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Tunable quantum interferometer for
correlated moiré electrons

Shuichi Iwakiri 1 , Alexandra Mestre-Torà 1 , Elías Portolés 1,
Marieke Visscher1, Marta Perego1, Giulia Zheng 1, Takashi Taniguchi 2,
Kenji Watanabe 3, Manfred Sigrist 4, Thomas Ihn 1,5 & Klaus Ensslin 1,5

Magic-angle twisted bilayer graphene can host a variety of gate-tunable
correlated states – including superconducting and correlated insulator
states. Recently, junction-based superconducting moiré devices have been
introduced, enabling the study of the charge, spin and orbital nature of
superconductivity, as well as the coherence of moiré electrons in magic-angle
twisted bilayer graphene. Complementary fundamental coherence effects—in
particular, the Little–Parks effect in a superconducting ring and the
Aharonov–Bohm effect in a normally conducting ring – have not yet been
reported in moiré devices. Here, we observe both phenomena in a single
gate-defined ring device, where we can embed a superconducting or normally
conducting ring in a correlated or band insulator. The Little–Parks effect is
seen in the superconducting phase diagram as a function of density and
magnetic field, confirming the effective charge of 2e. We also find that the
coherence length of conductingmoiré electrons exceeds severalmicrons at 50
mK. In addition, we identify a regime characterized by h/e-periodic oscillations
but with superconductor-like nonlinear transport.

Magic-angle twisted bilayer graphene (MATBG) with its moiré flat
band1,2 constitutes a condensed-matter system to realize a wide variety
of correlated states, such as superconducting and correlated insulator
states, that are tunable by gating3–9. A class of gate-defined nanode-
vices, including Josephson junctions10,11 and SQUIDs12, have been
recently realized in MATBG. These structures have provided excellent
platforms for controlling mesoscopic superconductivity and char-
acterizing MATBG. Extending this approach to a doubly-connected
geometry without any junction, namely a ring, promises unique
microscopic information about the material and the device.

The physical properties of a ring threaded by a magnetic field are
in general periodic in flux quanta13,14Φ0 =

h
e*, with e* being the charge of

the carrier. In a superconducting ring (e* = 2e), h/2e-periodic oscilla-
tions of critical temperature and critical current appear. These oscil-
lations are known as the Little–Parks effect and were the first

experimental evidence for the 2e charge pairing in conventional
superconductors15,16. In fact, the Little–Parks effect can be used to
determine the charge of the superconducting carriers17,18, com-
plementing the Josephson junction and SQUID experiments10,12.
Moreover, properties of unconventional superconductors can be
revealed by anomalies of the Little–Parks effect, such as a phase
shift19–24 or a change in periodicity24–29, and thereby help to understand
the underlying superconducting symmetry.

By contrast, a normally conducting ring (e* = e) shows h/e-peri-
odic oscillations of resistance, the Aharonov–Bohmeffect, andworks
as a direct probe to quantify the phase coherence of electrons. Given
the low Fermi velocity and the large effective mass in MATBG, a
possible non-Fermi liquid nature of its flat band electrons4,30, and
intrinsic disorders introduced by twist-angle inhomogeneity31,
quantifying the phase coherence length is key to understanding the
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dynamics ofmoiré electrons. In addition, the phase coherence length
enables the estimation of the penetration depth of a super-
conducting wave function into the normally conducting state
(proximity effect)32,33, which plays an important role in gate-defined
superconducting devices. However, the exploration of these funda-
mental quantum-interference effects has been hampered by the
lack of a suitable device architecture and the sensitivity of the
moiré superlattice to disorder31, which poses a challenge to the
conventional approach of fabricating a ring by physical/chemical
etching.

Here, we report the observation of Little–Parks and the
Aharonov–Bohm effects in MATBG. The device architecture allows us
to define a ring consisting of a loop that can be tuned to be super-
conducting or normally conducting, surrounded by a correlated or
band insulator. We confirm 2e pairing via the Little–Parks effect, and
show that the phase coherence length of moiré electrons surpasses
several microns at 50 mK, evidenced by h/e-periodic Aharonov–Bohm
oscillations. We also discover an intriguing regime in which h/e-peri-
odic oscillations appear alongside superconductor-like transport.
These results highlight the promise of the quantum interferometer in
MATBG for studying interference phenomena of exotic quantum
states of 2D materials.

Results
Highly tunable quantum interference
We develop the gate-defined ring architecture shown in Fig. 1a. We
base the design on the proof-of-principle device reported in ref. 34
using Bernal bilayer graphene. The MATBG is encapsulated in hex-
agonal boron nitride (hBN) and is contacted by four electrodes. The
sample is dual-gated with a graphite back gate and a metallic ring-
shaped top gate (ring gate). We operate the ring by first tuning the
back gate voltage Vbg, which affects the entire MATBG area and
induces a global density ng. Then we tune the density under the ring
gate, nr, via the voltage Vrg. The ring has a lithographic inner radius of
rin = 600 nm and outer radius of rout = 1000nm. Through the electro-
des, the sample is biased with a current I, and the voltage drop V is
measured in a four-terminal configuration. Unless stated otherwise,
the measurements are performed in a 3He–4He dilution refrigerator at
a temperature of 50mK.

The resistance Rof theMATBG (Fig. 1b) as a function of ng withVrg

set to zero shows pronounced peaks at charge neutrality, and in the
correlated insulator (CI) and band insulator (BI) regimes on the hole
side (ng < 0). From the density at the BI peak, we estimate an average
twist angle of 1.1∘. When tuning the density beyond the correlated
insulator, we observe superconductivity (SC) through a resistance

Fig. 1 | Highly tunable quantum interference. a Device and measurement sche-
matics. The graphite–hBN–MATBG–hBN heterostructure is contacted by four
electrodes (yellow). The ring gate (purple) is formed on top of an aluminium oxide
layer (green). The lithographic inner (rin = 600nm) and outer (rout = 1000nm)
radius of the ring gate are indicated. DC-voltage sources are connected to the ring
gate and back gate. A four-terminal measurement is performed by applying a
constant current and measuring the voltage drop across the ring. b Resistance of
the MATBG as a function of carrier density ng at ring (top) gate voltage Vrg = 0 V at
50 mK. The regions with colour background correspond to the density ranges of
the states introduced in (c). The inset shows the resistance for both the electron
(grey background) and hole side (white background). A background resistance of
130Ω is subtracted from the resistance trace. c Band structure schematics of

MATBG. The colour-coded labels indicate the correlated insulator (CI), super-
conducting (SC), normally conducting in the flat band (Nflat), normally conducting
in the dispersive band (Ndisp) and band insulator (BI) states, respectively.
d Overview of quantum-interference effects. A ring-shaped conducting path is
definedby surrounding the ringwith aCI (left panel, blue-shaded)orBI (right panel,
green-shaded) state. For both insulating states outside the ring, the magneto-
resistance oscillations and their FFT spectrum are shown for the three conducting
states: SC (top row), Nflat (middle row) and Ndisp (bottom row). The triangle in the
spectrummarks the peak frequency. The insets show the effective radius of the ring
for both h/2e and h/e oscillations (solid and dashed circles, respectively), on top of
the lithographic area of the ring gate (purple).
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drop. We also access two normally conducting regimes: one inside the
flat band (Nflat) and the other in the dispersive band (Ndisp). Figure 1c
summarizes the relevant quantum states that form in the device. Fur-
ther details of the experimental setup are given in theMethods section.

In order to define a conducting path, we tune the ring-shaped
region into the SC, Nflat, or Ndisp regimes. This conducting path is then
surrounded by either CI or BI states to confine electrons. As wewill see
below, the insulating state does not influence the observed inter-
ference pattern but has an effect on the quantum state distribution
across the structure (see Supplementary Fig. 8). Figure 1d shows the
resistance (R) oscillations in perpendicular magnetic field (B) for the
six regimes at zero bias current and a temperature of 150mK, together
with their fast Fourier transform (FFT) spectra. When calculating the
FFT spectrum, we subtract a smooth background extracted with the
Savitzky–Golay filter (smoothing window of 10 mT and polynomial
order 2). In this process, long-period signal in magneto-resistance,
such as the universal conductance fluctuations, is filtered out. We
convert the peakof the spectrum into an area assuming either h/e orh/
2e-periodicity as the relevant flux quantum and then compare the
result with the lithographic radius of the ring (see inset circles
in Fig. 1d).

In the case of a superconducting ring (top row in Fig. 1d,
nr = − 1.89 × 1012 cm−2), the frequency peak appears at 0.92/mT for (SC,
CI) and at 1.20/mT for (SC, BI), respectively. Hereafter, we denote the
state inside and outside the ring as (inside, outside). Assuming h/2e-
periodicity, the observed frequency peaks correspond to an effective
radius reff of 767 nm and 855nm, respectively. These values are
comparable to the center-line radius of the ring gate
rmid =

rin + rout
2 = 800nm. In contrast, the reff when assuming

h/e-periodicity does not match the lithographic dimension of the ring
gate (reff > 1000 nm= rout). In these regimes, we further observe critical
current and critical density oscillations, as we discuss in Fig. 2. Based
on our findings, we attribute these oscillations to the h/2e-periodic
Little–Parks effect, confirming that the charge of the superconducting
carrier is 2e.

When the ring is tuned into the dispersive band (bottom row in
Fig. 1d, nr = − 3.58 × 1012 cm−2), h/e-periodic oscillations appear with a
spectrumcovering a significant range in 1/B. The peak frequency of the
oscillations is 0.621/mT for both (Ndisp, CI) and (Ndisp, BI). This fre-
quency is approximately half of those observed in the super-
conducting case, suggesting anh/e-periodicity. The effective radii both
assuming h/e- (reff = 873 nm) and h/2e-periodicity (reff = 617 nm) fit
within the ring dimensions. However, the oscillation amplitude decays
exponentially in temperature and strives at highermagneticfields than
the Little–Parks oscillations (see Supplementary Figure 2). The ampli-
tude decay in temperature is characteristic of the Aharonov–Bohm
oscillations due to the smearing of the Fermi function and the reduc-
tion of the phase coherence length35. We therefore attribute the
oscillations to the h/e-periodic Aharonov–Bohm effect. The measure-
ment of the temperature dependence also allows us to estimate the
phase coherence length Lφ of electrons in the dispersive band (see
Supplementary Fig. 2). At 50 mK, the coherence length is ~ 12.3 ± 0.3
μm in (Ndisp, CI) and ~18.7 ± 1.0 μm in (Ndisp, BI). These values exceed
the perimeter of the ring (2πreff≃ 4.80μm). Now, we compare the
phase coherence length of bilayer graphene in the literature. The
coherence length Lϕ of the ring of exfoliated Bernal (non-twisted)
bilayer graphene encapsulated with hBN is 1.5μm at 36 mK for the
etching-defined ring36 and4.4μmat 300mK for the gate-defined ring34

Fig. 2 | TunableLittle–Parks oscillations. a Phase diagramof the device in the (SC,
BI) configuration. The SC, Nflat and BI states are represented. The square indicates
the (T, n) domain for which we sketch the schematics in (b). b Schematics of the
superconducting dome in the phase diagram of MATBG when the flux threading
the ring isΦ = nΦ0 (denotedasΦ0) andΦ = n

2Φ0 (denoted asΦ0/2),whereΦ0 is the
superconducting flux quantum. Tc(Φ0) and Tc(Φ0/2) mark the boundary between
the Nflat (orange) and the SC dome (in pink for Φ0 and purple for Φ0/2). Upon
applying a magnetic field, the phase diagram oscillates between Tc(Φ0) and Tc(Φ0/

2). c Voltage drop V across the ring as a function of nr and B, at I = 5.0 nA. The white
dashed curve (a guide to the eye) marks the phase boundary nc(B) between the SC
and Nflat states. d dV

dI as function of ring density nr and DC current IDCwhen defining
the ring in the BI state with ng = − 2.94 × 1012 cm−2. eMagneto-resistance oscillation
of the critical current taken at the densities indicated indwith a blackcircle, square,
and star, respectively. f Magneto-resistance oscillations taken at IDC = 0 nA and at
the same densities as in (e).
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(maximum values reported in each paper). In our experiment, Lϕ of
moiré electrons in MATBG exceeds 10μm at 50 mK. Considering that
the amplitude of the Aharonov–Bohm oscillations of these three
reports is all proportional to 1/T, one can estimate (or normalize) the
coherence length to that of 50 mK. Then, we obtain Lϕ = 2.1, 26.4, and
10 μm, for the etched (Bernal bilayer), gate-defined (Bernal bilayer),
and gate-defined (MATBG) ring, respectively.

This result demonstrates that the phase coherence of moiré
electrons in the dispersive band is well preserved despite several
sources of disorder such as twist-angle inhomogeneity and strain
distribution.

Furthermore, there is a striking contrast between the oscillation in
the normally conducting flat band regimes depending on the sur-
rounding insulators (middle row in Fig. 1d, nr = − 3.10 × 1012 cm−2). In
the (Nflat, CI) regime, we observe an oscillation with a frequency of
0.630/mT, even lower than in the SC and Ndisp cases. The effective
radius assuming h/2e periodicity is reff = 432 nm, even smaller than rin,
while reff = 605 nm for h/e periodicity matches rin. Though the geo-
metric argument points towards h/e periodicity, this regime exhibits
superconductor-like transport as well. We discuss this point in more
detail later in Fig. 3. On the other hand, in the (Nflat, BI) regime, we
observe magneto-resistance oscillations with very small amplitude. In

Fig. 3 | Spectroscopy of the quantum oscillations. a FFT spectrum of the
magneto-resistance oscillations. The white lines in the spectrum indicate the range
of frequencies expected for h/e and h/2e oscillations, taking the inner radius (rin)
and mean radius (rmid) of the ring. b Resistance as a function of nr, the different
quantum states (CI, SC, Nflat, BI andNdisp) are indicated. c,d dV

dI as a functionofB and
IDC c: in (Nflat, CI) regime andd: in (Ndisp, CI) regime. In the side panel, linecut of dVdI at
B =0. e, f Electrostatic simulation of the carrier density and quantum state

distribution e: in the (SC, CI) regimeand f: in (Nflat, CI) regime (f). The illustrations at
the top show the superconducting regions (red) on the lithographic structure of
the ring (black). At the bottom, plot of the spatial distribution of the carrier density
along the radial axis of the ring (arrow in the illustration). The black vertical lines
indicate the lithographic dimensions of the ring which is 400 nm. The horizontal
grey dashed lines indicate the density range for superconductivity. Different
quantum states (CI, SC, and Nflat) are attributed depending on the density.
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this regime, the frequency peak appears close to the one in the Ndisp

regime. The effective radius is reff = 813 nm assuming h/e-periodicity
and reff = 585 nm assuming h/2e-periodicity. This regime shows neither
nonlinear transport nor a drop in resistance with temperature.
Therefore, we attribute the oscillations in the (Nflat, BI) regime to h/e-
periodic Aharonov–Bohm oscillations. The phase coherence length,
estimated from the temperature dependence, is Lφ ~ 6.51 ± 1.32 μm,
which is by a factor of 2–3 smaller than that for Ndisp. This relatively
short Lφ in the flat band can be attributed to a large electron effective
mass. In fact, the phase coherence length is proportional to the Fermi
velocity vFermi, which depends inversely on the effective mass m*
(Lφ∝ vFermi∝ 1/m*), and the measured m* in the flat and dispersive
bands are different by a factor of 1–104.

These results demonstrate that one can switch between the
Little–Parks and the Aharonov–Bohm effects of MATBG by gate tun-
ing. They also reveal the 2e charge pairing and long coherence lengths
of the moiré electrons. In the following sections, we discuss each
regime in more detail.

Tunable Little–Parks oscillations
The Little–Parks effect is essentially themagneto-oscillation of the free
energy of the superconducting state37, which results in the oscillation
of the critical temperature Tc and the critical current Ic. While the
critical current is readily measurable, the current injection inevitably
drives the system out of equilibrium, possibly giving rise to unwanted
effects such as local breakdown of superconductivity38–40. Therefore, a
measurement at equilibrium is preferable. However, measurement of
the Tc oscillation is experimentally challenging as the expected
amplitude is in the sub-mK range37. Here, taking advantage of the in-
situ tunability of the carrier density in MATBG, we demonstrate an
alternative route to detect Little–Parks oscillations. We probe the
oscillation of Tc by translating it into the oscillation of the critical
density nc at which the superconducting transition occurs, enabling
the detection of the Little–Parks effect near equilibrium. Figure 2a
shows the phase diagram of the device in the (SC, BI) regime, mea-
suring the resistance as a function of temperature T and nr at zero
magnetic field. Increasing the temperature from 50mK to 600mK, the
density range of the SC state shrinks, forming a superconducting
dome. Due to the Little–Parks effect, the Tc of the superconducting
ring oscillateswith themagnetic flux. As depicted in Fig. 2b, this results
in a compression and expansion of the superconducting phase
boundary. For a fixed temperature Tmeas, such breathing can be
translated into an oscillation of the critical density nc, between
nc(Φ =Φ0) and ncðΦ= 1

2Φ0Þ. It is therefore possible to probe the
magneto-oscillation of the phase boundary by fixing the temperature
and sweeping the carrier density.

Figure 2c shows the measured voltage drop V across the ring as a
function of nr and B, at a DC bias current of 5 nA and in a density range
close to the high-density edge of the superconducting dome (see
Supplementary Figure 4 for the temperature and current dependence
of the map). At a fixed B, a jump from zero to a finite voltage Vmarks
the transition from the superconducting to the normally conducting
regime. Themagnetic field dependence of the density nc(B) represents
the phase boundary. The shape of this boundary oscillates with a
period of 0.87 mT, agreeing with an h/2e-periodicity (reff ≈ rmid). The
smooth shift of the phase boundary with increasing B to higher elec-
tron densities reflects the shrinking of the superconducting dome inB.
We observe the same result with a reversed current (−5 nA). The
demonstration of the Little–Parks effect near equilibrium by con-
structing the phase diagram is one of the distinct advantages of the
gate-defined architecture.

We can also track the development of the oscillations as the state
departs from the vicinity of the SC-to-Nflat transition into deep inside
the superconducting dome by tuning the density nr. Figure 2d shows
dV/dI as a function of DC current IDC and nr at zeromagnetic field, and

Fig. 2e the B- and IDC-dependence of dV/dI for nr = − 1.85, − 1.87 and
− 1.93 × 1012 cm−2 (see solid horizontal lines in Fig. 2d). The periodic
oscillations of the critical current Ic emerge on top of a decreasing
background inmagnetic field. The periodicity of the Ic oscillations ish/
2e (0.87 mT), in agreement with the (SC, BI) data in Fig. 1d. As nr is
tuned to a value that shows larger Ic (deep inside the superconducting
dome), the amplitude of the Ic oscillations increases, and they are
also observed up to higher magnetic fields. Moreover, the magnetic
field-origin of the oscillations shifts from zero and also depends on
the direction of the applied current (see Supplementary Fig. 9), which
can be due to the inductance of the ring. At the lowest density
(Fig. 2e, top panel), we observe that the critical current vanishes at ~5
mT and re-emerges at a higher magnetic field. This pattern resembles
the Fraunhofer pattern of Josephson junctions. However, aswe discuss
in the Supplementary Information section II.C, the width of this
hypothetical Josephson junction does not fit any of our ring
geometries. We therefore attribute the observed pattern rather to the
existence of multiple interference paths within the ring, generating a
beating pattern. Similar critical current oscillations but without
a beating pattern appear in the (SC,CI) regime and are shown in
Supplementary Fig. 5.

The differential resistance traces at zero bias current (IDC = 0 nA)
for the three densities are shown in Fig. 2f. Close to the SC-to-Nflat

transition (bottom panel, star symbol), the magneto-resistance oscil-
lations are barely visible as the differenceof resistancebetween SC and
the normal states is vanishing. When the density is increased (middle
panel, square symbol), we observe pronounced oscillations where a
chain of parabolas appears on top of a smooth parabolic background.
When the density is further reduced (top panel, circle symbol), the
oscillation amplitude drops again. This is because the state is deep in
the superconducting dome and zero current is too remote from the
transition to fully capture the Little–Parks effect. Deeper in the
superconducting dome, one can only observe the critical current
oscillations.

Spectroscopy of the quantum oscillations
Figure 3a shows the magneto-oscillation spectrogram as a function of
the density nr when the state outside the ring is CI (see Fig. 1d, left
column). The spectrogram is constructed by first measuring the dif-
ferential resistance at zero bias current sweeping the magnetic field
between ± 20 mT. Then the FFT spectrum is calculated after sub-
tracting the smooth background from the raw data. In the spectro-
gram,weobserve several regionswith prominent peaks in the FFT. The
resistance R at zero magnetic field and corresponding quantum states
are shown in Fig. 3b.

Anh/2epeak is observed (reff ≈ rmid) at the edge of the SC region in
the vicinity of the CI regime. This can be understood by the fact that
the Little–Parks oscillation only appears at the onset of the super-
conducting transition. When the density is tuned further down to the
(Nflat, CI) regime, a prominent peak at 0.313 /mT appears between
−3.40 × 1012 cm−2 < nr < −2.80 × 1012 cm−2. This corresponds to an effec-
tive radius of reff = 605 nm assuming h/e-periodicity, and reff = 432nm
assuming h/2e. As the latter reff is considerably smaller than rin, we
attribute an h/e-periodicity to the oscillations. The density window
across which this peak extends is unexpectedly wide and includes the
BI regime, meaning that the oscillations persist even when the ring is
mostly insulating. When entering the (Ndisp, CI) regime, the spectrum
becomes broader and features a peak within the h/e-periodic range
(rin < reff < rmid). This broad spectrum is not unexpected for conven-
tional Aharonov–Bohm oscillations as the aspect ratio of the gate-
defined ring is small (rin/rout≃0.6), making possiblemany interference
paths with different effective enclosed areas. The oscillations in (Nflat,
CI) and in (Ndisp, CI) not only differ in peak frequency and frequency
extent but also show different responses to IDC. Figure 3c, d show the
IDC andBmapping in (Nflat, CI), with nr = 3.07 × 1012 cm−2, and (Ndisp, CI),
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with nr = 3.51 × 1012 cm−2 respectively. Interestingly, a superconductor-
like behaviour of the differential resistance (dip at IDC =0 nA) is
observed in the (Nflat, CI) regime, despite the high resistance reaching
up to a few kΩ. In addition, a periodic chain of low-resistance states
appears by sweeping IDC and B. By contrast, the (Ndisp, CI) regime
exhibits a cusp in differential resistance at IDC =0 nA, and no char-
acteristic pattern is observed in the IDC and B mapping. This again
supports the interpretation that Aharonov–Bohm oscillations are
observed for (Ndisp, CI).

We attribute the superconducting behaviour of the (Nflat, CI)
regime to the presence of a small residual superconducting region,
emerging from the smooth evolution of the carrier density from inside
to outside of the ring. To support this idea, weperform an electrostatic
simulation of the carrier density distribution (see Supplementary Fig-
ure 8). As shown in Fig. 3e, in the (SC, CI) regime, SC is the only state
inside the ring. However, when the ring is detuned from the (SC, CI) to
the (Ndisp, CI) regime (Fig. 3f), the spatial distribution of the quantum
states becomes complex, and a superconducting region can be
embedded around the ring. This spurious superconducting region
consists of a small ringwith radius ~400 nmandapath surrounding the
gated region, as Fig. 3f depicts.

The origin of the high visibility of the oscillations and its peri-
odicity in the (Nflat, CI) regime remains elusive, while careful inspection
of the electrostatic environment might give an insight into it. For
example, the spurious superconducting ring shown in Fig. 3f has a
radius of ~400 nm, which is much smaller than the lithographic radius.
However, it matches the effective radius of the oscillations in this
regime, assuming h/2e periodicity (see Supplementary Fig. 8). This
means that the spurious superconducting ring that is formed due to
the electrostatic requirement might be giving the Little–Parks oscilla-
tions in the (Nflat, CI) regime. Further improvement of the simulation,
taking the proximity effect at the interface of different quantum states
into account, will help the understanding of this regime.

Discussion
In conclusion, we presented a gate-defined quantum interferometer in
MATBG that provides a versatile platform for investigating the quan-
tum coherence and the charge of correlated electrons from super-
conducting to normally conducting regimes. We observe the
Little–Parks effect by constructing the superconducting phase dia-
gram as well as bymeasuring the oscillation of themagneto-resistance
and the critical current, confirming the charge-2e pairing. We also
observe the Aharonov–Bohm effect for the dispersive and flat band
electrons in the same device. From it, we find that the phase coherence
length exceeds a few microns, highlighting its robustness. We find a
regime that exhibits magneto-resistance and critical current oscilla-
tions even detuned from the superconducting regime, whichmight be
due to the electrostatic constriction of the device.

These experiments demonstrate that exploring the Little–Parks
effect has the potential to provide insight into both the charge and spin
nature of the Cooper pair in MATBG. Notably, the measurement under
an in-plane magnetic field along with the perpendicular field could
enable the observation of phase shifts in Little–Parks oscillations. Such
shifts could serve as indicators of unconventional pairings such as spin-
triplet superconductivity41. Our observation of the Aharonov–Bohm
oscillations and the estimation of the phase coherence length of the
moiré electrons provide the experimental foundation for the under-
standing of Andreev reflection physics in exotic quantum interfaces
such as superconducting v.s. Chern or Mott insulating interface. More-
over, the gate-defined architecture and the measurement scheme pre-
sented here can generally be implemented in other 2D superconductors
(e.g., twisted multilayer graphene42, Bernal bilayer graphene43, and
bilayer graphene/transition metal dichalcogenide44), opening up the
path towards the direct quantification of charge, spin, and coherence of
correlated electrons in a plethora of exotic quantum states.

Methods
Twist angle estimation
We extract the twist angle of the sample using the relation
θ= 2 arcsin a

2L

� �
3. In this expression,a is the lattice constant of graphene

and L is the moiré periodicity, which represents the distance between
two adjacent AA-stacked regions. In turn, L is related to the area A of

the moiré unit cell via L= 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=

ffiffiffi
3

pq
. Within a moiré unit cell, four

electrons can be accommodated due to spin and valley degeneracy.
Then, the band insulator peak due to the twist appears at the electron
density nBI which corresponds to the occupation of 4 electrons per
moiré unit cell A= 4

nBI
. We obtain nBI from the Landau fan and density

mapping (see Supplementary Fig. 3). Our analysis yields an approx-
imate twist angle of 1.11°.

Device fabrication
The device stack is assembled using the dry pick-up method45. We
exfoliate graphene and hexagonal boron nitride (hBN) flakes on a
285 nm p:Si/SiO2 wafer. We start by scratching a graphene flake in two
using a tungsten needle with a tip diameter of 2μm controlled by a
micromanipulator. We pick up all the flakes using a poly-
dimethylsiloxane/polycarbonate stamp. We first pick up the top hBN
flake, with a thickness of 18 nm, at 90 °C. Then we proceed to pick up
the graphene and assemble the twisted structure. For this, we first pick
up half of the pre-cut graphene, rotate the microscope stage by 1.1°
and then pick up the other half of the graphene, all at 40 °C. We
encapsulate the graphene by picking up a bottom hBN flake, with a
thickness of 55 nm. For the encapsulation, the stack isfirst contacted to
the bottom hBN at 40 °C and the temperature of the stage is raised to
80 °C. Finally, wepickup a graphiteflake of 29 nmat 100 °C that serves
as a backgate. The stack is thendeposited at 160 °Conap:Si/SiO2 chip.
After deposition, we clean the polycarbonate stamp using
dichloromethane.

We contact the MATBG with edge contacts made by electron
beam lithography followedby reactive ion etching, usingCHF3/O2 (40/
4 sccm, 60W). The contacts are then evaporated using Cr/Au (10/80
nm). We define the electrode lines in two steps using electron beam
lithography and depositing Cr/Au (10/60 nm for the first step and 5/50
nm for the second). Then we etch the stack to define the mesa and
deposit a 20 nm thick layer of aluminium oxide by atomic layer
deposition. For the ring-shaped top gate, we again use electron beam
lithography and evaporate Cr/Au (5/35 nm). The electrode line for the
top gate is also done by electron beam lithography and evaporation
using Cr/Au (10/70 nm). In Supplementary Figure 1 we show optical
pictures of thedifferent fabrication steps andanSEM imageof a similar
device.

Measurement setup
We carry out all themeasurements in a dilution refrigerator that uses a
mixture of 3He and 4He with a base temperature of 55mK. We apply a
constant current bias between a pair of contacts across the ring and
measure the voltage drop between another pair, also across the ring.
To generate the bias current, we use an in-house-built d.c. source in
series with a 100MΩ resistor. We use a d.c. amplifier, also built in-
house, and measure its output with a Hewlett Packard 3441A digital
multimeter. Each gate is connected to a different voltage source of the
same type as the one used for generating a d.c. current.We convert the
voltages we apply to the gates to electron densities by a parallel plate
capacitormodel.We estimate the capacitance per unit area of the back
and ring (top) gate to be Cbg = ε0εhBN/dbot and Crg = ε0εhBNεAlOx/
(εhBNdtop + εAlOxdAlOx), where ε0 is the vacuum permittivity, εhBN = 3.3
and εAlOx = 9.5 are the relative permittivities of the hBN and the alu-
minium oxide, dtop and dbot are the thicknesses of the top and bottom
hBN and dAlOx is the thickness of the aluminium oxide layer. We
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calculate the electron density of the bulk as ng =CbgVbg/e and of the
region below the top gate as nr = ðCbgVbg +CrgV rgÞ=e, where e is the
elementary charge.

Error/uncertainty analysis
Electronic noise that comes from the noise in the measurement
equipment (e.g. amplifiers) was minimized by carefully removing the
ground loops. The measured voltage was typically integrated by 200
ms to reduce the uncertainty of the data points. The error in the esti-
mation of the coherence length was calculated from the standard
deviation of the least-square fitting to the data and the error-
propagation rule.

Data availability
The data that support the findings of this study will be made available
online through the ETH Research Collection at hdl.handle.net/
20.500.11850/644891.

Code availability
The code used for plotting the figures will be made available online
through the ETH Research Collection at hdl.handle.net/20.500.11850/
644891.
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