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Autonomous artificial intelligence increases
screening and follow-up for diabetic retino-
pathy in youth: the ACCESS randomized
control trial

Risa M. Wolf 1 , Roomasa Channa2, T. Y. Alvin Liu3, Anum Zehra1,
Lee Bromberger1, Dhruva Patel1, Ajaykarthik Ananthakrishnan 1,
Elizabeth A. Brown 1, Laura Prichett 4, Harold P. Lehmann5 &
Michael D. Abramoff 6,7,8,9,10

Diabetic retinopathy can be prevented with screening and early detection. We
hypothesized that autonomous artificial intelligence (AI) diabetic eye exams at
the point-of-care would increase diabetic eye exam completion rates in a
racially and ethnically diverse youth population. AI for Children’s diabetiC Eye
ExamS (NCT05131451) is a parallel randomized controlled trial that rando-
mized youth (ages 8-21 years) with type 1 and type 2 diabetes to intervention
(autonomous artificial intelligence diabetic eye exam at the point of care), or
control (scripted eye care provider referral and education) in an academic
pediatric diabetes center. The primary outcome was diabetic eye exam com-
pletion rate within 6 months. The secondary outcome was the proportion of
participants who completed follow-through with an eye care provider if
deemed appropriate. Diabetic eye exam completion rate was significantly
higher (100%, 95%CI: 95.5%, 100%) in the intervention group (n = 81) than the
control group (n = 83) (22%, 95%CI: 14.2%, 32.4%)(p < 0.001). In the interven-
tion arm, 25/81 participants had an abnormal result, of whom 64% (16/25)
completed follow-through with an eye care provider, compared to 22% in the
control arm (p <0.001). Autonomous AI increases diabetic eye exam com-
pletion rates in youth with diabetes.

Diabetic eye disease (DED) is a complication of diabetes that is the
primary cause of blindness in working-age adults in the U.S.1,2.
Early detection (‘screening’) and treatment can frequently prevent
progression, but the majority of the 34 million people with

diabetes in the US have a DED screening care gap, due to a lack of
access, and education around the need for a diabetic eye exam3,4.
This care gap is a major source of health disparity, with racial and
ethnic minorities, and under-resourced communities, having
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worse outcomes, and a disproportionately higher prevalence of
DED2,5–9.

While DED prevalence is lower in youth (defined as those aged
<21 years) with diabetes, it affects approximately 4–9% of youth with
type 1 diabetes (T1D) and 4-15%of youthwith type 2 diabetes (T2D)10–14.
The risk for DED increases with the duration of diabetes in T1D, and
recent data from theTODAY2 follow-up study demonstrated a diabetic
retinopathy prevalence rate of 49% at a mean diabetes duration of 12
years in youth onset T2D15. The American Diabetes Association (ADA)
and American Academy of Ophthalmology (AAO) recommend DED
screening in T1D within 3–5 years of diagnosis and age greater than 11
years, and in T2D at the time of diagnosis in youth16. However, only 35-
72% of diabetic youth undergo recommended screening exams, with
even higher care gap rates in minority and lower socioeconomic
background youth10,17. Commonly reported barriers to screening
include miscommunication regarding the need for a diabetic eye
exam, time for an additional doctor’s visit, and transportation
barriers17,18.

While the introduction of telemedicine over the last two decades
has improved screening and facilitated early detection of diabetic eye
disease19–23, the development of diagnostic autonomous artificial
intelligence (AI) systems for diagnosing DED has ushered in the next
chapter of DED screening24–29. Autonomous AI systems require a
cameraoperator to obtain point-of-care fundus images,which are then
interpreted by an AI algorithm to provide a diagnosis without human
oversight. The regulatory approval of the first diagnostic autonomous
AI system for diabetic eye exams was based on a pivotal trial against a
prognostic standard, i.e., patient outcome24, showing its safety, effi-
cacy, and lack of racial and ethnic bias for diagnosing DED in adults
with diabetes with 87% sensitivity and 91% specificity24. In prior studies
of youth with diabetes, we demonstrated that the diagnosability of

autonomous AI in youth was 97.5%, with 85.7% sensitivity and 79.3%
specificity indetectingDED,with nodifference in diagnosability across
demographic groups30. We have also shown that this system can be
implemented in a multidisciplinary diabetes clinic and has the poten-
tial to increase DED screening rates in underserved youth, while also
being cost-savings to patients and caregivers30,31.

While diagnostic accuracy has been a focus of study of diagnostic
AI systems25,30,32, the effectiveness of autonomous AI to increase
adherence and follow-up compared to traditional referral has not been
evaluated in a rigorously designed randomized trial. We hypothesized
that autonomous AI closes the diabetic eye exam care gap, and
increases follow-up, compared to traditional eye care provider(ECP)
referral in youth. To test this hypothesis, we designed ACCESS (AI for
Childrens’ diabetiC Eye examS Study), a pre-registered, rigorously
designed randomized control trial (RCT), to measure diabetic eye
exam completion rates in a racially and ethnically diverse cohort of
youth with T1D and T2D.

Results
Participant flow
One-hundred seventy candidates were determined to be eligible, and
164 participants completed informed consent and were randomized,
81 to the intervention and 83 to the control arm. The final allocation
was not equal between the 2 groups due to recruitment completion
in the middle of the permutated blocks. Six patients who were
approached declined participation as described in the flowchart
in Fig. 1.

Baseline patient characteristics
Baseline characteristics were similar in the two groups (Table 1): mean
age 15.2 years (SD 2.8), 58% female, 35% Black, 6% Hispanic, 47%

Fig. 1 | Flow diagram of patient enrollment and randomization in the ACCESS study (Based on CONSORT guideline 2010 flow diagram).
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Medicaid insurance, 34% with household income <$50,000, 38% with
parental education of up to high school completion, 73% had T1D, the
median duration of diabetes was 5.8 years, and mean HbA1c was 8.6%.

Regarding disparities in ever having a prior diabetic eye exam,
79% of participants reported having had such an exam at some time in
the past (but per inclusion criteria, not in the prior 6 months) and 35/
164 (21%) did not (i.e., had a care gap). Those without a prior eye exam
were more likely to be Black (p = <0.001), Hispanic (p =0.02), have
household income of less than $50,000 (p =0.005), Medicaid insur-
ance (p <0.001), parental education of up to high school completion
(p = 0.02), and a shorter duration of diabetes (p < 0.001) in univariate
analysis. (Table 2) When controlling for these factors in multivariate
analysis, only the duration of diabetes remained significantly asso-
ciated with prior eye exam completion (OR 1.36; 95% CI: 1.0–1.8,
p =0.04), suggesting that racial, ethnic, andSESdisparitiesweredriven
by differences in duration of diabetes in the respective populations.
There were differences in diabetes type, race, parental education, and
diabetes management characteristics between the two recruitment
sites, but glycemic control (measured by hemoglobin A1c) was similar
across sites. ([Supplementary Note 8 and Table S1]).

Primary outcome
As shown in Table 3, in the intervention arm, 81/81 (100%) participants
completed their diabetic eye exams, so the primary care gap closure
ratewas 100% (95%CI: 96%, 100%).All imageswerediagnostic for theAI
system (output was either “DED present” or “DED absent”). In the
control arm, 18/82 completed the diabetic eye exam within 6 months,
so the primary care gap closure rate was 22% (95%CI: 14%, 32%).

The difference of 78% (95% CI: 69%, 87%) in gap closure
between control and intervention groups was statistically sig-
nificant (p < 0.001). There were no statistically significant differ-
ences in care-gap closure rates by race, ethnicity, SES, or
education. There were 3 participants in the control arm who did
not return for clinic visits, were not able to be reached by phone or
EHR-based messaging, and thus their eye exams were considered
incomplete. Sensitivity analysis was performed excluding these 3
participants and also assuming they completed their eye exams,
and the results were unchanged. [Supplementary Note 8; Tables S2
and S3].

Secondary outcomes
In the intervention arm, 25 participants received a “DED present”
output, and received the referral intervention; of these, 16/25 com-
pleted an ECP visit within 6months, so the follow-through completion
rate was 64% (95%CI: 43%, 81%). In the control arm, 18 participants
visited the ECP, for a follow-through completion rate of 22% (95%CI:
14%, 32%) and none had DED. The difference of 42% (95%CI: 21%, 63%)
in follow-through completion rates between control and intervention

Table 1 | ACCESS patient characteristics by randomiza-
tion group

Factor All participants Standard
of care

Autonomous AI

N 164 83 81

Age, mean (SD) 15.2 (2.8) 15.1 (2.8) 15.3 (2.8)

Race

Asian 10 (6.1%) 4 (4.8%) 6 (7.4%)

NH Black 58 (35.4%) 32 (38.6%) 26 (32.1%)

Hispanic 10 (6.1%) 5 (6.0%) 5 (6.2%)

NH White 86 (52.4%) 42 (50.6%) 44 (54.3%)

Male sex 68 (41.5%) 36 (43.4%) 32 (39.5%)

Household income

Less than $25,000 25 (15.2%) 14 (16.9%) 11 (13.6%)

$25,000–$49,999 31 (18.9%) 16 (19.3%) 15 (18.5%)

$50,000–$74,999 28 (17.1%) 15 (18.1%) 13 (16.0%)

$75,000–$99,999 16 (9.8%) 5 (6.0%) 11 (13.6%)

More than $100,000 48 (29.3%) 27 (32.5%) 21 (25.9%)

Choose not to answer/
refused

16 (9.8%) 6 (7.2%) 10 (12.3%)

Highest education

Less than 12 years of high
school

5 (3.0%) 3 (3.6%) 2 (2.5%)

High school/GED 57 (34.8%) 27 (32.5%) 30 (37.0%)

Associate’s degree 19 (11.6%) 10 (12.0%) 9 (11.1%)

Undergraduate degree 25 (15.2%) 13 (15.7%) 12 (14.8%)

Post-graduate degree 51 (31.1%) 27 (32.5%) 24 (29.6%)

Unknown 7 (4.3%) 3 (3.6%) 4 (4.9%)

Medicaid insurance 77 (47.0%) 40 (48.2%) 37 (45.7%)

Type 1 diabetes 119 (72.6%) 60 (72.3%) 59 (72.8%)

Type 2 diabetes 45 (27.4%) 23 (27.7%) 22 (27.2%)

Duration of diabetes
(years), median (IQR)

5.8 (3.2, 8.7) 6.2 (2.9, 9.4) 5.3 (3.4, 7.9)

HbA1c value at study visit
(%), mean (SD)

8.6 (2.3) 8.5 (2.2) 8.7 (2.3)

Continuous glucose moni-
tor use

125 (76.2%) 63 (75.9%) 62 (76.5%)

Has ever had a prior dia-
betic eye exam

129 (78.7%) 63 (75.9%) 66 (81.5%)

Table 2 | Univariate analysis of participant characteristics
based on prior diabetic eye exam completion

Baseline prior eye exam N = 164

Variable No previous DED
screening

Previous DED
screening

p-valuea

N 35 129

Age, mean (SD) 14.1 (2.4) 15.5 (2.8) 0.005

Race

Asian 2 (5.7%) 8 (6.2%) 0.91

NH Black 22 (62.9%) 36 (27.9%) <0.001

Hispanic 5 (14.3%) 5 (3.9%) 0.022

NH White 6 (17.1%) 80 (62.0%) <0.001

Male sex 13 (37.1%) 55 (42.6%) 0.56

Household income 0.005

<$50,000 per year 20 (57.1%) 36 (27.9%)

>=$50,000 per year 13 (37.1%) 79 (61.2%)

Unknown 2 (5.7%) 14 (10.9%)

Highest education 0.020

High school or less 16 (45.7%) 46 (35.7%)

More than high school 15 (42.9%) 80 (62.0%)

Unknown 4 (11.4%) 3 (2.3%)

Medicaid insurance 29 (82.9%) 48 (37.2%) <0.001

Type 1 Diabetes 13 (37.1%) 106 (82.2%) <0.001

Type 2 Diabetes 22 (62.9%) 23 (17.8%) <0.001

Duration of diabetes
(years), median (IQR)

1.4 (0.6, 4.4) 7.3 (4.2, 9.2) <0.001

HbA1c value at this visit,
mean (SD)

8.2 (2.9) 8.7 (2.1) 0.25

Continuous glucose
monitor use

15 (42.9%) 110 (85.3%) <0.001

ap-values were calculated using Chi-Squared tests for categorical variables, Wilcoxon rank-sum
test for durationof diabetes, andStudent’s t-tests for all other continuous variables. All statistical
tests are two-sided.
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groups was significant (p < 0.001). Further analysis comparing the 16
participants who completed follow-up after “DED present” to those
that did not, showed that those who did not complete follow-up were
more likely to beNHBlack and haveMedicaid insurance, but this was a
small subgroup and not statistically significant.

A retina specialist review of the AI images (a level 4 reference
standard) demonstrated an estimated sensitivity of 100% and specifi-
city of 78.9%33.

Participants reported a high level of satisfactionwith autonomous
AI, 92.5% were satisfied with the length of time it took to complete the
exam, and 96% were satisfied with the experience. Of those who were
in the intervention arm, 85% reported they would choose to do the AI-
based eye exam in the future, and only 57%, an ECP-based diabetic eye
exam (Table 4).

There were no adverse events during the study visits or fundus
photography.

Discussion
The results of the ACCESS trial confirmed our hypothesis that autono-
mous AI increases diabetic eye exam completion rates, and closes this
care gap in a racially and ethnically diverse population of youth with
diabetes, compared to standard of care. This result held true despite
augmenting the standard of care referral in the control arm with
deliberate education for the patient and caregiver regarding the
importance of diabetic eye exams. Additionally, the results indicate that
autonomous AI improves the likelihoodof receiving follow-through eye
care for those patients identified as having DED at the point-of-care
compared to control. Care gap closure rates for the diabetic eye exam
are an important component of value-based care through MIPS and
HEDIS quality metrics, and the results show that autonomous AI can
contribute to meeting these historically hard-to-achieve metrics, espe-
cially in racial/ethnic minority and under-resourced youth34,35. To our
knowledge and based on a PubMed search [Supplementary Note 4], the
present study is the first RCT to evaluate the role of autonomous AI in
closing a guideline-based care gap.

Autonomous AI allows real-time, point-of-care diagnosis, whether
in the primary care, endocrine, or other outpatient setting, can be
integrated into the diabetes care workflow, and was included in the
ADA standards of care for DED screening in adults as of 202036. While
teleretinal screening programs have improved care-gap closure rates
over the last two decades19,20,22,23,37, care-gap closure in adults nation-
wide remains at only 15.3% in 20187, despite all these efforts. In
designing this randomized control trial, we considered the alternative
comparator of teleretinal screening but chose the ECP exam as it is
considered the standard of care, and both ECP and the AI system have
been validated against patient outcome (as required by FDA)33 and
prognostic standards (Early Treatment of Diabetic Retinopathy Study
(ETDRS and DRCR)), while teleretinal networks have not been vali-
dated against prognostic standards. Additionally, studies have shown
large variability between telemedicine reading networks38–40, and the
sustainability and scalability of telemedicine have been limited. The
advantages of autonomous AI are its point-of-care procedure,
immediate results, and its scalability as it does not require additional
clinical experts, ophthalmic oversight, or highly skilled operators.
However, future studies should compare autonomous AI to teleretinal
screening programs.

Compared to adults, the prevalence of DED is low in children.
Although screening for DED is recommended, the reported DED care-
gap closure in pediatrics ranges from 35-70%10, and at the start of
ACCESS, 79% of participants reported an eye exam at some time in the
past. However, our previous studies demonstrated substantial racial/
ethnic disparity, with non-white youth significantly less likely to have
had a prior diabetic eye exam yet more likely to have DED17. The
baseline data in this study confirmed these racial, ethnic, and socio-
economic gap closure disparities, similar to other studies demon-
strating the wide range of disparities associated with social
determinants of health in diabetic retinopathy screening9,41. However,
the 100% care-gap closure rate by autonomous AI in this racially and
ethnically diverse pediatric population could have the potential to
reduce health disparities for vision loss from diabetes, furthering
health equity, and deserves further study42,43.

The high satisfaction and acceptance rates for autonomous AI in
ACCESS, suggest that this racially and socioeconomically diverse
patient population is comfortable with a “computer” or autonomous
AI diagnosing their disease. Importantly, the use of AI did not intro-
duce health disparities into care-gap closure.

While this study is an important step towards increased DED
screening in youth, to prevent vision loss, patients identified with DED
need follow-through care to manage and treat the disease44. Follow-
through completion rates remain as low as 5-30% after tele-
ophthalmology screening with referable DED21,45,46, and educational

Table 3 | ACCESS primary outcome—completion of the dia-
betic eye exam (DED) (n = 163a)

AI group n = 81 Control
Group n = 82

Completed DED
screening

Completed DED
screening

p-valueb

N 81 (100%) 18 (22%) <0.0001

Age, mean (SD) 15.3 (2.8) 15.9 (2.9) 0.20

Race 0.66

Asian 6 (7.4%) 1 (5.6%)

NH Black 26 (32.1%) 10 (55.6%)

Hispanic 5 (6.2%) 1 (5.6%)

NH White 44 (54.3%) 6 (33.3%)

Male sex 32 (39.5%) 6 (33.3%) 0.31

Household income 0.78

$25,000 or less 11 (13.6%) 5 (27.8%)

$25,000–$49,999 15 (18.5%) 2 (11.1%)

$50,000–$74,999 13 (16.0%) 3 (16.7%)

$75,000–$99,999 11 (13.6%) 1 (5.6%)

More than $100,000 21 (25.9%) 6 (33.3%)

Choose not to answer/
refused

10 (12.3%) 1 (5.6%)

Highest education 0.91

Less than 12 years of high
school

2 (2.5%) 1 (5.6%)

High school/GED 30 (37.0%) 7 (38.9%)

Associate’s degree 9 (11.1%) 1 (5.6%)

Undergraduate degree 12 (14.8%) 3 (16.7%)

Post-graduate degree 24 (29.6%) 5 (27.8%)

Unknown 4 (4.9%) 1 (5.6%)

Medicaid insurance 37 (45.7%) 8 (44.4%) 0.68

Type 1 diabetes 59 (72.8%) 12 (66.7%) 0.57

Type 2 diabetes 22 (27.2%) 6 (33.3%) 0.57

Duration of diabetes
(years), median (IQR)

5.3 (3.4, 7.9) 5.8 (2.4, 9.9) 0.91

HbA1c value at study visit,
mean (SD)

8.7 (2.3) 8.2 (2.1) 0.54

Continuous glucose
monitor use

62 (76.5%) 13 (72.2%) 0.70

aExcludes one participant who was assigned to the control arm but inadvertently enrolled in
another eye screening study
bp-values were calculated using Chi-Squared tests for categorical variables, Wilcoxon rank-sum
test for durationof diabetes, andStudent’s t-tests for all other continuous variables. All statistical
tests are two-sided.
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interventions have been shown to help in some cases47. In this study,
referral augmented with targeted education was insufficient, as shown
by the 22% follow-through at 6months in the control arm. However, in
the intervention arm, follow-throughwas significantly higher at 64%, as
participants with “DED present” results were immediately informed of
the diagnosis and provided education. Other studies have also
demonstrated that point-of-care diagnosis and immediate results may
affect patient behavior in seeking follow-through care48,49. An RCT of
assistive AI that provided point-of-care results demonstrated a 30%
increase in follow-through compared to telemedicine screening with
deferred results in 3–5 days49. Another study reported improvement in
follow-up rates from 35% to 72% with point-of-care diagnosis of refer-
able DED48.

Strengths of the present ACCESS study are its rigorous hypoth-
esis-testing, pre-registered RCT design, as well as the scripted clinical
education given to participants above the standard of care in the
control arm, to maximize the likelihood of care gap closure in the
control arm. The study sample was an adequate representation of
youth with diabetes in the U.S. with respect to racial, ethnic, SES,
education, and sex distribution, increasing the external validity of our
results. Additionally, while this particular autonomous AI has been
shown not to have racial bias, it is important to consider pigmentation
of the retina that could introduce bias in an AI system for the diabetic
eye exam43.

Limitations of the present study are that the autonomous AI used
is not FDA-cleared for use in ages 21 and under, thoughwe showed in a

previous study that the risk of false negatives is low30. Some of the
participants in this study were familiar with autonomous AI diabetic
eye exams from our prior study andmay have beenmore accepting of
participation in the current study30. Additionally, although pharma-
cologic dilation is not necessary for the pediatric population to obtain
sufficient fundus imaging, this may not be applicable to adults where
real-world studies have demonstrated higher rates of insufficient
images without pharmacologic dilation21,50.

In summary, the ACCESS trial shows that autonomous AI diabetic
eye exams close more care gaps in youth with diabetes than the
standard of care, and the availability of point-of-care AI diabetic eye
exams may mitigate known screening disparities in racial/ethnic min-
ority and under-resourced youth. Furthermore, sharing a diagnosis of
referable disease at the point-of-care was associated with a higher rate
of follow-through with eye care providers for management and treat-
ment, potentially improving visual outcomes in this vulnerable popu-
lation and advancing health equity in youth with diabetes.

Methods
Trial design
ACCESS is a hypothesis-driven, pre-registered, prospective parallel,
RCT with a 1:1 allocation ratio that was conducted at the Johns
Hopkins Pediatric Diabetes Center at two sites (Johns Hopkins
Hospital and Mount Washington Pediatric Hospital) in Baltimore,
Maryland, which serves a racially and ethnically diverse population.
Participants were enrolled fromNovember 24, 2021, through June 6,
2022, and follow-up was completed by Dec 6, 2022. The CONSORT
requirements for RCT were followed51. ACCESS was pre-registered
on ClinicalTrials.gov (NCT05131451). The study was approved by the
Johns Hopkins IRB, the tenets of the Declaration of Helsinki were
followed, and an independent Data Safety and Monitoring Board
was established.

Participants
Youth with T1D (11-21 years) or T2D (8-21 years) were eligible for
inclusion if they met the criteria for DED screening per American
Diabetes Association (ADA) 2021 guidelines16, had no known DED, and
had not had a diabetic eye examwithin the last 6months. Patients with
maturity-onset diabetes of the young, cystic-fibrosis-related diabetes,
known DED, or other pre-existing eye conditions (retinal disease, cat-
aracts) were excluded from this study.

Interventions
Potential study participants were approached in the diabetes clinic
to confirm eligibility and then recruited by a study coordinator with
written informed consent. Consented participants were rando-
mized to either the control arm or the intervention arm. At the time
of enrollment, the study coordinator collected baseline data, as well
as 3 phone numbers from the participant in order to facilitate
follow-up.

Control arm: standard of care augmented with an educational
intervention. In the control arm, participants were referred to an eye
care provider (ECP: optometrist or ophthalmologist) through a delib-
erate educational process by the study coordinator, in the form of a
scripted educational intervention, including a paper handout guide on
how to get a diabetic eye exam [Supplementary Note 1]. The goal of
this intervention was to minimize the effect of the most commonly
reported barrier, i.e., communication and confusion around the
necessity of thediabetic eye exam17. Diabetic eye examcompletionwas
achieved with ECP eye exam documentation. If the participant could
not be reached to determine completion (despite calls/voicemails to
all 3 phone numbers and EHR-based secure messaging) or if the exam
had not been completed by 6 months, it was considered not
completed.

Table 4 | Survey results

Survey question AI
(n = 80a)

Control with com-
pleted DED screen-
ing (n = 15a)

p-valueb

My eyes are healthy (agree or
strongly agree)

82.5% 73.3% 0.47

I know diabetes could have an
impact on my eyesight (agree or
strongly agree)

91.1% 93.3% 0.78

Having a diabetic eye exam reg-
ularly is important (agree or
strongly agree)

92.5% 100.0% 0.59

How satisfied were you with the
length of time it took to complete
the diabetic eye exam? (very satis-
fied or satisfied)

92.5% 100.0% 0.59

How satisfied were you with the
length of time it took to receive the
results of your diabetic eye exam?
(very satisfied or satisfied)

95.0% 93.3% 0.59

How satisfied were you that you
received an easy to understand
explanation of procedures before
the eye exam? (very satisfied or
satisfied)

96.2% 93.3% 0.51

How satisfied were you with the
overall experience of having a dia-
betic eye exam done in the dia-
betes clinic? (very satisfied or
satisfied)

96.2% n/a n/a

For your next diabetic eye exam,
how likely are you to choose a
dilated eye exam at an eye care
provider? (very likely or likely)

57.0% 80.0% 0.15

For your next diabetic eye exam,
how likely are you to choose a
point-of-care diabetic retinopathy
screening exam using artificial
intelligence? (very likely or likely)

84.8% 93.3% 0.69

aOne AI patient did not complete the survey; One AI patient completed only the first 5/9
questions; 4 SOC patients did not complete the survey.
bFisher’s exact test. All statistical tests are two-sided.
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Intervention arm: autonomous AI. In the intervention arm partici-
pants underwent the 5–10min autonomous AI system diabetic eye
exam without pharmacologic dilation24. The autonomous AI system
(IDx-DR, Digital Diagnostics, Coralville, Iowa, USA) for diagnosing
diabetic eye disease (DED) was US FDA De Novo authorized (“FDA
approval”) in 2018 for adults with diabetes15. The system diagnoses
specific levels of diabetic retinopathy and diabetic macular edema
(Early Treatment of Diabetic Retinopathy Study level 35 and higher,
clinically significant macular edema, and or center-involved macular
edema)32,33, referred to as “referable DED”34, that requires further
management or treatment by anophthalmologistor retina specialist. If
the ETDRS level is 20 or lower and no macular edema is present,
appropriate management is to retest in 12 months35. With this auton-
omous AI system, a medical diagnosis is made independently by the
system without human oversight.

In this study, the participant’s eyes were not pharmacologically
dilated, as pilot studies found that pharmacologic dilation is unne-
cessary in youth30. The autonomous AI system guided the operator to
acquire two color fundus images determined to be of adequate quality
using an imagequality algorithm36, one each centeredon the fovea and
the optic nerve and guided the operator to retake any images of
insufficient quality. This process requires approximately 10min, after
which the autonomous AI system reports one of the following within
60 s: “DEDpresent, refer to a specialist”, “DEDnot present, test again in
12 months”, or “insufficient image quality”. The latter response occurs
when the operator is unable to obtain images of adequate quality after
3 attempts.

If the autonomous AI output was “DED absent,” participants were
informed the diabetic eye exam was normal, while if “DED present,”
(ETDRS level 35 or higher, and/or clinically significant, and or/center-
involved macular edema) they received a deliberate educational pro-
cess by the study coordinator in the form of a scripted educational
intervention for follow-up eye care [Supplementary Note 2]. In either
case, the diabetic eye exam was considered complete. If the AI output
was “insufficient quality” the participant was referred for eye care.

The IDx-DR autonomous AI is not labeled for youth <22 years, as
currently no autonomous AI for DED has been cleared for a pediatric
population. To ensure safety and that no cases of disease would be
missed, all images were also overread by a board-certified retina
specialist.

Follow-up procedures. Participants who completed the diabetic eye
exam (intervention arm: after autonomous AI exam; control arm: after
documented completion of eye exam) were asked to fill out a survey
on acceptability and satisfaction with the screening method. [Supple-
mentary Note 3] Participants received a $25 gift card and parking pass
for participation in the study.

Randomization and masking
To prevent selection bias and ensure sample size balance between the
groups and sites, stratified randomization (by site) was used, and
participants were randomized in permutated block schedules of 4 and
6. Within each block, participants were randomized with a 1:1 alloca-
tion ratio to the control group and intervention group. This rando-
mization sequence was created by a statistician unaffiliated with the
study to ensure masking to the randomization scheme and was
implemented by REDCAP’s randomization software based on the
participant’s location52,53. After consent, the research coordinator
entered the participant location and the randomization allocation was
generated. All parties were masked to the allocation until the partici-
pant was randomized in the study, and then all parties were unmasked.

Outcomes
In order to test the primary hypothesis, the pre-specified primary
outcomewas defined as the proportion of participantswho completed

a documented diabetic eye exam in each arm (“primary care gap clo-
sure rate”). In the control arm, this is the proportion of patients who
completed a documented diabetic eye exam with an ECP within
6 months of randomization; in the intervention arm, this is the pro-
portionof participants who completed the autonomous AI examat the
study visit.

The pre-specified secondary outcome (“follow-through comple-
tion rate”) was defined as the proportion of participants who com-
pleted follow-through at the ECP in each arm. In the control arm, this
was the proportion who completed the diabetic eye exam at ECP after
referral, and in the intervention arm, the proportion who completed
follow-up at the ECP after a “DED-present.” This proportion assumes
that control-arm patients who arrive at ECP for screening remain at
ECP for management or treatment when found to have DED. Both
outcomes were stratified by race, ethnicity, SES, and education level,
using univariate andmultivariate analysis to determine any differential
effect on these categories. There were no changes in trial design or
outcome after trial commencement.

Data collection. Data were collected from the electronic health
record, specifically age, date of birth, sex at birth, race, ethnicity, type
of diabetes, date of diabetes diagnosis, medication use (insulin, met-
formin, GLP1 agonist, etc.), form of insulin administration, use of
continuous glucose monitor (CGM) and CGM data, blood pressure,
height, weight, body mass index (BMI), presence of other diabetes-
related complications (hyperlipidemia, hypertension, micro-
albuminuria), abnormal thyroid function, past four hemoglobin A1C
readings (if available), diabetic eye exam history, medical history,
family medical history, health insurance, and zip code. Parental edu-
cation status and household incomewere self-reported by participants
using a paper/pencil form.

Sample size calculation
We assumed that a 20% difference in DED screening completion rates
(care gap closure) would be clinically relevant. Based on our prior
study30, where baseline screening rates before AI were 49%, we
assumed that with the educational intervention, screening rates for
usual care would be closer to 60% in this study, and demonstrating a
difference of 20% would be clinically relevant for AI screening. We
calculated that a sample size of 164 (n = 82, n = 82 AI) would provide
80% power with a 2-tailed type-1 error of 0.05. Since randomization
and study visits occurred at the same time there was little risk of
attrition and thus the sample size was not expanded to account for
attrition.

Data governance
Although this was a low-risk clinical trial, an independent Data Safety
andMonitoring Boardwas established to protect the interests of study
participants and to preserve the integrity and credibility of the study
data, based on pre-specified aims, thereby reducing any concerns that
interim data could influence or bias the study results and interpreta-
tion. At the time of the DSMB meeting on 9/16/2022, all participants
had already been enrolled in the trial, and the DSMB determined that
there were no safety concerns and the study should continue to
completion.

Statistical analysis. The primary outcome of care-gap closure
between the randomization groups, and the secondary outcome of
follow-through completion rate between the randomization groups
were assessed by Pearson’s chi-squared tests. Characteristics of the
completed vs non-completed participants in each arm were assessed
by Pearson’s chi-squared tests, Wilcoxon rank-sum tests, and two
sample t-tests, depending on the nature and distribution of each
characteristic. A mixed multilevel multivariable logistic regression
analysis, using the site as a nesting level to account for the clustering of
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observations, was performed in order to examine the relationship
between demographic characteristics and the odds of having a pre-
vious diabetic eye examamongst the entire study cohort, adjusting for
known covariates associated with DED and site. All analyses were
performed using Stata 15.1 (StataCorp, College Station, TX).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from this study will be shared with bona fide researchers sub-
mitting a research proposal approved by the primary investigator.
Data will be shared in a de-identified/anonymized format. The con-
trolled access is implemented to safeguard the confidentiality and
sensitive nature of the data. For access requests, please contact Risa
Wolf at rwolf@jhu.edu. Access to the data will be granted upon review
of the request, and researchers can expect a response within 90 days
from the date of submission. Access to the data is contingent upon the
completion of a data use agreement (DUA). The DUA outlines the
terms and conditions for data usage, including restrictions on data
sharing, publication, and any other pertinent considerations.
Researchers granted access will be required to abide by the terms
specified in the DUA to ensure the responsible and ethical use of
the data.

Code availability
The autonomous AI system (LumineticsCore, formally IDx-DR) used in
this RCT is a deterministic (locked) medical device regulated and
supervised by the US FDA under its De Novo regulation, and is com-
mercially available from the manufacturer Digital Diagnostics or its
distributors. The diagnostic algorithms that form the core of the
medical device have been described in earlier publications. This sys-
tem integrates many components, each of which contributes to its
performance, safety, and usability by clinic staff without ML expertise
in the real-world, as validated in the FDA pivotal trial.
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