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Accurate nowcasting of cloud cover at solar
photovoltaic plants using geostationary
satellite images

Pan Xia1, Lu Zhang2, Min Min 1 , Jun Li2, Yun Wang3, Yu Yu4 & Shengjie Jia5

Accurate nowcasting for cloud fraction is still intractable challenge for stable
solar photovoltaic electricity generation. By combining continuous radiance
images measured by geostationary satellite and an advanced recurrent neural
network, we develop a nowcasting algorithm for predicting cloud fraction at
the leading time of 0–4 h at photovoltaic plants. Based on this algorithm, a
cyclically updated prediction system is also established and tested at five
photovoltaic plants and several stations with cloud fraction observations in
China. The results demonstrate that the cloud fraction nowcasting is efficient,
high quality and adaptable. Particularly, it shows an excellent forecast per-
formance within the first 2-hour leading time, with an average correlation
coefficient close to 0.8 between the predicted clear sky ratio and actual power
generation at photovoltaic plants. Our findings highlight the benefits and
potential of this technique to improve the competitiveness of solar photo-
voltaic energy in electricity market.

Reducing fossil fuel use and global climate change requires a fast
energy transition, and nations across the globe have successively set
out their own targets and pathways to carbon neutrality1. Since 2009,
as the fastest-growing renewable power source, the generating capa-
city of solar photovoltaic (PV) energy has grown globally by 41% per
year2. It has put forward higher requirements for the conversion effi-
ciency and capital cost reduction of PV energy generation3, which is
always impacted by cloud cover, aerosol and panel soiling4–9. Yet, in a
stark contrast to aerosol and panel soiling, cloud cover or advection
can dramatically and intermittently affect incident solar radiation,
resulting in unbalance between the load demand and PV energy gen-
eration, which poses a considerable risk to the stability of power
grids10–12. Therefore, reliable and powerful PV energy generation or
global tilted irradiance (GTI, the radiation captured by solar photo-
voltaic panels) forecast technique, particularly short-term forecasts of
the intra-dayGTI orPVpower generation (at the leading timeof0–4 h),

is also highly beneficial to power smoothing processes and other load-
following applications9,13. In addition, currently, in most European
countries, short-term prices for the physical delivery of electricity are
formed by spot markets, such as the European Power Exchange SPOT
(https://www.europex.org/members/epex-spot/). Although ~80% of
trade volume is controlled by the day-ahead trading market, the intra-
day auctions from hourly to 15-min intervals determine real-time
electricity prices14. Thus, sophisticated solar PV power generation
nowcasting technique not only can improve the stability of power
generation, but also facilitates the developments of more commer-
cially viable PV systems, the current electricity market and price
transactions, and increases the competitiveness of the solar PV energy
source15,16.

In recent years, rapid advances in artificial intelligence have pro-
moted the application of data-driven machine learning-based
approaches in Earth system science17,18. Particularly, some recent
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studies12,13,19–21 on the prediction of solar radiation also explicitly indi-
cate that advanced prediction approaches based on machine learning
perform better compared with empirical models, time series, and
hybrid algorithms, such as artificial neural networks and support vec-
tor machines. Nevertheless, it is still a great challenge to predict cloud
motion, formation, deformation and dissipation under complex
atmospheric dynamics, geography, and climatic conditions9,22,23. Thus,
there is still no solar radiation forecast model that can work well in
every region and at every time21.

Cloud cover nowcasting remains a field of interest for forecasting
the electricity production of PV plants24. We are committed to devel-
oping a daytime hourly intra-day cloud fraction (CF) prediction algo-
rithm for small areas over PV plants. Based on the recurrent-neural-
networks-based (RNNs) long short-term memory (LSTM) algorithm
framework, the newly developed PredRNN and PredRNN++ (an
extended and latest version of PredRNN)25,26 can well learn to predict
long-term future imageries in various spatio-temporal tasks by mod-
eling their spatial and temporal dependencies, including video frame
prediction, human motion prediction, etc. Therefore, our primary
objective is to develop an innovative and easy-to-promote algorithm
or system based on the key framework of the PredRNN++ model.
Through this algorithm, the 0–4h CF at solar PV plants under all
weather conditions can bepredicted by using sequential Himawari-8/9
geostationary satellite images with high spatio-temporal resolutions27.
Compared with the previous study28, it only used a single visible
channel of geostationary satellite and a constant model to predict
cloudiness. Some former studies directly used surface solar global
horizontal irradiance (GHI) asmodel input to predict GHI values in the
next few hours29, achieving the purpose of estimating the power
generation of PV plants. Nevertheless, the presence of clouds is still
identified as the primary uncertainty in current surface solar GHI
forecasts30. In contrast, our investigation only predicts geostationary
satellite Level 1B (L1B) radiance data. With the prediction results of

satellite L1B radiancedata and accurate clouddetection algorithm, this
approach is expected to provide reliable and variable CF information
for further improving the predictability of current GTI or PV power
generation.

Results
Cloud fraction nowcasting and validations
In order to better simulate real application scenarios, a quasi-
operational and near real-time (NRT) and cyclically updated predic-
tion system is newly developed for 0–4 h CF nowcasting at solar PV
plants (hereafter referred to as the NCP_CF). The predicted CF from
this NCP_CF nowcasting system is also compared with the real PV
power generation and the GTI to verify its feasibility, reliability and
adaptability. The results from the NCP_CF system are examined and
validated by using the observed CF values from twelve manual
meteorological observation stations of the China Meteorological
Administration (only the observations at 14:00 and 17:00 areused) and
three all-sky imager stations (Fig. 1). Figure 2 shows the root mean
square errors (RMSEs) and mean bias errors (MBEs) of the CF predic-
tions at targeted stations with the forecast horizon, local time (diurnal
cycle) and time series. In terms of forecast horizon (Figs. 2a–2f, Sup-
plementary Table 1), the RMSE increases from 0.18 to 0.35 at all sta-
tions for 0–4h forecast periods, and the MBE fluctuates around −0.1.
Notably, the RMSE is less than 0.25 within the 2-h leading period, but
the forecast accuracy decreases faster when the forecast leading per-
iod exceeds 2 h, indicating that the forecast performance threshold of
this system is ~2-h leading time. Considering the continuity and cov-
erage of observation time, Fig. 2g only shows the diurnal cycle of CF
forecast accuracy at three all-sky imager stations. Within a one-day
forecastwindow, themost and least accurate predictions occur during
12:00–17:00 and 08:00–09:30, respectively, whereas the relatively
moderate decrease in the forecast accuracy before 09:30 is mainly
attributed to the invalid satellite visible images before 08:00.

Fig. 1 | Geographical distributions and photographs of ground-based sites. PV
plants (dark green small solid circles), 12 manual observation stations (red solid
circles), 3 all-sky imager stations (blue solid circles), and 5 PV power test plants
(yellow solid circles). The photos above the PV plants are exported from Google
Earth Pro. Sangge Map Data: Google, mage ©2023 CNES/Airbus; Leling Map Data:

Google, Image ©2023 Maxar Technologies; Xiaochengzi Map Data: Google, Image
©2023 Maxar Technologies; Lijiamen Map Data: Google, Image ©2023 CNES/Air-
bus; Shiziyan Map Data: Google, Image ©2023 CNES/Airbus. Source data are pro-
vided as a Source Data file.
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Fig. 2 | RMSE andMBEbetween the predicted CF and the CF obtainedby all-sky
imagers. Subfigures (a), (c), (e) and (b), (d), (f) are the RMSEs andMBEs for Beijing,
Nanjing and Zhuhai all-sky imager stations, respectively. The different colored lines
represent the results for differentmonths, and the dashed black line represents the

mean of all the lines. Subfigure (g) depicts themean RMSE andMBE of three all-sky
imager sites at different local time of one day. Source data are provided as a Source
Data file.
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Regarding the predicted performance for different months, the
monthly mean RMSE and MBE values in time series at three all-sky
imager stations do not vary considerably, indicating the weakmonthly
dependence and stability of this cyclically updated CF nowcasting
algorithm and system.

Furthermore, the correlation coefficients (R) between the 1–4 h
predicted clear sky ratios (CSRs; CSR = 1−CF) from the NCP_CF system
and the actual power generation (GTI) are calculated. Figure 3 displays
the comparisons among the 1–4 h predicted CSRs, the actual power
generation and the GTI at Sangge, Leling, Xiaochengzi, Lijiamen, and
Shiziyan PV plants from09:00 to 17:00 inNovember 2022. Themean R
values between the 1–4 h predicted CSRs and the actual PV power
generation (the GTI) in November 2022 at five PV plants are 0.81, 0.73,
0.65, and 0.55 (0.81, 0.72, 0.64, and 0.55). This result highlights the
good consistency of the predicted CSRs with the actual PV power
generation and theGTI, especially for thefirst 2-h leading time.Overall,
the EPM-model-based NCP_CF system developed in this research is
applicable to provide high-quality CF estimations at PV plants in
advance,which can be used to predict theGTI andpower generation at
the forecast leading time of 0–4 h. The results at Sangge and Leling PV
plants from December 2022 to March 2023 are displayed in Supple-
mentary Figs. 3–6.

Near real-time and cyclically updated prediction system
The satellite-based NRT and cyclically updated prediction system
(Fig. 4) for 0–4 h CF nowcasting, operating at five real PV plants
(Sangge, Leling, Xiaochengzi, Lijiamen and Shiziyan PV plants) belon-
ged to China General Nuclear Power Group Wind Energy Co. Ltd.,
mainly consists of three subsystems, i.e., preprocessing, prediction
and retrieval modules. Specifically, the preprocessing module reg-
ularly adjusts the real-time down-sampling Himawari-8/9 Advanced
Himawari Imager (AHI) data received from the direct broadcast
receiving system. The AHI is an advanced imager with 16 spectral
bands ranging from 0.47μm to 13.3μm, which has spatio-temporal
resolutions of 4 km and 10min31. The full-disk Level-1B radiance data at
0.65 μm, 0.86 μm, 3.9 μm, 7.0 μm, 11.2 μm and 12.3 μm with high-
quality geolocation and radiometric calibration is grided into a 32 × 32
pixel box (~128 km× 128 km) centered around the targeted PV plant.
Then, these sequential and resized AHI images at six bands are con-
verted into a tensor [tile size = 6 (band number) × 24 (4-h time
sequence) × 32 × 32] of the prediction model for forecasting the fol-
lowing 0–4 h satellite images (6 × 24 × 32 × 32).

As a key function of the prediction module, an enhanced
PredRNN++ model (EPM; more details in “Model” section) is devel-
oped in this study to predict 0–4 h sequential geostationary satellite
images. In order to better track the fast and stochastic changes in
cloud images, the neural network of the EPM is always cyclically gen-
erated by the scheduled training process of the model, which has a 1-h
update frequency. The cumbersome cyclic process should take
40–50min when using the latest sequential satellite images
(6 × 24 × 32 × 32) between −5 h and −1 h as training samples and one
graphics processing unit processor (NVIDIA Tesla-V100). For instance,
a cyclic training process of themodel starts at the scheduled local time
of 12:08 and ends at ~12:53, the imported training samples are from
08:00 to 12:00, and the latest updated EPM is timely activated for CF
nowcasting at ~13:08 (nowcasting from 13:00 to 17:00) and 13:38
(nowcasting from 13:30 to 17:30), respectively, with an update fre-
quency of a frequency of half an hour. During the same period, the
network of the next EPM is also trained simultaneously by using the
sequential satellite images from 09:00 to 13:00. This cyclical proce-
dure will continually update and replace the existing EPM every hour,
ensuring that we always have the most up-to-date nowcasting model.
Considering the use of satellite visible images, the NCP_CF systemonly
operates from 07:20 to 17:20, which still meets the requirement of CF
nowcasting at PV plants.

In the retrieval module, the 0–4h predicted and resized cloud
images mentioned above are used by a fast cloud mask algorithm32,
which is able to calculate the number of cloudy pixels and the CF or
cloud cover in the observation field of the targeted PV plant. Note that
compared with the operational cloud mask algorithm, the fast cloud
mask algorithm can fast retrieve the CF without any ancillary data,
which is crucial for CF nowcasting. Supplementary Figure 1 presents
the comparisons between thepredicted and actual satellite images and
cloudmask results at Zhuhai station on 17 November 2022, illustrating
the good agreement between them.

Discussion
Our study demonstrates that the NCP_CF system can provide high-
efficiency, high-quality and adaptable 0–4 h CF nowcasting data for PV
plants. As shown in Figs. 2a–f, the mean RMSE (MBE) values are 0.21
(−0.09), 0.25 (−0.08), 0.3 (−0.07), and 0.35 (−0.03) for the forecast
leading time of 1 h, 2 h, 3 h, and 4 h, respectively. Particularly, the CF
nowcasting results from the NCP_CF system remain highly reliable
within the forecast leading time of 2 h, with RMSE values staying
almost at 0.2 and not increasing within the 1-h leading time. Con-
versely, the prediction performance of the NCP_CF system gradually
deteriorates as the forecast leading time increases to more than 2 h,
which may be due to the vanishing gradient problem22. By the limited
spatial domain, the rapid movement of clouds may cause a small bias
between the predicted CF and the actual CF. Further analyses on the
daily and seasonal scales are also conducted, as shown in Fig. 2g, a–f,
respectively. On the daily scale, the NCP_CF system performs parti-
cularly well from 09:30 to 18:00, whereas it shows poor performance
before dawn, mainly due to the poor quality of satellite data at the
visiblebandduring that time. Fortunately, this issue ismitigateddue to
the low power generation of PV plants before dawn, and thus cloud
cover has a low impact on power generation in this period. For the
seasonal scale, except for the forecast results at Nanjing station inMay
2021, the NCP_CF system shows stable forecast performance and
seasonal biases at different stations and in different seasons. Its salient
adaptability thus is the largest advantage compared with other solar
radiation nowcasting methods summarized in the previous review21.
Overall, the CF nowcasting results of the NCP_CF system have good
stability, strong generalizability and non-sensitivity to geographical
locations and climatic characteristics.

Given that the present electricity spot markets in Europe work
within different time horizons, specific and professional forecast
techniques are required for each leading time13. The NCP_CF system
with the 0–4 h forecast leading time within a 10-min interval shows
more advantages than other existing nowcastingmethods, such as the
manners based on all-sky imager observation (the forecast leading
time only ranging from 0 to 20mins)33 and numerical weather pre-
diction (from 6h to day-ahead time frames)34 for solar PV power
generation. Principally, this system is applicable to fast varying small-
scale weather and environmental conditions and can accurately cap-
ture cloud motion over PV plants without relying on long-term his-
torical in-situ meteorological data. Besides, the predictions of the
NCP_CF system are notmarkedly affected by seasonal climate changes
on long-term scales, which underscores the stable operation of this
system. The system shows excellent forecast performance within the
first 2-h leading time,with anaverageR valuebetween thepredictedCF
and the actual power generation or GTI at PV plants close to or more
than 0.80.

Since one of the greatest challenges facing solar PV renewable
energy production is its instability and intermittency, accurate CF
nowcasting is still vital for the efficient operation of PV plants and their
power systems. Improving the stability of PV power production can
directly facilitate policy-making of feed-in tariffs and attract more
investment in solar PV power generation14,35. However, most impor-
tantly, the nowcasting technique developed in this research deserves
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Fig. 3 | Power and GTI of PVplants and corresponding 0–4h CSR. Time series of
the power (MW), GTI (W·m−2) and predicted clear sky ratio (CSR) at (a) Sangge, (b)
Leling, (c) Xiaochengzi, (d) Lijiamen, and (e) Shiziyan PVplants from09:00 to 17:00
(local time or Beijing time) on each day in November of 2022. R1–R4 and R5–R8

indicate the correlation coefficients (R) of the predicted CSR with the power and
the GTI for forecast leading time of 1–4 h, respectively. Note that the missing and
invalid data are not shown. Source data are provided as a Source Data file.
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attention in terms of promoting the overall penetration of solar power
on the electric grid and having a non-negligible impact on electricity
price trading in the intra-day spot market14. Furthermore, it is evident
that increasing the share of renewable energy in the global energy
system can contribute to the reduction of global carbon emissions3.
Therefore, our future mission is to further promote applications and
improve the accuracy of this cloud cover nowcasting technique,
especially for the forecast leading time of more than 2 h, by using
higher spatial-resolution satellite data (i.e., 1–2 km) and combining the
short-term forecast data from a rapidly updated regional high-
resolution numerical weather prediction.

Methods
The newly developed EPM and fast cloud mask algorithm in the
NCP_CF systemareapplied topredictCF (orCSR) at the leading timeof
0–4 h at two test PV plants. In this system, the −4–0h geostationary
satellite radiance data is used as input to dynamically provide 0–4 h

satellite cloud images and fractions. To verify the reliability of the EPM,
we first use the CF observations from twelve widely distributed
ground-basedmanual stations and three all-sky imager stations for the
period from 2019 to 2022 as true values to compare with the predic-
tions in the corresponding period. Moreover, correlations of the pre-
dicted CSRs with the actual PV power generation and surface solar
radiation at five test PV plants from October 2022 to March 2023 are
analyzed. The benefits of the geostationary satellite data with high
spatio-temporal resolutions and the advanced EPM to improve the PV
power generation efficiency are investigated, as well as the wide
applicability and generalizable value of the EPM system.

Ground-based observation data
The total cloud cover or CF (~20 km× 20 km square area) used in this
study is obtained throughmanual observation at twelve ground-based
meteorological stations (Fig. 1) in January, April, July, and October of
2019. Note that due to the relatively large errors in low-visibility

Fig. 4 | CF prediction system schematic diagram. The near real-time and dyna-
mically updated prediction system for the cloud image and fraction nowcasting at
the leading time of 0–4 h at the photovoltaic (PV) plants. For satellite images in this
figure, red (white) color signifies high temperature (reflectance) and blue (black)

color represents low temperature (reflectance). AboutCloud Fractionpictures, The
white, gray, light green, and dark green spots represent cloudy, probably cloudy,
probably clear and clear pixel labels, respectively.
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conditions, the CF data with the matched and automatically measured
visibility <2 km is removed. Besides, the view zenith angles of ground-
based stations from H8/AHI field of view used here, as stated in Sup-
plementary Table 2, are smaller than60°. Therefore, the parallax effect
is negligible (error < 1 km) in the collocation between satellite pixels
and ground-based stations for this study (For more explanations and
details, please refer to Supplementary Note and Supplementary Figs. 7
and 8). Firstly, considering the daytime nowcasting applications and
sunshine conditions at PV plants, only the manual observations at
11:00, 14:00 and 17:00 are collected for validation in this research.
Secondly, three ground-based all-sky imager stations (equipped with a
Japan EKOASI-16 all-sky imager, https://www.eko-instruments.com/us/
categories/products/all-sky-imagers/asi-16-all-sky-imager) can provide
the high temporal resolution (5min) and valuable CF and cloud cover
data during the daytime, which are retrieved by the standard EKO ASI-

16 cloud detection algorithm (https://www.eko-instruments.com/
media/z2aalysq/asi-16-software-manual-find-clouds.pdf)36. ASI, equip-
pedwith a digital camera coupledwith an upward looking fisheye lens,
could provide field of view (FOV) of ~180°, but pixels at a FOV > 140 °
are excluded due to distortion. Digital images of the sky obtained by
ASI are classified pixel by pixel into clear sky, optically thin and opti-
cally thick clouds, respectively. The cloud detection and opacity clas-
sification (CDOC) algorithmdeveloped by Ghonima et al., 201236 could
provide 96%, 60%, and 96.3% accuracy in the validation for clear, thin,
and thick cloud, respectively. Finer CF data allow more accurate vali-
dation of the NCP_CF system, thereby demonstrating the specific
prediction effect at the forecast leading time of 0–4 h. The study
periods of the local CF data from three all-sky imagers located in
Zhuhai, Nanjing and Beijing (Fig. 1) are from September 2022 to Feb-
ruary 2023, April 2021 to September 2021, and September 2022 to
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Fig. 5 | Enhanced PredRNN++. a Framework of the enhanced PredRNN++ model
with five convolutional layers, and (b) visual illustration of the flow of input data in
the spatial memory. In Fig. 5a, the Gradient HighwayUnit (GHU; blue) is embedded
between the first and the second convolutional layers, the horizontal red arrows
denote the deep transition paths of the spatial memory, the vertical black arrows
represent the updating direction of the temporal memory, and the blue parts

indicate the gradient highway connecting the current time step directly with pre-
vious inputs. In Fig. 5b, “⊚” denotes the convolution, Ck

n the temporal memory,Mk
n

the spatial memory, and Hk
n the hidden state. Mk�1

n , Ck
n and Hk�1

n are concatenated
to form a larger tensor, and thenHk

n is generated by the convolution. The numbers
below each memory indicate the dimensions of the corresponding tensors.
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December 2022, respectively. In addition, the actual power generation
(MW, temporal resolution of 15min) and GTI (W·m−2) measured at
Sangge and Leling PV plants from November 2022 to March 2023 and
at Xiaochengzi, Lijiamen and Shiziyan PV plants in November 2022
(Fig. 1) are also used to analyze the agreement with the predicted CF.
These real power generation data are obtained from the SCADA
(Supervisory Control and Data Acquisition) system of China General
Nuclear Power Group Wind Energy Co. Ltd.

Geostationary satellite data and calculating the cloud fraction
The NRT 16-band full-disk AHI level-1B radiance data from the
Himawari-8/9 satellite (the new-generation Japanese geostationary
meteorological satellite) with spatio-temporal resolutions of 1–4 km
and 10min are obtained from the Japan Meteorological Agency
Himawari-Cast in China32. Additionally, the offline Himawari-8/9 data
at the original resolution (0.5–2 km) are also available for free
download from the JAXA (Japan Aerospace Exploration Agency)
Himawari satellite data FTP (File Transfer Protocol) site (ftp.ptree.-
jaxa.jp) from July 7, 2015 (http://www.jma-net.go.jp/msc/en/). The
nadir point of the Himawari-8/9 satellite is located at 140.7°E, and the
coverage of this satellite includes the Japan island and the eastern
parts of China.

Based on the real-time Himawari-8/9 AHI full-disk observation
data, each site would be centered around its precise location and
matchedwith a 32 × 32 pixels box as the experimental area. The special
fast cloud mask algorithm32 combines five inherited and improved
cloudy/clear pixel tests in visible and infrared bands to determine the
final confidence value (c) of every pixel of the satellite imager, i.e.,
c >0.99 = clear, 0.95 < c ≤0.99 = probably clear, 0.66 < c ≤0.95 =
probably cloudy, and c ≤0.66 = cloudy. As the real viewing field at a
ground-based station approximates a 20km× 20 km square area, a
5 × 5 pixels box of cloud mask centered around a targeted PV plant is
used in this study to calculate theCFpredictions,which is expressed as
Eq. (1).

CF = ðNumcloudy +Numprob�cloudyÞ=25 ð1Þ

where Numcloudy and Numprob�cloudy indicate the total numbers of the
cloudy and probably cloudy pixels in the 5 × 5 pixel box37, respectively.
The complementary CSR is equal to 1-CF.

Model
The PredRNN++ model24 (an improved prediction RNN), dedicated to
short-term prediction and nowcasting, is adopted as a key model in
this investigation for 0–4 h CF nowcasting. This advanced neural net-
work successfully overcomes the spatio-temporal predictive learning
dilemma between deep-in-time structure and vanishing gradient.
Previous research has demonstrated that the PredRNN++ consistently
outperforms the ConvLSTM, TrajGRU, Discrete Fracture Network,
MCnet and PredRNN at every future time step for both peak signal-to-
noise ratio and structural similarity index measure24. To achieve
greater spatio-temporal modeling capability, in this investigation, we
re-design and develop the EPM with five convolutional layers, whose
elaborated structure is shown in Fig. 5. The details of the casual LSTM
and the Gradient Highway Unit (GHU)24 in the EPM structure are also
illustrated in Supplementary Fig. 2.

The causal LSTM, an upgraded version of the LSTM, increases the
recurrence depth from one time step to the next and derives a more
powerful modeling capability for stronger spatial correlations and
short-term dynamics. As shown in Supplementary Fig. 2a, a causal
LSTMunit contains twomemories, namely a temporal memory Ck

t and
a spatial memory Mk

t , where the superscripts k and t denote the kth
hidden layer in the stacked causal LSTMnetwork and the tth time step,
respectively. The temporal memory Ck

t depends on its preceding state
Ck
t�1 and is controlled by an input gate it , a forget gate f t and an input

modulation gate gt . The spatial memoryMk
t relies onMk�1

t which is in
the deep transition route. Notably, the topmost spatialmemoryM5

t�1 is
assigned to the bottom spatial memory M0

t . For the kth layer, the
updated equations of the causal LSTM can be expressed as Eqs. (2–7).

gt

it
f t

0
B@

1
CA=

tanh

σ
σ

0
@

1
AW 1⊚½Xt ,H

k
t�1,C

k
t�1�, ð2Þ

Ck
t = gt � it + f t � Ck

t�1, ð3Þ

g ,
t

i,t
f ,t

0
B@

1
CA=

tanh

σ
σ

0
@

1
AW 2⊚½Xt ,C

k
t ,M

k�1
t �, ð4Þ

Mk
t = g

,
t � i,t + f

,
t � tanhðW 3⊚Mk�1

t Þ, ð5Þ

Ot = tanhðW 4⊚½Xt ,C
k
t ,M

k
t �Þ, ð6Þ

Hk
t =Ot � tanhðW 5⊚½Ck

t ,M
k
t �Þ, ð7Þ

where “⊚" denotes the convolution, "⨂" the element-wise multi-
plication, tanh the element-wise hyperbolic tangent function, σ the
element-wise sigmoid function, and “[]” a concatenation of tensors.
W 1��5 the convolutional filters. All the equations in the causal LSTM
can be briefly expressed as Eq. (8).

Hk
t ,C

k
t ,M

k
t =CauLSTMkðHk�1

t ,Hk
t�1,C

k
t�1,M

k�1
t Þ, ð8Þ

where Hk�1
t is replaced by Xt and Zt between the first and second

layers.
The gradient highway, a shorter route from future outputs back to

distant inputs, can alleviate the vanishing gradient problem. As shown
in Supplementary Fig. 2b, in a GHU, W represents the convolutional
filters, St is a switch gate and enables adaptive learning between the
transformed input Pt and the hidden state Zt�1. The equation of the
GHU can be written as Eqs. (9–11).

Pt = tanhðWpz⊚Zt�1 +Wph⊚H1
t Þ, ð9Þ

St = σðWsz⊚Zt�1 +Wsh⊚H1
t Þ, ð10Þ

Zt = St � Pt + ð1� StÞ � Zt�1 ð11Þ

The equations of the GHU can be briefly expressed as:

Zt =GHUðH1
t ,Zt�1Þ ð12Þ

As presented in Fig. 5a, combined with Eqs. (8) and (12), the key
equations of the entire EPM framework can be written as Eqs. (13–18).

H1
t ,C

1
t ,M

1
t =CauLSTM1ðXt ,H

1
t�1,C

1
t�1,M

5
t�1Þ ð13Þ

Zt =GHUðH1
t ,Zt�1Þ ð14Þ

H2
t ,C

2
t ,M

2
t =CauLSTM2ðZt ,H

1
t�1,C

1
t�1,M

1
t Þ, ð15Þ
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2
t Þ, ð16Þ
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3
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t ,M

5
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5
t�1,M

4
t Þ, ð18Þ

In the EPM framework, the GHU is injected between the first and
second causal LSTMs. The causal LSTM and GUH respectively cap-
ture short-term and long-term data or image dependencies. The
gradient highway (blue line in Fig. 5a) supplies a quick path from the
first to the last time step by quickly updating hidden state Zt . It is
worth noting that, unlike temporal skip connections, the GHU con-
trols the proportions of Zt�1 and the deep transition feature H1

t
through St , which allows the EPM to adaptively learn both short-term
and long-term frame relations. In the causal LSTM of the EPM, the
spatial memory is a function of the temporal memory through
another set of gate structures. As the recurrence depth along the
spatio-temporal transition paths grows considerably, each pixel in
the final generated frame has a bigger receptive field of the input
sequence at each time step, which is why the EPM has a better ability
to model short-term video dynamics and sudden changes. Figure 5b
displays the data flow process in the spatial memory of the EPM. The
dimension of the input sequential satellite data (4 h and a time
interval of 10min) is 24 × 32 × 32. At the first convolutional layer, the
input terms M5

n�1 and C1
n are concatenated to form a larger tensor,

and then H1
n is generated by the convolution calculation. The EPM

performs a total of five convolution calculations, with dimensions of
hidden state from 10 × 32 × 32 to 1 × 32 × 32.

The EPM training process involves the use of the Adam optimizer
with a learning rate of 0.001 and the mean square error as the loss
metric. The input is a four-dimensional tensor of size [c, t, h, w] (6, 24,
32, 32), where c represents the number of input channels, t represents
time (spanning 4 h), h represents height, and w represents width. Our
research area focuses on PV plants, which provides us with images
measuring 32 × 32 pixels (~128 km× 128 km). To train our model, we
created a dataset consisting of sequences of 48 images for each
channel, spanning4 h.During the initial trainingprocess of the optimal
network structure, data were obtained from resized AHI images at six
bands over twelve manual observation stations and three all-sky ima-
ger stations. The training set utilized data from January to October in
2018, while the remaining months of 2018 were used as the validation
set. In the application scenario of PV plants, the training method is
described in the section of NRT and cyclically updated prediction
system.

Validation and assessment. The primary metrics used to evalu-
ate the accuracy of the NCP_CF system for forecasting the CF are the
RMSE, MBE and R, defined as shown in Eqs. (19)-(21).

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

×
XN
i = 1

ðPi � TiÞ2
vuut , ð19Þ

MBE=
1
N

×
XN
i= 1

ðPi � TiÞ, ð20Þ

R=

PN
i = 1

ðP � �PÞðTi � �TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1

ðPi � �PÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i = 1
ðTi � �TÞ2

s , ð21Þ

where Pi denotes the predicted CF, Ti denotes the actual CF obtained
from ground-based observations mentioned above, and N is the total
number of the matched samples.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Himawari-8/9 data are available for free download from website
[http://www.jma-net.go.jp/msc/en/]. The photos above PV plants are
available for free exported from Google Earth Pro. Source data are
provided with this paper.

Code availability
Data processing, drawing and FCMA were conducted using PYTHON.
Those codes can be accessed at [https://zenodo.org/doi/10.5281/
zenodo.10148796]. The EPM code generated during the current
study is available from the corresponding author upon request.
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