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Direct RNA sequencing coupled with
adaptive sampling enriches RNAs of interest
in the transcriptome

Jiaxu Wang 1,4, Lin Yang2,4, Anthony Cheng1,4, Cheng-Yong Tham2,
Wenting Tan1, Jefferson Darmawan1, Paola Florez de Sessions 2 &
Yue Wan 1,3

Abundant cellular transcripts occupy most of the sequencing reads in the
transcriptome, making it challenging to assay for low-abundant transcripts.
Here, we utilize the adaptive sampling function of Oxford Nanopore sequen-
cing to selectively deplete and enrich RNAs of interest without biochemical
manipulation before sequencing. Adaptive sampling performed on a pool of in
vitro transcribedRNAs resulted in a net increase of 22-30% in the proportion of
transcripts of interest in the population. Enriching and depleting different
proportions of the Candida albicans transcriptome also resulted in a 11-13.5%
increase in the number of reads on target transcripts, with longer and more
abundant transcripts being more efficiently depleted. Depleting all currently
annotated Candida albicans transcripts did not result in an absolute enrich-
ment of remaining transcripts, although we identified 26 previously unknown
transcripts and isoforms, 17 of which are antisense to existing transcripts.
Further improvements in the adaptive sampling of RNAs will allow the tech-
nology to be widely applied to study RNAs of interest in diverse
transcriptomes.

The advent of RNA sequencing has enabled the discovery ofmany new
transcripts1,2. However, the most abundant 100 transcripts typically
take up to ~60% of the sequencing reads in different tissues3, making it
difficult to detect specific transcripts of interest such as long non-
coding RNAs, and discover new transcripts that were previously
undetectable. As many of these poorly expressed transcripts are of
biological importance, including lncRNAs and enhancer RNAs,
numerous biochemical and enzymatic strategies have been developed
to enrich transcripts of interest or to deplete highly abundant genes4,5.
Traditionally, these poorly abundant transcripts can be enriched by
using experimental strategies such as CaptureSeq and using biotiny-
lated antisense oligo-basedmethods to tile along the transcripts, or by
depleting other abundant transcripts using CRISPR-based methods or
RNaseH-based strategies before sequencing6–8. However, these

methods can be tedious and long, require a large amount of starting
material, and result in varying levels of enrichment efficiencies.

In recent years, the ability to directly sequence RNAs using
nanopore sequencing has enabled transcript discovery and quantifi-
cation without needing to convert RNA into cDNA before
sequencing9–12. Here, native RNA strands are continuously threaded
through the nanopores across a voltage differential in the 3′ to 5′
orientation. Ensuing signal perturbations in the current are converted
to bases using neural network models. This allows for comprehensive
mapping of RNA species (e.g., isoforms, splice variants, fusion tran-
scripts, 3′ polyadenylation) as well as base modifications9,10,13–16. Direct
RNA sequencing has also successfully mapped genomes of RNA
viruses12,17,18. However, direct RNA sequencing has a lower amount of
throughput than nanopore DNA sequencing, making it difficult to
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assay for poorly abundant transcripts. In addition to being able to
sequence RNAs through the pore, nanopore sequencing also has a
“read until” function whereby one could sample different sequences
until one identifies the sequence of interest. In this case, one could
selectively choose to sequence or not sequence transcripts of interest
in the population by sequencing a short segment of each strand in the
pore, mapping this to a pre-defined list of sequences of interest and
triggering voltage reversal at the level of individual pores to reject
undesired reads, leaving the pore ready to accept a new strand. This
simplifies the enrichment and depletion of transcripts of interest.

Due to the simplicity of adaptive sampling in nanopore sequen-
cing, it has been used to enrich specific DNA regions of interest19–22,
and used in host depletion studies where gigabase-sized reference
genomes canbedepleted formetagenomics analyses23–25. Additionally,
the number of DNA adaptive sampling studies and third-party bioin-
formatics tools20,22,26–29 have matured significantly over the years,
facilitating the application of adaptive sampling on DNA. However,
applying adaptive sampling for direct RNA sequencing is just starting
to be explored30,31. Due to the slower motor speeds in threading RNA
through the pores in direct RNA sequencing as compared to DNA
sequencing, as well as differentmRNA abundances,mRNA lengths and
polyA tail lengths, here we test different parameters to apply adaptive
sampling to direct RNA sequencing (Fig. 1a). We show that adaptive
sampling can be applied to enrich transcripts of interest in RNA
populations and transcriptomes and that further developments in
adaptive sampling is likely tomake this processmore efficient in direct
RNA sequencing.

Results
Adaptive sampling enriches RNA of interest in a population
To test adaptive sampling on direct RNA sequencing, we first in vitro
transcribed three different RNAs (18S rRNA, beta-actin, and GAPDH)
and included enolase2 (ENO2) RNA as provided in Oxford Nanopore
Technologies’ direct RNA sequencing kit to form a pool of four RNAs
(Fig. 1b and Supplementary Data 1). We then performed library pre-
paration and direct RNA sequencing of these transcripts. The
sequencing library consisted of 5.6% of ACTB, 16.3% of GAPDH, 15.6%
of 18S rRNA, and 62.5% of ENO2 (Supplementary Fig. 1a). During
adaptive sampling, discrete chunks of bases at the 3′ terminus of each
RNA strand being sequenced are simultaneously base called and
mapped to transcripts of interest. In the enrichment mode, reads that
align to our transcripts of interest are tagged as “stop receiving”, while
reads that do not align to transcripts of interest are tagged as
“unblock”. Additionally, reads that end before a decision can be made
or could not be definitively categorized are tagged as “no decision”.
The “stop receiving” and “no decision” reads are classified as accepted
read pool, while the “unblock” reads are rejected from continued
sequencing by ejection from the pore through current reversal. Con-
versely, in the depletion mode, the nanopore will reverse the current
and eject a transcript if it is recognized as a transcript to be depleted.

To test the efficiency of the enrichment mode of adaptive sam-
pling for RNA, we tried different decision times for a relatively low-
abundance RNA (GAPDH) to be directly enriched. Too short of a
decision time might not result in enough bases being sequenced to
confidently determine the identity of a transcript, and too long of a
decision time will result in too many bases being sequenced and
decrease the effectiveness of adaptive sampling. As such, we tested a
range of decision times of 1, 3.5, and 6.5 s to identify an optimal con-
dition (Fig. 1c). To determinewhether adaptive sampling increased the
absolute number of reads from GAPDH as compared to bulk sequen-
cing, we sequenced 50% of the pores of a flow cell using adaptive
sampling and the other 50% without adaptive sampling (bulk
sequencing).

We obtained a good coverage across the entire transcript for all
four transcripts without adaptive sampling and sequenced 195–244K

reads for each decision time to enrich for GAPDH transcripts, while
keeping a similar number of reads sequenced in control bulk
sequencing (Supplementary Fig. 1b and Supplementary Data 1). As
direct RNA sequencing occurs from the 3′ end of the transcript, we
started observing a 5′ end depletion of non-GAPDH transcripts (18S
rRNA, ACTB and ENO2) at 1 s of adaptive sampling, and a stronger
depletion at 3.5 and 6.5 s, whilewe sequenced full-length transcripts of
GAPDH at all three time points (Fig. 1d and Supplementary Fig. 1c–f).
To determine whether we obtained an increase in the number of reads
on GAPDH in adaptive sampling as compared to bulk sequencing, we
mapped the reads to the four RNAs during the different decision times
in adaptive sampling and their respective bulk sequencing.

We did not observe a net increase in the number of bases and
reads mapped to GAPDH at 1 s of adaptive sampling (Fig. 1e), sug-
gesting that 1 s decision time could be too short to effectively enrich
RNAs. At a longer decision time of 3.5 s, we obtained 16,227 reads in
bulk sequencing and 19,867 reads in adaptive sampling, which is a 22%
increase in read count (Fig. 1f). Themedian length of the rejected reads
increased from 276 bases to 372 bases as the decision time increases
from 1 to 3.5 s (Supplementary Fig. 1g), agreeing with the expectation
that more bases are sequenced when a longer data acquisition time is
used. At an even longer decision timeof6.5 s,weobtained 16,149 reads
that are mapped to GAPDH in bulk sequencing and 17,252 reads in
adaptive sequencing (7% increase, Fig. 1g). This indicates that at 6.5 s
decision time, toomany bases have been sequenced before a decision
is made for enrichment to be effective. In addition to the number of
reads that are mapped to GAPDH, we also calculated the total number
of bases that are mapped to GAPDH in adaptive sampling versus bulk
sequencing. We observed a 26.5% and 8% increase in the number of
bases mapped to GAPDH at 3.5 and 6.5 s of decision time of adaptive
sampling as compared to bulk sequencing (Fig. 1f, g). Additionally, we
observed a low false rejection rate of 2.8–5.7% for GAPDH in the
rejected pool, at different decision times, indicating that adaptive
sampling is performing accurately as expected (Fig. 1h). These results
converge that 3.5 s decision time is ideal to enrich transcripts of
interest.

Adaptive sampling depletes RNAs of interest in a
population of RNA
As a few of the most abundant transcripts can occupy most of the
sequencing reads3, depletion of abundant transcripts can allow
deeper sequencing of the less abundant transcripts in the pool. We
next tested adaptive sampling in the depletion mode to deplete an
abundant transcript of interest. We chose ENO2 as it is the most
abundant transcript out of the 4 RNAs (62.5%). As we had previously
observed that 1 s was too short (due to the translation speed of 70
bases per sec) to make confident decisions and 3.5 s was sufficient to
enable efficient enrichment, we tested an intermediate range of deci-
sion times from 2–4.5 s for the depletion mode of adaptive sampling,
using 50% of pores of the flow cell for bulk sequencing and 50% for
adaptive sampling, and sequencing to similar read depths at each
decision time (Supplementary Fig. 2a).

We started observing the depletion of ENO2 at a 2-s decision time,
with only short ENO2 transcripts being sequenced while the other
three transcripts are sequenced to full length (Fig. 2a and Supple-
mentary Data 2). This results in a decrease in the number of reads
mapped to ENO2 from54,580 reads in bulk sequencing to 12,730 reads
in adaptive sampling (Fig. 2b), and a net increase of 34% in the number
of readsmapped tonon-ENO2 transcripts in adaptive sampling (27,469
in bulk sequencing vs. 36,840 in adaptive sampling, Fig. 2b). However,
as we can still see longer reads of ENO2 being present at 2 s of decision
time (Fig. 2a), this suggests that 2 s of decision time is too short
because ENO2 transcripts are not being depletedproperly. As different
reads could have different lengths, we also confirmed the increase in
output in adaptive sampling at the base level (Fig. 2b–e). As expected,
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the number of bases that are sequenced before a decision is made to
reject or accept a read increases from 291 to 376 bases as the decision
time increases from 2 to 4.5 s (Supplementary Fig. 2b).

Like the enrichmentmode, weobserved that 3.5 s of decision time
is sufficient for efficient depletion of ENO2. At 3.5 s of decision time,
the number of reads mapped to ENO2 decreased from 56,695 reads in

bulk sequencing to 12,006 reads in adaptive sampling (4.72 fold
decrease), while reads on the three other transcripts increased from
28,844 reads in bulk sequencing to 37,174 reads in adaptive sampling
(29% increase).We also observed a similar decrease and increase in the
number of reads mapped to ENO2 and other transcripts at 4.5 s of
decision time respectively. ENO2 reads decreased from 50,139 reads in
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bulk sequencing to 9967 reads in adaptive sampling, while reads on
other transcripts increased from 26,542 reads in bulk sequencing to
33,631 reads in adaptive sampling (27% increase, Fig. 2d, e). We also
observed that 99.9% of the rejected reads belong to ENO2 at each
decision time (Fig. 2f), with less than 0.1% of falsely rejected reads,
suggesting that the depletion mode of adaptive sampling is more
accurate than that of enrichment mode (Figs. 1h and 2f).

In addition to depleting a single RNA from the population, we
tested depleting two transcripts at the same time. Depleting both
ENO2 and GAPDH from the population simultaneously using 3.5 s
decision time resulted in a decrease of ENO2 from 52,850 to 12,786
reads (4.1X reduction), a decrease of GAPDH from 12,113 to 4268 reads
(2.84X reduction, Fig. 2g and Supplementary Fig. 2c), and a collective
increase of the other two transcripts (18S rRNA andACTB) from 15,048
to 18,952 reads (1.26X increase, Fig. 2g). At the base level, we obtained
18.03 million reads for 18S rRNA and ACTB in bulk sequencing, and
22.15 million bases in adaptive sampling (22.8% increase, Fig. 2g).
Studying the population of rejected reads indicated that >99.9% of the
rejected reads belong to GAPDH and ENO2, indicating that depleting
two transcripts simultaneously is effective with no falsely rejected
reads (Fig. 2h).

Adaptive sampling can be applied to transcriptomes to deplete
or enrich specific RNA populations
As the efficiency of enrichment/depletion in a small group of tran-
scripts might differ from that in a transcriptome, we applied adaptive
sampling to study the transcriptome of the pathogenic fungi Candida
albicans. Candida albicans is a commensal fungus that is typically
found on themucosal surfaces of healthy individuals32. However, it can
become invasive and infect individuals when they are immuno-
compromised. We first performed two replicates of direct RNA
sequencing and detected 3877 transcripts with at least 5 reads in each
replicate. We observed that the top 150 transcripts occupy 55% of all
sequencing reads in the Candida albicans transcriptome (Fig. 3a),
making it difficult to capture the less abundant transcripts.

To determine whether we can perform adaptive sampling to
capture a small fraction of the Candida albicans transcriptome, we
selected 319 transcripts in the 80th–90th quantile of gene expression
(Fig. 3b and Supplementary Data 3). These 319 transcripts include 41
genes that are important for Candida albicans to transition from yeast
to hyphae stages for infection and comprise about 5.4% of its tran-
scriptome. Using adaptive sampling at 3.5 s decision time to enrich for
these 319 transcripts, we observed that only 1.9% of all rejected reads
belonged to the 319 transcripts, indicating a high accuracy in selecting
for genes of interest at a transcriptome level (Fig. 3c). To determine
whether adaptive sampling increased the absolute number of reads
from the 319 transcripts as compared to bulk sequencing, we
sequenced 50% of a flow cell using adaptive sampling and the other
50% of the same flow cell without adaptive sampling to control for any
variability between library preparations,flowcells and timeof the runs.
From 48 h of sequencing, we obtained a total number of 15,586 and
12,480 reads for 319 transcripts in bulk sequencing and adaptive

sampling respectively, indicating that adaptive sampling does not
result in more reads in the enrichment mode (Fig. 3d and Supple-
mentary Fig. 3a).

We next tested a depletion experiment to deplete away the rest of
the transcripts in the transcriptome (4997 transcripts, 95% of our
transcriptome) to enrich our 319 transcripts of interest. We first
checked that the depletion mode indeed works by examining the
transcripts in the rejected pool.We observed that 99.7% of the reads in
the rejected pool belong to the transcripts for depletion, while only
0.3% belonged to our transcripts of interest, indicating that the
depletion worked as expected (Fig. 3e and Supplementary Data 4). To
determine whether the depletionmode results inmore reads from the
319 genes, we again sequenced 50% of a flow cell using the depletion
mode of adaptive sampling and the other 50% without adaptive sam-
pling for 48h. We obtained a total of 35,057 reads for 319 genes in
adaptive sampling, as compared to30,912 reads in bulk sequencing (an
increase of 13.4%, Fig. 3f and Supplementary Data 4), indicating that
the depletionmode of adaptive sampling does increase the number of
reads belonging to transcripts of interest (Supplementary Fig. 3b).

In addition to directly enriching for a specific RNA(s) of interest,
another common strategy to enrich transcripts is to deplete the most
abundant genes so that the rest of the transcriptomecanbe sequenced
deeper. Following this logic, we depleted the 150 abundant transcripts
in the Candida albicans transcriptome that comprise 55% of the
sequencing reads in bulk sequencing. In total, 98.6% of the transcripts
in the rejected population belong to these 150 transcripts, indicating
that adaptive sampling is working (Fig. 3g and Supplementary Data 5).
In total, 50–50% sequencing with and without adaptive sampling for
68 h showed an 11.15% increase in the reads belonging to the rest of the
transcriptome (Fig. 3h and Supplementary Fig. 3c), demonstrating that
depleting the most abundant transcripts can result in deeper
sequencing of the remaining RNAs. This strategy is particularly helpful
for transcript discovery when one is interested in identifying new and
poorly expressed RNAs in the transcriptome.

Longer transcripts aremore efficiently depleted and enriched in
the transcriptome
To determine whether there are features that determine an RNA’s
ability to be enriched or depleted in the transcriptome, we tested the
impact of the length and abundance of the transcripts in adaptive
sampling. To do this, we tested the efficiency of depletion for tran-
scripts that are between 200–400, 400–600, 600–1000 bases, and
longer than 1000 bases, in the sample where we depleted 4997
transcripts. We observed that transcripts that are shorter than 600
bases are not depleted effectively and that the longer transcripts are
better depleted (Fig. 4a and Supplementary Fig. 4a). Shorter tran-
scripts are also depleted less efficiently when we apply adaptive
sampling in enrichment mode to enrich the 319 transcripts (Sup-
plementary Fig. 4b). To test the dependency of transcript lengths
with their ability to be enriched, we investigated the efficiency of
enrichment in different transcripts when we deplete the top 150
abundantly expressed genes. We observed a weak trend whereby

Fig. 1 | Adaptive sampling enriches for transcripts of interest. a Schematic
showing the nanopore adaptive sampling sequencing workflow. b Schematic of
four transcripts that were generated by in vitro transcription (IVT), and then used
for adaptive sampling sequencing. The four genes are labeled with different colors
as shown. c Table showing the parameters for break time (decision times) and the
obtained read numbers during different decision times for adaptive sampling in
bulk sequencing and in adaptive sampling at different decision times. The base
counts from Adaptive sequencing are labeled orange. d IGV plots showing the
distribution of read coverage along the length of GAPDH, ACTB, 18S rRNA, and
ENO2 after GAPDH enrichment by adaptive sampling. We tested different decision
times (1, 3.5, or 6.5 s) for adaptive sampling. Left: Schematic showing parameters
for bulk and adaptive sequencing, using 50% of the pores of a flow cell for bulk

sequencing and 50% of the pores for adaptive sequencing at 1 s (e), 3.5 s (f), and
6.5 s (g), decision times. Left Middle: Bar plots showing the total number of bases
obtained on GAPDH, ENO2, 18S rRNA, and ACTB using adaptive sampling and bulk
sequencing. Right Middle: Bar plots showing the number of reads mapped to
GAPDH, ENO2, 18S rRNA, and ACTB in normal bulk sequencing (from 50% of the
pores) and in adaptive sampling sequencing (from the other 50% of the pores) at
different decision times. Right: Bar plots showing the percentage of accepted reads
in adaptive sequencing as compared to bulk sequencing for each transcript. The
color labels are as shown. h Bar plots showing the number of reads from GAPDH,
ENO2, 18S rRNA, and ACTB in the rejected reads pool at different decision times.
The color labels are as shown.
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Fig. 2 | Adaptive sampling depletes transcripts of interest. a IGV plots showing
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sampling. Left: Schematic showing parameters for bulk and adaptive sequencing,
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The color labels are as shown. f Bar plots showing the number of reads from

GAPDH, ENO2, 18S rRNA, and ACTB in rejected-reads pool at different decision
times. g Left: Schematic showing parameters for bulk and adaptive sequencing for
depleting ENO2 and GAPDH, using 50% of the pores of a flow cell for either bulk
sequencing or adaptive sequencing at 3.5 s decision time, to deplete ENO2 and
GAPDH. Left Middle: Bar plots showing the total number of bases obtained on
GAPDH, ENO2, 18S rRNA, and ACTB using adaptive sampling and bulk sequencing
at3.5 s decision time. RightMiddle: Bar plots showing thenumber of readsmapped
to GAPDH, ENO2, 18S rRNA, and ACTB in bulk sequencing and accepted pool of
adaptive sampling sequencing at 3.5 s decision time. Right: Bar plots showing the
percentage of accepted pool reads in adaptive sequencing as compared to bulk
sequencing for each transcript. h Bar plots showing the number of reads from
GAPDH, ENO2, 18S rRNA, andACTB in the rejected reads pool after depleting ENO2
and GAPDH using 3.5 s decision time. The color labels are as shown.

Article https://doi.org/10.1038/s41467-023-44656-3

Nature Communications |          (2024) 15:481 5



longer transcripts are better enriched (Fig. 4b and Supplementary
Fig. 4c). These results agree with the 3.5 s decision time in adaptive
sampling, which translates to around 350 bases being sequenced
before the decision is made to accept or reject a read. In addition to
length, binning transcripts according to their abundance, after the
top 150 transcripts are depleted, showed that poorly abundant
transcripts are less enriched as compared to more abundant tran-
scripts (Supplementary Fig. 4d). In contrast, binning transcripts
according to their polyA tail length did not show differences in their

ability to be depleted in the 4997 transcripts (Supplementary
Fig. 4e, f).

Asmost of the sequencing reads in a cell aremapped to abundant
transcripts, we investigated whether there are novel transcripts or
isoforms in theCandida albicans transcriptomebydepleting all known
transcripts in its genome using existing annotations33–36. We identified
600 reads that fall on 26 new transcripts and variations of transcripts
that have not been previously reported in existing annotations or lit-
erature (Supplementary Data 6). These transcripts are also found in
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bulk sequencing and are not enriched in our adaptive sampling library
(Supplementary Fig. 5a). To determine why these transcripts are
poorly enriched in adaptive sampling, we plotted the distribution of
their abundance and length and compared that to annotated Candida
albicans transcripts. We observed that these novel transcripts are
generally shorter in length (Supplementary Fig. 5b) andmuch lower in
abundance (Supplementary Fig. 5c) and as compared to annotated
transcripts. As length and abundance both contribute to efficiency in
enrichment, these two factors probably contribute to the transcripts
being poorly enriched in adaptive sampling. Out of these 26 tran-
scripts, 17 of them are antisense to existing transcripts or are tran-
scribed in between two existing transcripts, indicating that the
Candida albicans transcriptome is more complex than previously
appreciated (Fig. 4c, d).

Last, as adaptive sampling results in frequent current reversal to
eject off-target transcripts, we tested the effect of adaptive sampling
on pore health using 50–50% with and without adaptive sampling for
sequencing on a single flow cell. We observed that the number of
single pores, which corresponds to the number of available pores,
decay at a similar rate for adaptive sampling and bulk sequencing
(Supplementary Fig. 5d, e), confirming that the health of the pores is
similar with and without adaptive sampling at these levels of
enrichment.

Discussion
The discovery of new and poorly abundant transcripts, as well as their
gene organization, remains a challenge in transcriptomics because
RNA expression varies by 105 across different transcripts37. As such,
traditional RNA sequencing needs to sequence through all the abun-
dant transcripts before we can discover and better understand the
structure and function of the poorly expressed transcripts. Here, we
tested adaptive sampling using direct RNA sequencing to define the
parameters that enable enrichment and depletion of transcripts. We
applied adaptive sampling to individual RNAs andpopulations of RNAs
in an in vitro transcribed pool and the transcriptome, respectively. We
showed that depleting unwanted transcripts can enrich RNAs of
interest. Additionally, longer and more abundant transcripts are more
efficiently enriched and depleted in RNA populations and we did not
observe a decrease in the health of the pores involved at the enrich-
ment levels observed in these experiments. We also identified 26 new
transcripts in the Candida albicans transcriptome, contributing to our
understanding of the complexity of its transcriptome.

One main caveat of the current version of adaptive RNA sampling
strategy is that it takes a relatively long amount of time to decide
whether to reject or accept a read (3.5 s plus the amount of time to
base call, map and decide) as compared to the average length of an
mRNA. As the average length of a eukaryotic RNA ranges from
1200–1800 bases38, this decision time translates to ~350 bases, and
currently limits the effectiveness of adaptive RNA sequencing on the
transcriptome. As such, although we do observe significant enrich-
ments of transcripts of interest in the accepted pool, the total number

of reads belonging to the transcripts of interest only increased by 30%
in the IVT pool and 13% in the depletionmode of adaptive sampling for
the Candida albicans transcriptome. We believe that adaptive sam-
pling of RNA will be more effective in a population of long RNAs,
whereby the number of bases that need to be sequenced to determine
the read’s identity becomes a smaller fraction of its total length.
Additionally, reducing the amount of computational time needed to
determine the identity of the transcript, to eject the read of interest,
and to receive new RNA molecules will further improve adaptive
sampling in future. As this is an early rendition of adaptive sampling on
RNA and an area of active research, we believe that future improve-
ments in processing and pore longevity will also further facilitate the
utility and adoption of adaptive sampling in transcriptomes.

Methods
Generation of in vitro transcription (IVT) RNA and polyA RNA
The RNA benchmarkers were generated by HiScribe TM T7 High Yield
RNA Synthesis Kit (NEB #E2040S) from PCR products. Candida albi-
cans transcriptome total RNA was extracted by TRIzol, and the polyA
RNAwaspurified by Poly(A)Purist™MAGKit (Thermo Fisher, AM1922).

Library preparation
In total, 200 ng total of in vitro transcribed (IVT) RNAs mixed in
equimolar ratios or 800 ng poly-A enriched Candida albicans tran-
scriptome was used for library preparation with the direct RNA
sequencing kit (SQK-RNA002, Oxford Nanopore Technologies).
Libraries were loaded on MinION R9.4.1 flow cells and sequenced on
the GridION-Mk1.

Adaptive sampling setup using MinKNOW
Adaptive sampling runs were set up in MinKNOW GUI (version
22.10.5), with modifications to decision times made to “/opt/ont/
minknow/conf/package/sequencing/sequencing_MIN106_RNA.-
toml” under the “break_time_in_seconds” parameter. For depletion
runs, an additional parameter modification was applied (deple-
te_stop_receiving_min_sequence_length = 600). Live basecalling was
performed using Guppy 6.3.8, using the high accuracy (HAC)model.
Enrichment or depletion targets were provided as FASTA indexes
(“.mmi”), using the minimap2 indexing preset (“sr”) for short reads.
EachMinION flow cell was divided in half, with 256 channels running
regular bulk sequencing and the other 256 channels performing
adaptive sampling with the appropriate gene panels. For IVT
adaptive sampling, runs proceeded for ~3 h. For Candida albicans
experiments, runs were stopped at either the 48-h or 68-h mark.

Data preprocessing
FASTQ output files that passed the Q-score threshold value of 7 were
used for data analysis. Output from adaptive sampling were grouped
based on adaptive sampling decisions as reported in the “adaptive_-
sampling_[flow cell id]_[run id].csv” file generated during the run, with
“stop_receiving” or “no_decision” reads included in the accepted pool

Fig. 3 | Adaptive sampling enriches RNA populations in the transcriptome.
a Bar plots showing the percentage of reads that the top 50, 100, 150, 500, and
1000 expressed genes occupy in bulk sequencing data. b Bar plots showing the
distribution of transcript abundance in the Candida albicans transcriptome. In
total, 319 genes from the 80–90th percentile of abundant genes are selected for
enrichment. cNumber of total reads obtained from319 transcripts using either 50%
bulk sequencing or adaptive sampling (enrichment mode). Top: Schematic show-
ing the experimental design: 50%of thepores are set forbulk sequencing (gray) and
adaptive sampling (blue) in a flow cell. Bottom, Bar plots showing the number of
reads from the selected 319 genes and the rest of the transcriptome in the rejected
read-pool after adaptive sampling. d Bar plots showing the number of reads
belonging to the 319 selected genes in bulk sequencing and adaptive sampling.
e Number of total reads obtained from 319 transcripts using either 50% bulk

sequencing or adaptive sampling after depleting 95% of the transcriptome. Top:
Schematic showing the experimental design: 50% of the pores are set for bulk
sequencing (gray) and adaptive sampling (blue) in a flow cell. Bottom, Bar plots
showing the number of reads from the selected 319 genes and the rest of the
transcriptome in the rejected read-pool after adaptive sampling. f Bar plots
showing the number of reads belonging to 319 genes and the other 4997 genes
upon depleting 95% of the transcriptome. g Top: Schematic showing the experi-
mental design: 50% of the pores are selected for bulk sequencing and adaptive
sampling in aflowcell. Bottom, Bar plots showing thenumberof reads belonging to
the top 150 genes and the rest of the transcriptome in the rejected read-pool. h Bar
plots showing the number of reads belonging to the rest of the transcriptome from
50% of pores that performed bulk sequencing and adaptive sampling by depleting
the top 150 abundant genes. The color labels are as shown.
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Fig. 4 | Longer transcripts are enriched better in the transcriptome.
a Scatterplots showing the percentage of reads belonging to the unenriched 4997
transcripts of different lengths (200–400bp, 400–600bp, 600–1000bp,
>1000bp) in bulk sequencing (X-axis) and in adaptive sampling (Y-axis), after
enrichment for 319 genes. b Scatterplots showing the percentage of reads
belonging to the rest of the transcriptome with different lengths (200–400bp,

400–600bp, 600–1000bp, >1000bp) in bulk sequencing (X-axis) and in adaptive
sampling (Y-axis), after depleting the top 150 genes. c, d IGV plots showing the
location and read count of newly identified transcripts through adaptive sampling
by depleting all known transcripts. The Waston strands are labeled blue, and Crick
strands are labeled brown.
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and “unblock” reads included in the rejected pool. In the split flow cell
setup for Candida albicans experiments, reads were first assigned to
regular bulk sequencing or adaptive sampling channels utilizing
read_id and channel information provided in the “sequencing_sum-
mary_[flow cell id]_[run id].txt” file. Reads in the respective categories
were aligned to a reference consisting of sequences of IVT transcripts
or a reference transcriptome for Candida albicans using minimap2
(version 2.24) under the option “-ax map-ont”39. Aligned reads
were subsequently filtered using SAMtools (version 1.14) with the
-F 2308 flag to remove unmapped, supplementary and secondary
alignments40.

Read enrichment calculation
For adaptive sampling with IVT RNA mixes, the efficiency of enrich-
ment across various decision times was assessed by calculating the
proportions of each transcript within the pooled of accepted reads
(combination of “stop_receiving” and “no_decision” outcomes).

For adaptive sampling experiments with Candida albicans, the
50:50 splitflowcell setup allowed for direct comparisonof read counts
for transcripts of interest under regular bulk sequencing and adaptive
sampling conditions, keeping consistent the library, flow cell and
run time.

Pore health analysis
Pore health analysis was performed using a Candida albicans 68 h run
in the split flow cell configuration. Pore state information at each pore
scan (occurs at 1.5 h intervals) was obtained from the “por-
e_scan_data_[flow cell id]_[run id].txt” file generated with each Min-
KNOW run. The single_pore state, corresponding to the number of
active pores available for sequencing was computed for each half of
the flow cell for a direct comparison of pore health and sequencing
capacity during regular bulk sequencing and adaptive sampling runs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the
corresponding authors upon request. The raw sequences data was
uploaded to European Nucleotide Archive https://www.ebi.ac.uk/ena/
browser/home. The accession numbers are uploaded and archived at
ENA with accession PRJEB70914.
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