
of obj. Using lane line data, the area around the ego vehicle can be
divided into six regions: Front(Ego), FrontLeft(Ego), FrontRight(Ego),
Rear(Ego), RearLeft(Ego), and RearRight(Ego). The closest TV Tgt in
each region is defined as Tgt �ð Þ, where the subscript �ð Þ represents the

Table 2 | Trigger condition and logical judgments of typical
articles

Article Trigger condition Logical judgment

Article78 TRT∧ TSpd1 vxðEgoÞ 2 ½Vsign min,Vsign max�
TRT∧ ¬ TSpd1∧ ¬ TSpd2∧ TSpd3 vx(Ego)∈ [100, 120]

Article80 TRT∧ TDis1∧ ¬ TDis2 dis(Ego, Tgtf) > 50

Article82.6 TonRLine :ðtnow � tin > tcl maxÞ
TonLLine :ðtnow � tin > tcl maxÞ

Article44 TonLLine∧ Tpvy ¬ (FViolation ∨RLViolation)

Article38.1 TTL1 ¬ TL(Ego) =R

TTL1∧ TTL2 P½tin ,tnow �ðTTL1Þ ^ P½ty ,tnow�ðTTL2Þ ^ ty > tin

Article38.2 TIntersection∧ Tls ¬ RWViolation_LS
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corresponding region; for example, Tgtfl represents the vehicle closest
to the ego vehicle in the FrontLeft(Ego) region. Furthermore, certain
concepts are utilized to calculate the Boolean values of the atomic
propositions including the following: L(obj, t) represents the lane ID to
which obj belongs at time t. dis(obj1, obj2) and TTCX(obj1, obj2)
represent the longitudinal distance and time to collision between obj1
and obj2 along the lane direction, respectively. overlap(r1, r2) is utilized
to determinewhether there is anoverlapbetween the regions r1 and r2.
According to the calculation of the position of obj and speed signs,
SpdSignArea(obj) represents the obj located in the speed-limit sign
management area. More information about the concepts involved in
atomic propositions can be found in Supplementary Information.

Article 78 requires monitoring while driving along a highway
mainline. The speed limitation can be affected by factors such as the
number of lanes and the lane in which the vehicle is positioned. Thus,
the trigger set for Article 78 is defined as follows:

TRT () RTðEgoÞ=M
TSpd1 () SpdSignArea ðEgoÞ
TSpd2 () Nml ≥ 3

TSpd3 () LðEgo, tnowÞ= 1

ð4Þ

where Nml represents the number of mainlines in the same direction
and tnow represents the current time.

In the monitoring system, the speed monitor corresponding to
Article 78 is expressed as follows:

TRT ^ TSpd1 ) vxðEgoÞ 2 ½V sign min,V sign max�km=h

TRT ^:TSpd1 ^:TSpd2 ^ TSpd3 ) vxðEgoÞ 2 ½100, 120�km=h
ð5Þ

where V sign max and V sign min represent the upper and lower limits,
respectively, as indicated by the speed-limit sign.

The trigger condition in Article 80 is that the ego vehicle is on the
highway mainline and has a preceding vehicle.

TDis1 () 9Tgtf
TDis2 () vxðEgoÞ≥ 100km=h

ð6Þ

Monitoring of the following distance starts when the relevant
triggers are activated. The expression is as follows:

TRT ^ TDis1 ^:TDis2 ) dis ðEgo, Tgtf Þ> 50m ð7Þ

The trigger condition of Article 82.6 is that the ego vehicle over-
laps the lane line, which can be expressed as follows:

TonLLine () P½tin ,tnow �ðoverlap ðAreaðEgoÞ, yðLðEgo, tinÞÞÞÞ
TonRLine () P½tin ,tnow �ðoverlap ðAreaðEgoÞ, yðLðEgo, tinÞ+ 1ÞÞÞ

ð8Þ

The time at which the trigger condition begins to be satisfied is
denoted as tin. When the relevant triggers are satisfied, themonitoring
of drive over or on the dividing line begins.

TonLLine ) :ðtnow � tin > tcl maxÞ
TonRLine ) :ðtnow � tin > tcl maxÞ

ð9Þ

Article 44, illustrates this with the example of a lane-change to the
left: the trigger condition is defined as the moment when the ego
vehicle overlaps the left-lane linewith a lateral speed greater than zero.

Tpvy () vyðEgoÞ>0
Tnvy () vyðEgoÞ<0 ð10Þ

During this maneuver, the ego vehicle must maintain a non-
interfering distance from the other relevant vehicles, including the

front vehicle and RVTL. The specific expressions are as follows:

FViolation () P½ðTonLLine^TpvyÞ1 � ð9Tgtf ^ TTCX ðEgo, Tgtf Þ≤TTCcl minÞ
ð11Þ

RLViolation () 9RVTL ^ dis ðRVTL, EgoÞ≤dcl min ð12Þ

where ðTonLLine ^ TpvyÞ1 represents the first moment within the time
interval when (TonLLine∧ Tpvy) is true.

The lane-change process involves a segment of driving on the lane
line, and driving on the lane line should be monitored, to ensure that
the vehicle does not remain on the lane line for an extended duration
during the lane-change process. The corresponding expressions is as
follows:

TonLLine ^ Tpvy ) :ðFViolation _ RLViolationÞ ð13Þ

Intersection areas involve many right-of-way relationships and
often lack well-defined lane lines. Therefore, amap is needed to provide
virtual lane (Fig. 5c) information. IntersectionArea is defined as the
region formed by extending the intersection from the stop line Sto-
pLine. The traffic light states TL = {R, G, Y} represent the red, green, and
yellow lights, respectively. In addition, TTIdiff(obj1, obj2) donates the
difference TTI to trajectory intersection point between obj1 and obj2.

The trigger condition for Article 38.1 is that the ego vehicle
overlaps with StopLine and the traffic light is yellow or red.

TTL1 () overlap ðAreaðEgoÞ, StopLineÞ
TTL2 () TLðEgoÞ= Y ð14Þ

The ego vehicle should not enter the intersection under a red
light. When the yellow light is on and the ego vehicle has not yet
entered the intersection, it should not enter the intersection.

TTL1 ) :TLðEgoÞ=R
TTL1 ^ TTL2 ) P½tin ,tnow�ðTTL1Þ ^ P½ty,tnow �ðTTL2Þ ^ ty > tin

ð15Þ

where tin represents the moment when the ego vehicle starts to
overlap with the stop line and ty represents the initial moment when
the yellow light turns on.

In this study, we analyzed the right-of-way using the example of a
left-turn and straight-moving conflict scenario. The corresponding
trigger condition is when a left-turning vehicle intrudes into the virtual
lane line of the oncoming straight-moving traffic.

T Intersection () overlap ðAreaðEgoÞ, IntersectionAreaÞ
T ls () overlap ðAreaðEgoÞ, VirtualLane OÞ ð16Þ

Where VirtualLane_O represents the virtual lane of oncoming
straight-moving traffic.

When the ego vehicle intrudes into the virtual lane line of the
oncoming straight-moving traffic, it should ensure thatTTIdiff exceeds
TTIdiff min. The specific expressions are as follows:

RWViolation LS () 9Tgtos ^ TTIdiff ðEgo, TgtosÞ≤TTIdiff min ð17Þ

T Intersection ^ T ls ) :RWViolation LS ð18Þ

where Tgtos represents the oncoming straight-moving vehicles.

Indicators for compliance threshold determination on highway
During the threshold selection process, in addition to excluding
abnormal data, we calculated certain indicators to obtain the final
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thresholds. The removal of abnormal data is described in the Supple-
mentary Methods. The selection of the high-speed thresholds tcl max

and TTCcl min is relatively straightforward. However, for determining
the dcl min threshold, an optimization algorithm is used to determine
the optimal threshold line.

The longitudinal and lateral RSS distances are calculated using
parameter values from previous studies47,48. The longitudinal and lat-
eral RSS distances can be calculated as follows:

dlonRSS = 0:458vr + 0:251+
vr + 0:978
� �2

4:272
� v2f

15:250

" #
+

ð19Þ

dlatRSS =0:2 +
2v1 + 0:337

2
×0:496+

v1 + 0:337
� �2

0:900

"

� 2v2 � 0:337
2

×0:496� v2 � 0:337
� �2

0:900

 !#
+

ð20Þ

where vr and vf represent the velocities of the rear and forward vehi-
cles, respectively, and v1 and v2 represent the lateral velocities of the
rear and forward vehicles, respectively.

The fitness function of the threshold line optimization is defined
as follows:

J = max
f

ðcostÞ s:t: PFP fð Þ ≤ rFP ð21Þ

cost =NTP � Q+NTN ð22Þ

where f represents the threshold fitting curve of dcl min and f = a ⋅ x + b,
with a, and bbeing undetermined coefficients. PFP represents the false-
positive rate, and rFP represents the maximum allowable false-positive
rate. The cost function is defined as the weighted sum of NTP and NTN.
NTP represents the number of true positives, NTN represents the
number of true negatives, Q is the weighting coefficients.

Indicators for compliance threshold determination at
intersection
In the scenario of a left-turn conflict with a straight-moving vehicle, it is
difficult for the turning vehicle to generate as much displacement as
possible in the forward direction of the straight-moving vehicle within
the virtual lane, as defined in RSS. To address this issue, we adjusted
RSS to eliminate the travel displacement of the leading vehicle. The
adaptive RSS distance daRSS is defined as follow:

daRSS = vsρ+0:5amax,accel ρ
2 � vs +ρamax,accel

� �2
2amin,brake

ð23Þ

where vs represents the velocity of the straight-moving vehicle when
the trigger is first activated, ρ represents the reaction time, which is
equal to 0.458 s47; and amin,brake represents the minimum braking
deceleration, which is set to −0.7 m/s2, i.e., the lower limit of
deceleration for a straight-moving vehicle without interference.

The maximum acceleration amax,accel of a straight-moving vehicle
when it crosses the stop line until a trigger is activated is defined as
follows:

amax,accel = max a tð Þð Þ s:t: ts ≤ t ≤ tact ð24Þ

where ts represents the timeatwhich the straight-moving vehicle starts
to overlap the stop line and tact represents the time atwhich the trigger
is first activated.

Theminimumaccelerationamin of a straight-moving vehiclewhen
the trigger is activated until the left-turning or straight-moving vehicle

reaches the intersection point is defined as follows:

amin = min a tð Þð Þ s:t: ts ≤ t ≤ tpass ð25Þ

where tpass represents the time at which the left-turning or straight-
moving vehicles reach their trajectory intersection point.

The intersection points (xint, yint) canbecalculated easily using the
intersection point formula of the line segments. Using the coordinates
of this intersection point and the states of the left-turning and straight-
moving vehicles in the dataset, TTIleft and TTIstr when the trigger is
active can be calculated as follows:

TTI =
ltrajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vx2act + vy
2
act

� �q ð26Þ

ltraj =
XN�2

k = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk + 1 � xk

� �2 + yk + 1 � yk
� �2q !

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xint � xN�1

� �2 + yint � yN�1

� �2q
� lveh

2

ð27Þ

where ltraj represents the length of the trajectory between the vehicle
and the intersection point; vxact and vyact represent the longitudinal
and lateral speeds, respectively, of the vehicle when the trigger starts
to activate, N represents the minimum number of sampling points for
trajectories that contain intersection point; lveh represents the vehicle
length.

Data availability
The statistical results from the datasets generated in this study are
available via Figshare under accession code https://doi.org/10.6084/
m9.figshare.2437253549. It includes AD4CHE dataset, SIND dataset,
Recorded scenarios, and Original traffic law. We provided the expla-
natorydocument about thedataset, alongwith somedataset segments
of SINDdataset. The raw SINDdataset used to validate themethod and
analyze the thresholds is publicly available at https://github.com/
SOTIF-AVLab/SinD. The raw AD4CHE dataset used to validate the
method and perform threshold analysis is available under restricted
access for the privacy requirement of the owner, access can be
obtained by applying at https://auto.dji.com/cn/ad4che-dataset.
Recorded scenarios include the input and output data of the Field test.
Original traffic law includes the original traffic laws and the subdivided
version. SourceData is available as a Source Data file and has also been
deposited in Figshare49. Source data are provided with this paper.

Code availability
Supplementary Code 1 includes codes for the AD4CHE analysis, SIND
analysis, Online monitor program. AD4CHE analysis and SIND analysis
contain code and output data for the dataset analysis. Online monitor
program is a MATLAB version of the monitoring of articles related
highway. These are also available in Figshare49.
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