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Bidirectionally promoting assembly order
for ultrastiff andhighly thermally conductive
graphene fibres

Peng Li1,5, Ziqiu Wang1,5, Yuxiang Qi1,5, Gangfeng Cai1, Yingjie Zhao2, Xin Ming1,
Zizhen Lin3, Weigang Ma 3, Jiahao Lin1, Hang Li1, Kai Shen1, Yingjun Liu 1,4 ,
Zhen Xu 1,4 , Zhiping Xu2 & Chao Gao 1,4

Macroscopic fibres assembled from two-dimensional (2D) nanosheets are new
and impressing type of fibre materials besides those from one-dimensional
(1D) polymers, such as graphene fibres. However, the preparation and
property-enhancing technologies of these fibres follow those from 1D poly-
mers by improving the orientation along the fibre axis, leading to non-
optimizedmicrostructures and low integrated performances. Here, we show a
concept of bidirectionally promoting the assembly order, making graphene
fibres achieve synergistically improved mechanical and thermal properties.
Concentric arrangement of graphene oxide sheets in the cross-section and
alignment along fibre axis are realized by multiple shear-flow fields, which
bidirectionally promotes the sheet-order of graphene sheets in solid fibres,
generates densified and crystalline graphitic structures, and produces gra-
phene fibreswith ultrahighmodulus (901 GPa) and thermal conductivity (1660
W m−1 K−1). We believe that the concept would enhance both scientific and
technological cognition of the assembly process of 2D nanosheets.

Graphene, as one of carbon’s allotropes, has the highest mechanical
properties of Young’s modulus (~1100GPa) and fracture strength
(130GPa); besides, it has the highest thermal conductivity
(~5000Wm−1 K−1) ever reported at room temperature and excellent
carrier mobility (200,000 cm2 V−1 s−1)1–3. Macroscopic graphene fibres
are supposed to realize the remarkable mechanical and transport
properties of single-layer graphene on themacroscale level, benefiting
the lightweight-economic target of engineering materials4,5. In princi-
ple, orderly and densely assembling graphene sheets to giant sp2-
hybrized graphitic domain with high crystallinity should achieve both
high transport andmechanical properties4,6–9. To date, graphene fibres
display higher thermal conductivity but inferior Young’s modulus

(<400GPa) andmoreover theseproperties are far below that expected
for a single-layer graphene, leaving a challenge to realize high
mechanical and thermal properties in graphene fibres.

Previous works have highlighted the importance of improving the
axial alignment of graphene sheets to enhance the mechanical and
transport properties of graphene fibres, analogy to aligning linear
chains in 1D polymer fibres. For examples, shear-flow-induced align-
ment was developed to fabricate highly aligned graphene
assemblies10–16. Besides aligning graphene sheets during solution pro-
cessing, post plastic-stretching was further used to align graphene
sheets by eliminating wrinkles and promote overall properties of
graphene fibres efficiently17–21. However, the 2D topology of single-
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layer graphenemismatcheswith the 1Dfibre geometry, whichhasbeen
largely neglected: the loose assembly of graphene sheets in transverse
direction of graphene fibres still exists; furthermore, the increased
alignment in axial direction inversely leads to wrinkles and ridges in
transverse direction as evidenced in previous reported graphene
papers19. Such disordered and loose arrangement of graphene sheets
in the cross-section heavily reduces the fibre density and crystallinity.
This indicates that the aligning strategy for property-enhancement in
experience for linear polymer fibres is not favouring to copy for fibres
assembled from 2D molecules.

Here, we report a multiple shear-flow assisted wet-spinning
(MSW) to bidirectionally promote the assembly order of graphene
fibres (Fig. 1), which brings significant improvement in both mechan-
ical properties and thermal conductivity. Our MSW strategy shows the
flexibility of tailoring the microstructures by controlling the distribu-
tion of shear-flow fields and allows fine manipulation of the ordered
assembly of graphene sheets in both longitudinal and transverse
directions. Among the tailored microstructures, the transversely con-
centric and axially aligned sheet-order allows improved crystallization
duringhigh-temperature graphitization, affordingdensified andhighly
crystalline graphitic structures and improvements in both mechanical
property and thermal conductivity. Especially, the prepared graphene
fibre even achieves the ultrahigh Young’s modulus of a single-layer

graphene. The correlation of MSW assembly process, microstructural
and crystalline control, and properties was established and would
enhance the scientific comprehension of the assembly process of 2D
molecules.

Results
Concepts of bidirectionally improved assembly order
Graphene fibre is a one-dimensional macroscopic ordered assembly
formed by graphene oxide (GO) liquid crystals under unidirectional
shear-flow, following by chemical and thermal reduction4,11,14,16. 2D GO
sheets flowing in a tubular channel become curved and distorted as a
result of the mismatching of the geometries of the sheets and the
channel, leading to a loose assembly (Fig. 1e, Supplementary Fig. 1a).
Bidirectionally promoting assembly order refers to simultaneously
optimizing sheet-order in fibre cross-section and sheet alignment
along fibre axis by our MSW technology.

Typically, three stages of sheet-order in the MSW process are
shown in Fig. 1c. Pre-ordered GO sheets in anisotropic liquid crystals
are directed under tubular shear-flow to form aligned sheet-
arrangement along the flow direction as schemed as Plane I (Fig. 1d),
yet disordered sheet-order in transverse cross-section retains and
aggregates under unidirectional tubular flow velocity u (Fig. 1e). Plane
II demonstrates that the introduced rotating shear-flow compels
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Fig. 1 | Schematic illustration of the concept of bidirectionally promoting
graphene assembly order. a GO fibres fabricated by multiple shear-flow fields
combining tubular and rotating shear. b–f Structural illustration of the sheet-order
in the whole spinning tube under the multiple flow fields (c), in which Plane I (d, e)
depicts the aligned sheets along the flow direction but wrinkled conformation

perpendicular to the flow direction under unidirectionally tubular flow field, Plane
II (f) shows the aligned sheets in both the flow direction and transverse cross-
section under the multiple flow fields, Plane III (b) illustrates the optimally con-
centric structure after bidirectionally promoting assembly order.
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graphene sheets to extend state under a constant angular velocity ω
(Fig. 1f). Linear velocity v can be described by v =ωr, where r is the
distance from the rotor centre to graphene sheets. v attenuates at the
position away from central rotor, which forms a rotating shear-flow
field22. Dense and ordered structure after bidirectionally promoting
assembly order is shown in Plane III (Fig. 1b).

Static observation of GO liquid crystals under rotating shear-
flow field
The transformation of GO liquid crystalline textures was firstly
observed under the single rotating shear-flow, in which the rotating
angular velocity ω of the introduced rotor and concentration c of GO
liquid crystals are crucial for the formed texture. The area affected by
rotating fieldwas determined (Fig. 2a, b;D is defined as the diameter of
the affected round area; d is the diameter of the rotating rotor, d = 2r).
Increased rotating angular velocityω and decreased GO concentration
result in enhanced D/d, which directs the choice of rotor diameter.

Liquid crystals of GO solution were determined by the concentration
of GO solution23. GO solution shows isotropic phase at low GO con-
centration. In this concentration range, GO sheets with low molecular
rotation energy barrier distribute randomly and move separately, and
any ordered texture by rotating shear-flow is unstable (Fig. 2d). As
concentration increases, the translational entropy increase compen-
sates the orientation entropy loss, leads to the formation of thermal
dynamic stable liquid crystallinemesogens24,25. In higher concentration
range, strong excluded volume repulsion retards the relaxation of
liquid crystalline mesogens and keeps the concentric liquid crystalline
texture reserved (Fig. 2e, Supplementary Fig. 2)25. When GO con-
centration exceeds 1.0wt%, steric hindrance from the overlap of
excluded volume repulsion endows the mesogens with powerful
elastic energy for resistance to deformation and spiral liquid crystals
with periodic bands forms (Fig. 2f)14,26. Rotating angular velocityω also
influences the sheet-arrangement. We concluded a phase diagram
in Fig. 2c.
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Fig. 2 | Static observation of GO liquid crystals under rotating shear field.
a Schematic illustration of the static observation. d refers to the diameter of the
rotating rotor, while D refers to the diameter of the area affected by the rotating
shear field. b Relationship of D/d and rotating angular velocity at different GO
concentration c. Error bars represent s.d. of the measured D/d. c Phase diagram of

GO liquid crystal texture at variable GO concentration and rotating angular velocity
ω. d–f The polarizing optical microscope (POM) images and surface and cross
scanning electron microscope (SEM) images of the three typical phases, including
random isotropic phase (d), concentric roll (e), and spiral coil (f).
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Liquid crystalline textures under multiple shear-flow fields
The transformation process of assembly order of graphene sheets at
the MSW fields depicts tuneable sheet-order in the cross-sections
(Supplementary Fig. 3).We tracked the GO liquid crystals and analysed
the shear force and velocity distribution under multiple shear-flow
fields (Fig. 3a–d and Supplementary Fig. 4). GO liquid crystals flow
along the tube axis under unidirectional tubular shear force without
radial ordered texture (Fig. 3a, b, Supplementary Fig. 4a1, a2, a3, and
Supplementary Movies 1, 2). But if rotating flow is introduced, regular
textures intuitively appear. When a moderate angular velocity ω is

applied, a stable concentric velocity field forms under the influence of
both rotating and tubular shear forces, yielding a concentric liquid
crystalline texture (Fig. 3a, c, Supplementary Fig. 4b1, b2, b3, and
Supplementary Movie 3). When the angular velocity ω is further
improved, excessive centrifugal forces make the radial pressure gra-
dient and the viscous forces unable to dampen out disturbances in the
flow, causing a secondary vortex velocity field (Fig. 3a, d, Supple-
mentary Fig. 4c1, c2, c3). In this condition, spiral GO liquid crystalline
texture with periodic disorders is clearly observed (Fig. 3a and Sup-
plementary Movie 4), corresponding to the spiral sheet-arrangement

a

Rotating 
flow

Valve

Tu
bu

la
r 

flo
w

GO liquid 
crystal

10 mm 0 
ra

d 
s-1

20
 (

2π
/6

0)
 ra

d 
s-1

50
 (

2π
/6

0)
 ra

d 
s-1

10
0 

(
2π

/6
0)

 ra
d 

s-1

20
0 

(
2π

/6
0)

 ra
d 

s-1

Vortex 

30
0 

(
2π

/6
0)

 ra
d 

s-1

50
0 

(
2π

/6
0)

 ra
d 

s-1

b
Velocity (mm s-1)

1.5

0

Velocity (mm s-1)
99

0

Velocity (mm s-1)
999

0

c

d

100 μm

100 μm

20 μm

20 μm

100 μm 20 μm

e

f

g

Fig. 3 | Formation of the three sheet-orders. a Dynamic observation of GO liquid
crystalline textures and schematics of sheet-orders under multiple shear-flow
fields. Secondary vortex forms in the spiral textures, resulting in periodic disorders.
b Velocity distribution on the cross-section of unidirectional tubular shear-flow
field. c, d Velocity distribution on the cross-section of multiple shear-flow fields at

moderate (c) andoverhigh (d) rotating angular velocities, illustrating the formation
mechanism of the variable sheet-orders. e–g SEM images of random structure of
aerogel fibre cross-section without rotating shear (e), concentric textured cross-
section at rotating angular velocity ω of 100 (×2π/60) rad s−1 (f), spiral textured
cross-section at rotating angular velocity ω of 500 (×2π/60) rad s−1 (g).
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in Fig. 2f. The gradient rotor used inmultiple shear-flow fields protects
the concentric structure in the core region from destroying. As shown
in the velocity distribution in Supplementary Fig. 5a, c–g, the con-
centric structure forms following three steps illustrated by the four
sections. GO sheets are initially arranged in concentric texture under
multiple shear-flow fields with rotating rotor in central region (Section
1 in Supplementary Fig. 5d). Then with the reduced diameter of
rotating rotor,GOsheets around the rotor converge at the tip, inwhich
GO sheets are suffering continued rotating shear forces to keep the
concentric texture in the core region (Sections 2 and 3 in Supple-
mentary Fig. 5e, f). GO liquid crystals finally flow along the axis in the
spinning tube (Section 4 in Supplementary Fig. 5g). Converged GO
sheets in liquid state at both outer region and core region are aligned
along the tube axis based on the position-resolution small-angle X-ray
scattering (SAXS) results (Supplementary Fig. 5h–j).

GO aerogel fibre was systematically fabricated by our MSW
technology and characterized using freeze-drying and scanning elec-
tron microscopy (SEM) techniques27. As shown in Supplementary
Figs. 6 and 7, we fabricated variable GO aerogel fibres by tuning GO
concentrations c and rotating angular velocity ω. The sheet-orders in
these fibre cross-sections typically involve randomly distributed GO
sheets, GO sheets arranged with a concentric texture and a spiral
texture, which are consistent with the liquid crystalline tracking of
random isotropic, concentric roll, and spiral coil in Figs. 2 and 3a.
Among the graphene structures prepared with GO concentration of
0.6wt%, GO aerogel fibres shows random sheet-order at ω lower than
20 (×2π/60) rad s−1; concentric roll roughly at ω of 50, 100, and 200
(×2π/60) rad s−1; spiral coil at ω higher than 300 (×2π/60) rad s−1

(Supplementary Fig. 6). We thus chose GO concentration of 0.6wt%
for deeply investigating the fibre performance at different angular
velocity ω covering the three typical sheet-orders (Fig. 3e–g).

The thermal conductivity of the graphene aerogel fibres with
random, concentric, and spiral sheet-orders after annealing at 2700 °C
were tested. Graphene aerogelfibreswith concentric sheet-order show
the optimized assembly order and have the highest electrical and
thermal conductivities up to 2504.7 Sm−1 and 19.7Wm−1 K−1 (Supple-
mentary Fig. 8a and Supplementary Movie 5). These graphene aerogel
fibres structured with different sheet-orders could provide platforms
for diverse functional applications, such as energy storage and con-
version. We exhibited an application of a phase-change graphene
material by filling the concentric graphene aerogel fibre with poly-
ethylene glycol (PEG, 94wt%). The high thermal/electrical con-
ductivities enable thephase-change functionalfibre toheatup to80 °C
as quick as 3 s at external electron stimuli of only 1.5 V (Supplementary
Fig. 8b, c), superior to the performance of previous reports28.

Fabrication of continuous graphene fibres by MSW technology
Decreasing themicrocapillary size from 1500 to 150μmhas little effect
on the manipulated sheet-arrangement as shown in Supplementary
Fig. 9. We also found that the introduced rotating shear-flow has little
influence to the stability of MSW process for continuously fabricating
GO fibres, even at angular velocity ω as high as 500 (×2π/60) rad s−1

(Supplementary Fig. 10b). Thus, continuous graphene fibres by the
MSW technology at different ω covering the three sheet-orders were
fabricated following by chemical and thermal reduction (Supplemen-
tary Fig. 11f). For clarity, fibres derived from the three sheet-orders are
denoted as random, concentric, and spiral fibres, respectively.

Crystalline analysis of graphene fibres
Highly densified and crystalline graphitic structures were formed in
concentric graphene fibres by bidirectionally promoting the assembly
order (Fig. 4). Concentric sample shows the highest value of density
reaching 2.02 g cm−3, in accordance with the smooth and dense
stacking in the fibre cross-section from concentric sheet-order (Fig. 4f,
Supplementary Figs. 1b and 12, and Supplementary Table 2). As a

comparison, graphene fibres originated from the random sheet-order
have numerous acute loose stacking and lower density of 1.89 g cm−3

(Supplementary Fig. 1a). Atomic defects on GO sheets are restored
during thermal annealing (Supplementary Fig. 13)11,16,17. Axial and
transverse slices of graphene fibres were observed using transmission
electron microscopy (TEM)29–32. As shown in Fig. 4a–c, huge perfect
graphitic crystallites grow in both axial and transverse directions after
the thermal graphitization at 2700 °C, where three-dimensional crys-
talline sizes and orientation order (f) determine the crystallinity,
including the thickness (Lc), longitudinal length (La∥), and transverse
length (La⊥) (Supplementary Fig. 14).

The crystalline factors were quantitatively evaluated by wide-
angle X-ray scattering (WAXS) analysis. 2DWAXS patterns of graphene
fibres show two symmetrical (002) scattering rings in the equatorial
direction and annular (100)/(101) broad peaks (Fig. 4d)17. The inte-
grated curves of all samples at different ω show these three scattering
peaks, where (002), (100), and (101) peaks position at 21.3°, 34.1°, and
35.6° (Wavelength of X-ray is 0.124 nm, Supplementary Fig. 15). The
corresponding azimuthal angle φ plot of (002) plane features a sharp
peak at φ = 0°, indicating the orientation order parameter f (Fig. 4d–f,
Supplementary Fig. 16b)17,33,34. Three-dimensional crystallite sizes Lc,
La∥, and La⊥ were calculated from the (002) and (100) peaks in
equatorial and meridional scanning curves, respectively (Fig. 4g,
Supplementary Fig. 16c, d, see Characterization)35. We showed that
optimized concentric texture atω = 100 (×2π/60) rad s−1 is in favour to
form ordered assembly in both longitudinal and transverse directions
in the final dense concentric graphene fibre, which results in an
improved order parameter (0.93) and enlarged crystallite sizes (Lc =
68.5 nm, La∥ = 236.6 nm, La⊥ = 114.1 nm). Especially, the introduced
rotating shear-flow improves the sheet-order in the fibre cross-section
compared to previously reported graphene fibres, thus distinctly
facilitating the increasement of thickness (Lc) and transverse length
(La⊥) of graphitic crystallites (Fig. 4g, Supplementary Fig. 16d). Con-
centric graphene fibre has increase rates of Lc, La⊥, and La∥ reaching
235%, 74%, and 31% compared to those of random samples without
MSW technology, respectively. Apparent crystalline sizes were also
collected to verify the enhanced crystallinity from TEM images (Sup-
plementary Fig. 17)36. The statistically apparent length of the optimized
graphene fibre reaches 294.8 nm in TEM images. Higher or lower ω
leads to the formation of either spiral disorders or random disorders,
respectively, causing inferior orientation order and smaller crystal-
lite sizes.

High-performance graphene fibre
Optimized sheet-order of graphene fibre achieves the densified and
crystalline graphitic structure, thus improving the mechanical and
functional properties. Tensile tests showed that the Young’s modulus
of the concentric graphene fibre had a huge increase reaching 642GPa
(highest value 833GPa), higher than that of the randomgraphene fibre
and spiral graphene fibre (Fig. 4h, Supplementary Fig. 18b, Supple-
mentary Table 2)10,11,16,17. The load transfer efficiencies of concentric
fibres and random fibres were evaluated by an in situ Raman test, in
which the downshift of G-band denotes the deformation of graphene.
The G-band shift rate of concentric graphene fibres is 17.5 cm−1 per 1%
strain, 113% higher than that of random fibres, indicating an effective
load transfer in concentric fibres (Supplementary Fig. 19). The
improved density and optimized crystalline order jointly contributed
to the record-high value of Young’s modulus (Fig. 4i, Supplementary
Table 2)16,17.

The average tensile strength of concentric graphene fibres is
2.9 GPa, lower than that of random fibres, which results from the
increaseddefect-sensitivity of concentricfibres since cracks propagate
along the enlarged Lc and La⊥37,38. Defects inside graphene fibres
mainly involve misoriented grain boundary and microvoids (Supple-
mentary Fig. 20). Misoriented grain boundary can be reduced by the
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improved orientation. Microvoids form mainly in the huge shrinkage
during solidification and randomly position at the gap of folds without
distinction in outer and inner regions of fibre structure as shown in
TEM images and 3D constructed image of fibre transverse cross-
section (Supplementary Figs. 21 and 22). We quantitatively measured
the microvoid defects by SAXS39. As shown in Supplementary Fig. 23,
the content of microvoids in concentric graphene fibres decreases,

which is in agreement with the enhanced density. But the microvoid
defect size of the concentric graphene fibre is enlarged, which may
also lead to the decreased tensile strength40.

Besides the increased Young’s modulus, dramatically enlarged
three-dimensional crystallite sizes also enhance the transport of the
phonons and electrons (Fig. 4j). The thermal conductivity of the con-
centric graphene fibre reaches 1590Wm−1 K−1, about 16% higher than
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that of the random graphene fibre and spiral graphene fibre. (Sup-
plementary Fig. 18c). The electrical conductivity of the concentric
graphene fibre was optimized as high as 1.2 × 106Sm−1 (Supplementary
Fig. 18d).

Generality of the ideal concentric skeleton model
We further demonstrated that the concentric structure of graphene
sheets was an ideal skeletonmodel for fabricating carbonaceous fibres
with high modulus and excellent thermal conductivity (Fig. 5a, c).
Small-sized GO sheets were reported to fill themicrovoids in graphene
fibres assembled by large-sized GO sheets, affording densified gra-
phene fibres with improved thermal conductivity and Young’s
modulus16. Concentric graphenefibres composing of the samecontent
of small-sized GO sheets (30wt%) were fabricated by the MSW strat-
egy. As shown in Fig. 5b, by fixing the total mass fraction of large-sized
and small-sized GO sheets to 0.6wt% and rotating angular velocity of
100 (×2π/60) rad s−1, GO aerogel fibre shows distinctly concentric
texture. The prepared concentric graphene fibre exhibits a high
Young’s modulus of 901 GPa (highest value 1030GPa), about 6 times
higher than that of the reported fibre (Fig. 5e, Supplementary Fig. 24a,

and Supplementary Table 3)16. The highest value even reaches the
mechanical limit of single-layer graphene (Fig. 5f)3. The thermal and
electrical conductivity were measured to be 1660 W m−1 K−1 and
1.21 × 106Sm−1, respectively (Supplementary Fig. 24a). The thermal
conductivity of concentric graphene fibres achieves near 75% of a
benchmark of highly oriented pyrolytic graphite17,41. Such graphene
fibres with densified and crystalline graphitic structures achieve the
integrated mechano-thermo properties, superior to those of most
commercial pitch-based carbon fibres that are well-known for their
highly thermal conductivity and Young’s modulus (Fig. 5f). Giving the
lower density of graphene fibres, the specific thermal conductivity and
specific modulus are ~0.8Wm−1 K−1/(kg m−3) and ~0.4 GPa/(kg m−3),
outperforming most conventional metal materials (Supplementary
Fig. 25 and Supplementary Table 4). Such high thermal property,
combiningwith highmodulus,makes thisfibrean important candidate
engineering material in high-performance composites.

The concentric structure of graphene sheets also directed the
preparation of highly thermal conductive and stiff polyacrylonitrile
(PAN)-based carbon fibres. For commercial PAN-based carbon fibres,
inferior graphitic structures make the fibres exhibit poor thermal
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Fig. 5 | Concentric skeleton of graphene sheets for high-performance carbo-
naceous fibres. a Schematic depicting the small-sized GO is filled in the concentric
skeleton of large-sized GO.b SEM image and energy dispersive spectroscopy (EDS)
patterns of the aerogel fibrewith 70wt% large-sizedGO and 30wt% small-sizedGO.
c Schematic depicting the PAN chains are intercalated in the interlayer of con-
centric GO sheets. d SEM image and EDS patterns of the aerogel fibre with 70wt%

PAN chains and 30wt% GO sheets. eMechano-thermo properties of the concentric
graphene fibre and PAN/GO carbon fibre. The black points are the properties of the
fabricated pure PAN carbon fibre. Error bars represent s.d. of the measured prop-
erties. f Ashby plots of the Young’s modulus and thermal conductivity, including
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conductivity (~32Wm−1 K−1). We showed that the concentric roll tex-
ture of GO liquid crystals still formed even with the addition of 70wt%
PAN chains (Supplementary Fig. 26). PAN/GO carbon fibres with
70wt% PAN and 30wt% GO were then prepared by the MSW strategy.
PAN chains were uniformly distributed in the concentric skeleton of
GO sheets (Fig. 5d). Improved crystallinity of PAN-based carbon fibres
can be realized by confining graphitization with the addition of GO
sheets42. The concentric PAN/GO carbon fibres show improved ther-
mal conductivity and Young’s modulus reaching 1254Wm−1 K−1 and
663GPa, about 47% and 85% higher than those of previously reported
fibres without optimized sheet-order (Fig. 5e, f, Supplementary
Fig. 24b, and Supplementary Table 3). The thermal conductivity of the
prepared concentric PAN/GO carbon fibre is ~38 times higher than that
of commercial PAN-based carbon fibre and even exceeding the com-
mercial pitch-based carbon fibre, making it a competitive material
applicable for low-cost thermal-managing conditions (Fig. 5f). Based
on these results, concentric sheet-order of 2D molecules would be an
ideal structure model for fibre materials with highly integrated
mechano-thermo properties.

Discussion
Bidirectionally promoting the sheet-order of graphene fibre has been
realized to achieve both highly thermal conductivity and excellent
modulus. The established MSW technology was demonstrated to fine
control the assembly order of graphene sheets in both longitudinal
and transverse directions, thus offering a unique opportunity to fab-
ricate macroscopic graphene structures with variable sheet-arrange-
ment, such as random, concentric, and spiral sheet-orders. These
flexiblemacroscopic graphene structures could be novel platforms for
diverse functional applications. The transversely concentric and axially
aligned sheet-order optimizes the densified and crystalline graphitic
structures, being an ideal structure model of graphene sheets for
achieving fibres with highly thermal conductivity and Young’s mod-
ulus. This concept of bidirectionally promoting sheet-order may be
extended to other nanoparticles with planar anisotropic structure for
producing high-performance macroscopic materials.

Methods
Preparation of GO and PAN/GO spinning dope
To obtain a GO/N, N-dimethyl formamide (DMF) solution for wet-
spinning, the water in purchased GO aqueous (average lateral size of
105.2 μmand 5.1 μmas shown in Supplementary Fig. 10a–e, Hangzhou
Gaoxi Technology Co. Ltd) solution was replaced by DMF (Sinopharm
ChemicalReagentCo. Ltd) via a repeating centrifugationmethod for at
least five times to obtain concentrated GO/DMF liquid crystal solution.
Before wet-spinning for fabricating graphene fibres, GO/DMF dope
should be treated by removing possible impurities and degassing
adequately.

To prepare the GO spinning dope with 70wt% large-sized GO and
30wt% small-sized GO, large-sized and small-sized GO solutions with
concentration of 0.6wt% weremixing with a mass ratio of 7:3. The GO
mass fraction in the spinning dope is 0.6wt%.

To prepare the PAN/GO spinning dope with 70wt% PAN and
30wt% GO, PAN (molecular weight 250000, Sigma-Aldrich) powder
were dissolved in DMF with a mass fraction of 2.8wt%. The con-
centration of GO DMF solution was tuned to be 1.2wt%. Mixing equal
parts of PAN andGO solutions obtains the PAN/GO spinning dopewith
total GO mass fraction of 0.6wt%.

Fabrication of the macroscopic graphene structure with vari-
able textured cross-section
Macroscopic graphene structures with variable sheet-orders were
prepared by our MSW method and freeze-drying technology. Typi-
cally, GO aqueous solution with different concentrations was extruded
to a home-made rotary extruder, where GO sheets suffer from both

tubular shear for axial aligning and rotating shear for transversely
ordered assembling. Then GO aqueous solution was spun to 3wt%
CaCl2 (SinopharmChemical ReagentCo. Ltd) aqueous solution to form
a stable gel fibre. After washing the obtained gel fibre using deionized
water for at least three times, the gel fibrewas freeze-dried to fabricate
solid state fibre with variable sheet-order43. Specially, the diameter of
GO gel fibres was controlled by tuning the diameter of spinneret, and
aerogel fibres with arbitrary diameter showed corresponding sheet-
order in fibre cross-section at the specific rotating angular velocity as
shown in Supplementary Fig. 8. PAN/GO gel fibre were fabricated by
extruding the PAN/GO DMF solution to 3wt% CaCl2 aqueous solution
with the MSW technology.

Macroscopic graphene aerogel structures were prepared by che-
mical reducing and thermal annealing the GO aerogel fibres as shown
below in the section of fabrication of graphene fibres. The graphene
aerogel fibre-based phase-change materials were fabricated by
immersing the graphene aerogel fibre into PEG (Sinopharm Chemical
Reagent Co. Ltd) melt at 80 °C in a vacuum oven for 3 h to ensure that
the aerogel fibrewas infusedwith PEG. Then the samplewas allowed to
hang under 80 °C to remove the excess PEG adhering on the fibre
surface.

Fabrication of graphene fibre and PAN/GO carbon fibre
Following the established MSW technology, GO/DMF spinning dope
(0.6wt%) was injected through a spinneret (80 μm diameter) into
coagulation baths containing a mixture of DMF and ethyl acetate
(Sinopharm Chemical Reagent Co. Ltd). GO fibres were solidified and
collected continuously onto graphite rollers, and plasticization-
stretched continuously using a mixed bath of acetic acid and water
to restrain the drying-induced shrinkage.

GO fibres fixed on the graphite rollers under tension were first
reduced by hydroiodic acid (HI, SinopharmChemical Reagent Co. Ltd)
at 90 °C for 12 h. Then the reduced GO fibres fixed on the graphite
rollers were annealed using a tube furnace. The samples were heated
from room temperature to 1300 °C at a rate of 1 °C min−1 and kept at
1300 °C for 1 h in a flow of hydrogen/argon (20 vol%) mixture. Finally,
the samples were heated from room temperature to 2700 °C at a rate
of 10 °C min−1 and maintained at 2700 °C for 1 h in a flow of argon.

To fabricate PAN/GO carbon fibre, PAN/GO spinning dope was
injected into the coagulation bath of pure ethyl acetate with the
establishedMSWtechnology, followedby plasticization-stretching in a
plasticization bath (H2O/DMF)42. The PAN/GO fibres are collected
continuously onto a graphite roller for subsequent thermal
treatments.

Static observation of GO liquid crystals under rotating
shear field
Concentrated GO/DMF solution was diluted to a gradient concentra-
tion. Then GO/DMF solutions with different concentrations were
flat filled in a home-made liquid crystal observation cell. After applying
given rotating angular velocity to the GO solution, the cell was
fixed under POM to observe the liquid crystal texture. GO liquid
crystal solution was also freeze-dried to solid state. The solid foam
was characterized under SEM along the surface and cross-section,
respectively.

Dynamic tracking of GO liquid crystals under multiple shear-
flow fields
GO/DMF solutions (0.6wt%) were filled in a home-made liquid crystal
observation tube, which possessed a valve for tubular flow and a
glass rod with a gradient tip for rotating flow. This observation tube
was fixed between two orthogonal polarizers. After applying
given rotating angular velocity to the GO solution and opening
the valve, specific GO liquid crystalline textures were recorded by a
digital camera.
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Characterizations
The static observation of liquid crystal under rotating shear field was
conductedbypolarizing opticalmicroscope (Nikon, LV100NPOL). The
morphology and microstructure of macroscopic graphene structures
and graphene fibres were characterized by field-emission scanning
electronmicroscope (Hitachi, S4800).We also collectedGOsize under
scanning electron microscope and analysed its distribution. 3D con-
structed image of solid graphene fibre are conducted onHelios G3 UC.
The crystalline microstructures of graphene fibres and graphene
stacking in single graphitic crystallite were characterized by trans-
mission electronmicroscope (Tecnai F20 FEI andTitanG260-300FEI).
The slice samples along both axial and transverse directions used for
TEM measurement were fabricated by ion-milling34. Differential scan-
ning calorimetry (Q100 TA) was carried out to characterize the
enthalpy of the graphene aerogel fibre-based phase-change materials.
Wide-angle X-ray scattering (WAXS) measurement was used to deter-
mine the three-dimensional crystalline sizes17,35 (thickness of graphitic
crystallites Lc, longitudinal length La∥, and transverse length La⊥)
according to Scherrer equation L =Kλ/(β cos θ), where K =0.89 for Lc,
K = 1.84 for La∥ and La⊥, λ is the sourcewavelength of 0.124nm, β (rad)
is fullwidth at halfmaximumof (002) along equatorial direction for Lc,
(100) along meridian direction for La∥, and (100) along equatorial
direction for La⊥. Orientation order parameter was also quantified by
azimuthal angle scanning by the (002) reflection in WAXS patterns.
SAXS was used to analyse the microvoids in graphene fibre (Supple-
mentary Text 1.3). Position-resolution SAXS (spot diameter 200 μm)
was carried on to characterize the arrangement of GO sheets in liquid
state at both outer and core regions of ultrathin quartz tube (diameter
1000 μm).WAXS and SAXS tests were carried out on BL16B1 beam line
station in Shanghai Synchrotron Radiation Facility. All data were col-
lected by deducting the background scattering from air. For WAXS
measurements, the fibres were measured as aligned multifilament
bundles for the transmission test mode. Microcomputed tomography
(Carl Zeiss, 520 Versa) was used to confirm the concentric texture of
graphene fibre. The density of each sample was tested by the sink-float
method following previous literatures16,32, in which three types of
liquids, tetrabromoethane (Br2CHCHBr2), carbon tetrachloride (CCl4)
and hexamethylene were used. In situ Raman testing was operated by
Renishaw in Via-Reflex Raman microscopy (excitation wavelength of
532nm) accompanied with a translation stage (PI, M-112.2DG1) whose
accuracy is 250nm. Tensile stress-strain tests were conducted using a
Keysight T150 UTM with 5mm gauge length and 1.67 × 10−2s−1 exten-
sion rate. At least five samples of each type of fibre were tested to
measure the average mechanical properties and standard deviations.
The electrical conductivity was measured by a standard four-probe
method using Keithley 2611B. The thermal conductivity of graphene
fibres was measured by a steady self-heating method (Supplementary
Fig. 27)16,44 and examined by a well-established T-typemethod45. Three
samples fabricated at variable angular velocities were tested to cal-
culate the average electrical and thermal properties and correspond-
ing standard deviations. The thermal conductivity of graphene aerogel
fibres was also tested by the steady self-heating method.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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