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Motion and teleportation of polar bubbles in
low-dimensional ferroelectrics

S. Prokhorenko 1 , Y. Nahas 1, V. Govinden2, Q. Zhang2,3 , N. Valanoor 2 &
L. Bellaiche 1

Electric bubbles are sub-10nm spherical vortices of electric dipoles that can
spontaneously form in ultra-thin ferroelectrics. While the static properties of
electric bubbles are well established, little to nothing is known about the
dynamics of these particle-like structures. Here, we reveal pathways to rea-
lizing both the spontaneous and controlled dynamics of electric bubbles in
ultra-thin Pb(Zr0.4Ti0.6)O3 films. In low screening conditions, we find that
electric bubbles exhibit thermally-driven chaoticmotion giving rise to a liquid-
like state. In the high screening regime, we show that bubbles remain static but
can be continuously displaced by a local electric field. Additionally, we predict
and experimentally demonstrate the possibility of bubble teleportation - a
process wherein a bubble is transferred to a new location via a single electric
field pulse of a PFM tip. Finally, we attribute the discovered phenomena to the
hierarchical structure of the energy landscape.

Dipolar topological patterns in ferroelectrics hold extraordinary
technological potential for information storage and processing due to
their nanometer length scale, stability, and electric field sensitivity. Of
particular interest are the so-called polar or electric bubbles, theore-
tically predicted1,2 to spontaneously form in Pb(Zr,Ti)O3 (PZT) thin
films3. Two closely resembling varieties of electric bubbles (achiral and
chiral) were also recently observed at room temperature in Pb(Zr,Ti)
O3/SrTiO3 heterostructures

4 and PbTiO3/SrTiO3 superlattices
5.

Here,we focus on achiral bubbles typical for Pb(Zr0.4Ti0.6)O3-based
systems. Structurally, such a bubble can be described as a three-
dimensional vortex composed of local electric dipoles (Fig. 1a). It con-
sists of a core axis oriented perpendicular to the films’ surface wherein
the local dipoles are pointing along up (or down) out-of-plane direction.
The core is belted by a toroidal vortex, which can be visualized as a
dipolar vortex tube deformed and glued into a doughnut shape3,6. The
whole structure is confined within a spherical boundary on which the
dipoles follow the meridian lines in the direction opposite to the core
polarization. The latter allows for a seamless embeddingof thebubble in
a homogeneously down (or up) polarized matrix domain. Thereby, the
structure of a bubble closely resembles the distribution of flux lines in
the so-called Hill’s spherical vortex7—a model soliton meant to

approximate the structure of vortex rings in fluids and gases. Alter-
natively, the polar structure of a bubble can be compared with the dis-
tribution of electric field lines in the so-called anapoles8.

Topologically, electric bubbles share similarities with magnetic
skyrmions9. For example, a constant latitude cross-section of a bubble
produces a dipolar skyrmion texture characterized by an integer
Skyrmion number5,10. Due to this fact, electric bubbles are also termed
polar skyrmions10. To illustrate this point, we show in Fig. 1b, c a
simulated structure of a hexagonal bubble lattice (see Methods) in a
five u.c. thick Pb(Ti0.4Zr0.6)O3 film. More specifically, Fig. 1b presents
the distribution of local electric dipoles within a plane located one u.c.
below the top interface, while Fig. 1c shows the same distribution
within a plane one u.c. above the bottom interface. These latitudinal
cross-sections allow us to clearly see the Néel skyrmion textures pro-
duced by each bubble. Further details on the structure of electric
bubbles can be found in recent review articles3,11.

As of today, the static properties of electric bubbles are well
understood. Particularly, we know that standalone bubbles can be
deterministically written and erased12 or spontaneously form bubble
arrays and lattices under external bias4,10,13,14. Notably, the latter phe-
nomenon is remarkably similar to the formation ofmagnetic skyrmion
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patterns in thin films of chiral magnets9. At the same time, the
dynamics of electric bubbles still remain unexplored. For example, it is
not clear whether electric bubbles can spontaneously move like their
magnetic siblings in the so-called skyrmion liquids15?Or, canone rather
induce a deterministic motion of standalone bubbles akin to the
current-driven displacement of magnetic skyrmions16? These unan-
swered questions are further supported by the recent reports of both
the spontaneous13 and induced17 motion of electric dislocations or
merons10. Such dipolar structures are essentially half-bubbles attached
to the end of a polar vortex tube6,18. While having fundamental
importance, the particle-like dynamics bubble dynamics could open
doors to new technological applications. Indeed, controlled bubble
motion could enable dynamically re-configurable electronic circuits19,
while the spontaneous motion of electric bubbles can be employed in
stochastic computing20. Finally, the discovery of bubble dynamics
could also entail new physical phenomena. For example, having in
mind the coupling of electric bubbles to electrons15, onemight wonder
whether dynamical bubble states could reveal novel electron phases.
Motivated by these prospects, we here explore ways to realize both
spontaneous and controlled motion of electric bubbles.

Results
First, we consider the possibilities of spontaneous motion of electric
bubbles at room temperature. For this, we note that the spontaneous
motion of magnetic skyrmions was observed in the vicinity of the
skyrmion latticemelting triggered by anexternalmagneticfield15 when
the skyrmion stability is significantly weakened. Thus, it appears pro-
mising to consider bubble states in the vicinity of field-induced tran-
sition regions.

Stability of bubble states with varying bias and screening
In order to tune the stability of bubble states6, we use a combination of
two external parameters—the constant out-of-plane electric field Ez
and the screening of interfacial bound charges β. Both Ez and β were
previously shown to be of utmost importance for the stability of

bubble states1,2,4,10,21. Furthermore, both parameters can be tuned in
experiments. For instance, changing the screening can be achieved by
sandwiching the PZTfilmwith SrTiO3 slabs of varying thickness

21. Here,
in order to get a complete picture, we numerically compute the full
(Ez, β) phase diagram at room temperature. To obtain this phase dia-
gram, we use ab initio-based effective Hamiltonian simulations22. In
these simulations, we employ a 32 × 32 × 5 supercell to mimic a 2nm
thick PZT film with in-plane periodic boundary conditions. The inter-
facial screening β is introduced within an atomistic approach to
depolarizing field calculations in ultra-thin ferroelectrics23. Physically,
β can be seen as the fraction of the bound charge screened at the
surfaces of the two-dimensional structure, with β =0 corresponding to
the ideal open circuit and β = 1 to the ideal short circuit electrical
boundary conditions. Finally, the film is assumed to be under a −2%
epitaxial strain to mimic epitaxial growth on a SrTiO3 substrate. Fur-
ther technical details are described in the Methods section.

The variation of the bubble density with Ez and β obtained from
Monte Carlo relaxation is presented in Fig. 2a. The corresponding
phase diagram is shown in Fig. 2b. As it can be seen, at low screening
and bias magnitudes, the system features a nanostripe domain struc-
ture (St). The stripes progressivelybreakupon increasing either Ezor β,
which results in a hexagonal bubble lattice14 (bub). Finally, at high bias
magnitudes and good screening conditions, our simulations predict a
homogeneously polarized state (FE). Hereon, we will denote the bias
values corresponding to St-bub and bub-FE transitions as Ebub and EFE,
respectively.

On the one hand, these results are fully in line with previously
reported data. Indeed, the described sequence of stripe-bubble-
monodomain ((St-bub-FE)) transitions is well documented1,2,6,10. On
the other hand, the calculated phase diagram reveals two presently
unknown special points, which, as we will show below, are manifesta-
tions of a new physical phenomenon.

The first special point is marked by a blue circle in Fig. 2b and
corresponds to a tri-critical point on the bub-FE line. It occurs at
β⋆ ≈0.86. Consequently, the bub-FE transition is continuous for β < β⋆

Fig. 1 | Dipolar structure of electric bubbles. a Schematic structure of an electric
bubble. The arrows represent electric dipoles colored according to their out-of-
plane Cartesian component. The downwards-pointing dipoles (red arrows) corre-
spond to the core of the bubble. The light-gray surfaces correspond to the inner
toroidal vortex (light gray torus) surrounding the core and the outer boundary of
the bubble (light gray sphere). The electric bubble is confined between the top and
bottom interfacesof the PZTfilm (not shown) so that the core ispolarized along the

out-of-plane z-axis. Electric bubbles most often form partially ordered arrays or
hexagonal lattices. b, c The simulated planar cross-sections of a hexagonal bubble
lattice one u.c. above (b) and below (c) the middle plane of the film. Within such
cross-sections, the bubble gives rise to a Néel skyrmion pattern (red arrows). The
skyrmions above and below the equatorial plane feature the same polarity and a
mutually opposite sense of Néel rotations. In panels b and c, local dipoles are
represented by arrows colored according to the dipole’s out-of-plane component.
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and discontinuous for β > β⋆. Notably, the position β⋆ of the tri-critical
point is temperature dependent. For instance, at 10 K, we find that the
bub-FE transition is discontinuous for all of the considered β values.
Therefore, β⋆ moves toward lower screening conditions with
decreasing temperature. The second special point corresponds to the
intersection of the St-bub and bub-FE transition lines (marked by a
yellow square in Fig. 2b). As the screening is enhanced, the two critical
fields linearly decrease but also get closer together until coinciding at
β ≈0.875. In the casewhen screening is above this threshold point, our
simulations predict a single Ez-triggered first-order phase transition
line separating stripe domains from a homogeneously polarized state.

In fact, the intersection point is related to the change of transition
behavior at β⋆. At the first-order bub-FE transition, the polarization
experiences a jump. Similarly, the total area R of the film switched
along the field abruptly changes from below 100% to 100% at EFE. Such
discontinuity is all the more pronounced with increasing β. In other
words, the onset of the FE state is pushed to lower R values with
increasing β. At the same time, the bubble lattice is geometrically
constrained10 to occur for 69% <R < 100% (Supplementary Fig. 1). As a
result, the intersection point occurs when the FE state onsets at
exactly R = 69%.

The key finding is thus the much unexpected tri-critical point. As a
matter of fact, the possibility of a 2nd order transition from the bubble
lattice to a homogeneously polarized state appears somewhat puzzling.
Indeed, previous studies have reported that bub-FE transition has a first-
order character10 with both the density of bubbles and polarization
showing a field hysteresis10,13 in the vicinity of EFE. Such behavior was
naturally expected vis à vis the binodal nature of the EFE line10, but also
due to the topological stability of electric bubbles. Particularly, the latter
was shown to yield multiple meta-stable minima in the vicinity of EFE
corresponding to different realizations of low-density bubble arrays10.
Such staticmetastable states are signatures of phase coexistence known
to occur at the first-order discontinuous transitions.

Spontaneous bubble motion at the second-order transition
To clarify the origin of the tri-critical point, we thus inquire into the
microscopic mechanism underlying the continuous bub-FE

transformation. For this, we first inspect the evolution of the polar
pattern with Ez for β < β⋆. Figure 2c1–c2 shows the calculated dis-
tribution of the out-of-plane polarization within the middle plane of
the film at different values of the applied bias. At first sight, we observe
the previously reported sequence of the St-bub-FE transformations10

mediated by the gradual breaking of the polar stripes6. However, we
can also note some distinctive features of the dilute bubble arrays in
the vicinity of thebub-FE transition (Fig. 2c2). For instance,wecannote
that some bubbles in Fig. 2c2 have “fuzzy” boundaries (e.g., at
Ez = 40 − 42 × 107 V/m in Fig. 2c2). Moreover, the polarization contrast
for dilute bubble arrays is much lower than that of the bubble lattice
(e.g., Ez = 42 × 107 V/m vs. Ez = 36 × 107 V/m in Fig. 2c2). Such features
are not seen in the previously reported dilute bubble arrays at the
discontinuous transition regime6,10,13.

As a next step, we performed molecular dynamics simulations
(see Methods) of a hysteresis field cycle for β =0.8 at 300K. For this,
we have used the same effective Hamiltonian model, supercell geo-
metry, and the external parameter values as in the Monte Carlo
relaxations used to obtain the phase diagram (Fig. 2a, b). The zero field
molecular dynamics was initiated from the nanostripe configuration
obtained from the previously describedMonte Carlo relaxation. Then,
we progressively increased the applied field Ez from zero to 50× 107 V/
m with increments of 5 × 107 V/m. At each field value, we have per-
formed 150,000 integration steps (total trajectory time of 75 ps), with
the last 50,000 steps (25 ps) used to obtain statistics. Finally, the
decreasing field branch of the cyclewas performed in a similar fashion.

The calculated hysteresis of the average density of bubbles nb vs.
applied field is shown in Fig. 2d, where the increasing and decreasing
field branches are plotted with gray and yellow symbols, respectively.
Here, one can immediately note that nb exhibits a hysteresis at the
transition from nanostripes to bubbles. This feature is due to a rela-
tively shortmolecular dynamics relaxation time (25 ps) thatwe used to
accentuate possible hysteretic features. Indeed, our Monte Carlo
simulations do not show any hysteresis of nb at Ebub for β =0.8.
Therefore, the described discrepancy between the two branches is
rather indicative of slow relaxation dynamics. At the same time,
despite a fast rate of field change, the density variation in the vicinity of

Fig. 2 | Room temperature phase diagram and dynamical topological excita-
tions. a Variation of the bubble density nb with external field magnitude Ez and
screening strength β. The region of high nb values corresponds to the hexagonal
bubble lattice state (denoted as “bub'') separating the vortex tube or stripe phase
“St” from the homogeneously polarized state “FE''. For both the St and FE phases,
the bubble domain density nb is zero. b The computed bias field-screening phase
diagram at T = 300K. The blue circle marks a tri-critical point. The yellow square
indicates the crossing of transition lines. c1, c2 The distribution of the out-of-plane
component of electric dipoles within the middle plane of the 32 × 32 × 5 supercell
(12.8 nm× 12.8mm× 2 nm) at the different field values. The bright and dark regions
correspond to domains of opposite (up/down) polarity. The dipolar structure

snapshots in panels c1 and c2 are obtained for Ez values range of 14–26× 107 V/m
and 36–46× 107 V/mwith steps of 2 × 107 V/m, respectively.dThe field hysteresis of
bubble domain density obtained from molecular dynamics simulations at β =0.8
andT = 300K. The increasing (decreasing) field branches are plottedwith darkgray
circles (yellow triangles). Yellow and gray lines are guides for the eye. eMaps of the
running average of polarization within the middle plane of the supercell obtained
from molecular dynamics simulation at β =0.8, T = 300K, and E = 40× 107 V/m.
Panels e1 and e2 correspond to times t = 8psand t = 9ps, respectively. The averages
are performed over 20 configurations within the running window of 0.5 ps. The
blue circle highlights a region of a dynamic bubble displacement characteristic of
the second-order transition at β > β⋆.
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EFE does not show any pronounced hysteretic behavior. This obser-
vation confirms that the transformation from a bubble lattice to a
homogeneously polarized state at β = 0.8 is indeed a continuous
second-order transition. To explore the corresponding critical fluc-
tuations, we have visualized the molecular dynamics evolution of the
dipolar structure at Ez = 40 × 107 V/m. Two typical structural snapshots
are shown in Fig. 2e1–e2. Both panels show the distribution of the out-
of-plane components of dipoles in themiddle plane of the film. In both
cases, we see a bubble lattice structure with some vacancies but also
immediately notice that the position of electric bubbles is different in
Fig. 2e1 and Fig. 2e2 (e.g., the blue region in Fig. 2e1–e2. As a matter of
fact, an animation of the structural evolution (SupplementaryMovie 1)
clearly indicates that the bubble array is constantly changing in time as
bubbles chaotically displace. Moreover, we notice that, from time to
time, bubbles seem to “hop” from one position to another. Such a
dynamic process can be described as a progressive fading of a bubble
accompanied by a synchronous emergence of another bubble in a
nearby location. This process is visually remindful of teleportation.

Therefore, we can conclude that critical fluctuations under low
screening conditions (β < β⋆) give rise to a dynamical phase of electric
bubbles, which is, in some aspects, very similar to the magnetic sky-
rmion liquid15.

Notably, the spontaneous bubble dynamics at the continuous
bub-FE transition explain the fuzzy structural contrast in Fig. 2c2.
Indeed, a chaotically moving bubble leaves traces in the structure
averaged over multiple Monte Carlo sweeps and appears to occupy
several nearby locations at the same time. For instance, a single bubble
moving back and forth between two positions gives rise to peanut-
shaped gray features in Fig. 2c2 (e.g., Ez = 38 × 107 V/m).

Field-driven motion at the first-order transition
While the continuous transition entails spontaneous bubble dynamics,
the vicinity of the first-order bub-FE topological transformation
appears to be promising for the controlled bubble motion. Indeed, as
previously shown10, tuning the bias in the vicinity of the first-order
transition line allows low-density arrays of static bubbles to be
obtained. In other words, one readily obtains access to well-isolated
bubbles that would retain their position in the absence of external
stimuli.

The most natural possibility to consider is the motion induced by
a local electric field oriented along the dipolemoment of the bubble. If

such a field is applied close to the bubble, we naturally expect the
bubble to drift toward the point of the highest fieldmagnitude. To test
this idea, we have performed molecular dynamics simulations with a
local driving field profile approximating that of a Piezoresponse force
microscopy (PFM) probe24. The global electric field bias was chosen so
as to ensure a single electric bubble within the supercell. The simula-
tions are performed for β =0.8 but at the temperature of 10 K. The low
temperature is chosen to separate the effects of thermal fluctuations
from that of the field perturbation. Under these conditions, the bub-FE
transition is of the first order for all of the considered β values. The
corresponding phase diagram obtained fromMonte Carlo simulations
is shown in Supplementary Fig. 2.

The results presented in Fig. 3 reveal twodistinct effects provoked
by the considered electric field perturbation, depending on its mag-
nitude and the distance of the tip from the center of the bubble
domain. Namely, for a tip located up to 3 nm away from the original
bubble location and for amaximum electric fieldmagnitude below the
coercive field value, we find that the driving field entails a continuous
displacement of the bubble (see Fig. 3a). During such a displacement,
the bubble first elongates towards the tip position before contracting
once the polarization within the area beneath the tip is reversed.
During this process, the overall Skyrmion charge is conserved (see
Fig. 3c). Performing the linear fits of the evolution of the bubble
position with time (Supplementary Fig. 3), we find that the bubble
velocity during such motion increases with increasing driving field
magnitude and is of the order of 2 nm/ps or 2000m/s (Supplemen-
tary Fig. 4).

In the case where the distance between the bubble center and the
tip is larger than 3 nm, our simulations also predict a bubble creation/
annihilation process as seen in Fig. 3b. Under these conditions, a
maximum driving field magnitude is required to exceed the coercive
field. Specifically, we find that a new bubble domain is progressively
created beneath the simulated PFM tip while the bubble at the initial
position progressively disappears. This process is similar to sponta-
neous jumps observed at the continuous bub-FE transition (Fig. 2e).
Such transfer of the switched area is characterized by a synchronous
growth and erasure of the new and original bubbles, respectively, as if
the polar skyrmionwas being teleported towards the PFM tip. Here, by
teleportation, wemean the transfer, without traversing of the physical
space, of the state and energy associated with the inhomogeneous
dipolarorder.During this process, theoverall polarization shows lower

Fig. 3 | Electric-field-induced motion of polar bubbles. a Simulation of short-
range displacement of the bubble induced by the PFM tip located 2 nm away from
the bubble center (position of the tip indicated with a blue cross). The driving field
profile with amaximum local value of 21 × 107 V/m is assumed. As it can be seen, the
bubble displaces from its initial position (left-most image) towards the point right
beneath the PFM tip (right-most image) through a stretch-like motion (middle
image). b Time evolution of the structure when PFM tip (blue cross) is applied
5.5 nm away from the bubble center. Here, the local maximum of the field profile is
of 110 × 107 V/m. In this case, the local electric field creates a bubble domain

beneath the tip while simultaneously deleting the bubble domain at its initial
position. In panels, a andb, the left to right sub-panels showthedistributionof the z
component of polarization at times t =0, 0.6 ps, 0.75 ps, 0.8 ps, and 1 ps, respec-
tively. Blue to red colors correspond to negative to positive polarization values.
c, d Evolution of the Skyrmion number within the z = 2 and z = 4 planes and the
normalized out-of-plane polarization. Panel (c) and (d) correspond to the con-
tinuous motion and teleportation, respectively. All presented simulation results
were performed at 10 K and a background bias field Ez of 61 × 107 V/m.
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variation than during the continuous motion, while the overall Sky-
rmion charge conservation within the films’ planes is violated (Fig. 3d).

Origins of tri-critical behavior and underlying bubble dynamics
Thus far, we have demonstrated that the change of the bub-FE tran-
sition character can be ascribed to the change in the microscopic
behavior of electric bubbles. Namely, the continuous second-order
transition is characterized by critical fluctuations that lead to chaoti-
cally moving bubbles. In contrast, the first-order regime gives rise to
meta-stable states wherein the bubbles are static but can be displaced
by an external perturbation.

To rationalize these findings, we propose to look at different
realizations of bubble patterns as different microscopic states of the
PZT film. Each of these microscopic states can be uniquely described
by the overall number of bubbles Nb (equivalently, the bubble density
nb) and the set of positions X = fx1,x2,:::,xNb

g indicating the location of
each bubble.

States with different numbers of bubbles Nb have different inter-
nal energies ΔE. Indeed, adding or removing one bubble slightly
changes the overall out-of-plane polarization Pz of the film. This, in
turn, changes the Landau’s potential6

F ≈P2
z=εðβÞ � EzPz , ð1Þ

where ε denotes the screening-dependent zero-field susceptibility.
Additionally, the states with different Nb are separated by energy
barriers. Such barriers are related to the energy cost of dipole
switching during the bubble creation/removal. Based on these two
arguments, we can schematically represent ΔE as a parabolic curve
with multiple local minima (basins), as shown in Fig. 4a. In this graph;
we do not consider the dependence of ΔE on X. Therefore, the lowest
point of each basin corresponds to set of states with a fixed integer
number of bubblesNb rather than a singlemicroscopic state. Examples
of microscopic states within such sets for Nb = 2 and Nb = 4 basins are
shown below the δE graph in Fig. 4a.

We now turn to the dependence of the energy on the spatial
distribution X of bubbles. Such dependence determines the internal
structure of each Nb basin (Fig. 4a) and is schematically shown in
Fig. 4b. In fact, each basin in Fig. 4a consists of multiple sub-minima
(Fig. 4b) that correspond to various placements X of Nb bubbles. The
depths of this sub-minima slightly change with X as a result of two
factors—(1) the change in a local potential experienced by each bubble

and (2) the interaction between the bubbles. The former factor is due
to different atomic environments (Zr/Ti distribution) in the PZT alloy
and, possibly, structural defects such as oxygen vacancies. The second
factor comes from the change of distances between bubbles upon
changing X. Finally, the barriers between sub-minima in Fig. 4b are
determined by the energy needed to displace a single bubble fromone
position to another. Equivalently, the internal structure of each basin is
analogous to the Pierls–Nabarro potential associated with the motion
of, e.g., dislocations25 or ferroelectric domain walls26,27.

Overall, taking into consideration the dependence of energy on
Nb and X, we conclude that the energy landscape of bubble states has
a hierarchical structure with multiple basins (Fig. 4a), each frag-
mented into an exponentially large number of sub-minima (Fig. 4b).
Such structure explains our prediction of the bub-FE transition order
crossover as well as the underlying change in the behavior of
bubbles.

Indeed, both the position of the lowest energy basin and the
barrier heights in Fig. 4a are determined by the applied bias Ez and the
screening conditions β (Eq. (1)). The effect of these variables on the
energy profile can be understood by looking at the envelope function
which follows the position of the basins’minima (dotted line in Fig. 4a).
Due to the linear coupling of Ez and Nb (Eq. (1)), the increasing bias
shifts the global minimum of the curve to lowerNb values and changes
the slope at Nb =0. In contrast, the change of screening conditions
modifies the curvature of the ΔE envelope (1/ε coefficient in Eq. (1)).
Specifically, the energy profile becomes steeper when screening is
reduced. As a result, the barriers between neighboring basins are
effectively reduced at higher Ez and lower β values.

The described changes of the barrier heights allow for a crossover
from the first to the second order bub-FE transition with changing β.
Namely, under good screening conditions (β > β*), the barriers are high
enough to prevent thermal fluctuation-induced transitions between
the nearby Nb basins. Moreover, the intra-basin transitions between
sub-minima (Fig. 4b) are not possible. As a result, the static bubble
lattice can remain in ametastable state even at high Ez values. In such a
scenario, the transition from the bubble to the homogeneously
polarized state is discontinuous, as schematically shown in Fig. 4c.
Moreover, in the vicinity of the critical field, one observes multiple
meta-stable minima corresponding to states with different bubble
densities and different spatial distributions of bubbles. This regime
allows for deterministic writing and the erasure of individual static
bubbles12.

Fig. 4 | Hierarchical energy landscape of bubble states. a Dependence of the
internal energyΔE on the number of bubblesNb. Localminima (basins) correspond
to sets of microscopic states with a fixed number of bubbles Nb. Examples of
microscopic states located in basins with Nb = 2 (basin I) and Nb = 4 (basin II) are
shownbelow theΔE graph. Here, the bubbles are represented by gray circles. In the
vicinity of the globalminimum, the lowest energies of the basins follow a parabolic
envelope function shown as a dotted line. Each basin is further fragmented into
local sub-minima corresponding to different spatial distribution X of bubbles. The
internal structure of each basin has the shape of a Peierls-Nabarro potential sche-
matically shown for Nb = 2 basins in panel (b). Here, the local minima 1–3 corre-
spond to different positions x of one of the bubbles, as shown in the subpanels
below the graph. c Mechanism of the discontinuous first-order phase transition

from a bubble lattice to a homogeneously polarized state. Different curves corre-
spond to different values of applied bias Ez. The state of the system at each field is
represented by a blackdot. As Ez increases, the internal energy profile is tiltedwhile
the globalminimumshifts to lowerNb values.However, due to the barriers between
neighboring Nb basins, the system remains stuck in a metastable bubble lattice
phase (bub). An abrupt transition to the stable homogeneous state (FE) occurs only
when thefield-induced inclination ofΔEflattens out thebarriers.d For lower barrier
heights, the thermal fluctuations allow the system to jump from one basin to
another. The corresponding transitions are schematically shown as fuzzy black
dots. For each field magnitude, the system is thus able to find its global energy
minimum. In this case, the field-induced transition from the bubble lattice to a
homogeneous state has a continuous second-order character.
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The situation is drastically different for β < β*. In this case, the
barrier height is sufficiently small for thermal fluctuations to drive the
system to a global minimum at each value of Ez. The bub-FE transition
is thus continuous, as illustrated in Fig. 4d. In other words, at low
screening, the energy barriers are low enough for thermal fluctuations
to allow for transition between different Nb basins. Furthermore, from
Fig. 2e1–e2, we conclude that, at the continuous transition, the thermal

energy is also sufficient to overcome the barriers between different
sub-minima within a single Nb basin. As a result, thermal fluctuations
allow for the spontaneous motion of bubbles within the critical region
of Ez values.

To confirm the described mechanism and estimate the main
characteristics of the energy landscape, we have performed nudged
elastic band (NEB) simulations within the effective Hamiltonian
framework28. Since the vast configurational space with more than
30,000 degrees of freedom can pose problems with convergence, we
have chosen to focus on the limit of low-density bubble stateswith one
to three bubbles in the supercell (nb =0.006 nm−2 to 0.018 nm−2).
Moreover, to simplify the analysis, we eliminate the effects of chemical
disorder in PZT alloys by using the virtual crystal alloy (VCA) effective
Hamiltonian22. Such approximation is justified by the recent PFM
experiments12.

The computed energy variation along the NEB paths connecting
states with different numbers of bubbles is shown in Fig. 5a. These
calculations are performed for different Ez values in the vicinity of EFE.
As one can see, the slope of the envelope function at Nb is indeed
governed by Ez. The negative ΔE slope for Ez < 52 × 107 V/m increases
with the bias magnitude and becomes positive for Ez > 52 × 107 V/m. At
Ez ≈ 52 × 107, the derivative of the envelope function at Nb = 0 almost
vanishes so that the polar state with low bubble densities becomes
quasi-degenerate. The slope of the envelope also determines the bar-
riers for the transition between neighboring Nb basins. For example,
the barrier associated with erasing one bubble from a two-bubble
(Nb = 2) state is of the order of 0.5 eV at Ez = 49 × 107 V/mand is reduced
to about 0.2 eV at Ez = 55 × 107 V/m.

Having estimated the magnitude of energy barriers between
basins, we now explore the intra-basin structure. Figure 5b shows the
calculated energy profiles associated with bubble displacements for
Nb = 1 at Ez = 50 × 107 V/m and β =0.8. In these calculations, the initial
state contains one arbitrarily placed bubble (state A in Fig. 5b). In the
final state (state B in Fig. 5b), the bubble is displaced by Δx unit cells
along the [100]p.c. direction. The initial approximation of the transition
path corresponds to a linear superpositionof the initial andfinal states.

The total energy variations for different displacements Δx are
plotted with different colors and symbols. The corresponding barriers
at different biasfields are reported in Fig. 5b. For short, one to four unit
cell displacements, the barrier height increases with Δx from about
0.1 eV for Δx = 1 up to 0.8 eV for Δx = 4. The corresponding transition
paths closely resemble the continuousdisplacement of thebubble by a
nearby PFM tip shown in Fig. 3a or spontaneous continuous dis-
placements of bubbles triggered by critical thermal fluctuations. For
larger distances Δx, the energy barrier first decays and then sets at a
constant value for Δx > 7 u.c. In this latter case, the NEB transition path
corresponds to the bubble teleportation process shown in Fig. 3b. As it
can be seen from Fig. 5c, such behavior of the barrier height with the
displacement distance is universal for all of the considered bias mag-
nitudes. Furthermore, Fig. 4c clearly shows that the intra-basin barriers
decrease with increasing bias magnitude.

Finally, we have also probed the interaction between electric
bubbles in the dilute bubble limit at Ez = 55 × 107V/m. For this, we have
performed relaxation of the state with two bubbles separated by a
distance of up to 20 unit cells. Calculation of the total energies of such
states readily yields the pair-wise interaction potential shown in Sup-
plementary Fig. 5. As one can see, this result shows that electric bub-
bles behave as “hard spheres” - the energy of the system is essentially
independent of the distance between the bubbles at large separations
and steeply increases when the bubbles are brought close together.

Therefore, the results presented in Fig. 5 confirm the hierarchical
energy landscape structure. Moreover, Fig. 5(b) clearly indicates two
distinct possibilities for bubble displacements. Namely, at short dis-
tances Δx, our NEB simulations identify a path of a continuous motion
similar to the continuous displacements induced by a nearby PFM tip

Fig. 5 | Energy barriers from NEB simulations. a Calculated total internal energy
profile along the NEB paths connecting states with different numbers of bubble
domains Nb. Differently colored curves correspond to different values of the
applied bias field Ez. For each Ez value, ΔE corresponds to the difference between
energies of the state on the transition path and the homogeneously polarized state
(Nb =0). Schematic representations of states corresponding to different Nb values
are shown in subpanels below the graph.bThe total internal energy variation along
the transitionpaths between the single bubble stateswhere initial (state A) andfinal
bubble locations (state B) are separated by Δx unit cells along [001] p.c. direction.
All curves are obtained at the bias field Ez = 50 × 107 V/m. c Variation of the barrier
for bubble displacement with the distance Δx at different bias magnitudes. In
panels, a and b, ξ denotes the normalized distance along the NEB path with ξ =0
and ξ = 1 corresponding to initial and final states, respectively.
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(Fig. 3a). Such continuous motion is characterized by a relatively low
energy activation barrier of the order of less than 0.1 eV. Naturally,
moving in such a way, the bubble can cover larger distances. For
instance, the simulation results shown in Fig. 3a suggest that it would
be possible for a moving tip to drag a nearby bubble. Nonetheless, for
largerΔx, our NEB simulations also confirm another possible transition
path. Such a path is closely related to the tip-induced teleportation
shown in Fig. 3b and consists of the emergence of a bubble at a new
location while the original bubble fades out. Themere convergence of
the NEB chain to this path confirms that there is a distinct saddle point
corresponding to this process. Also, from Fig. 5c, it can be seen that
during teleportation, the system overcomes a larger energy barrier.
This observation is in linewith the larger requiredmagnitude of the tip
field (Fig. 3b).

Discussion
In this study, we have presented evidence for both spontaneous and
induced motion of electric bubbles. According to our simulations, the
former can be realized under poor screening conditions in the vicinity
of the second-order transition from the bubble phase to a homo-
geneously polarized state. Our simulations predict that, under such
conditions, the critical thermal fluctuations push bubbles over the
intra-basin energy barriers. Furthermore, we have shown that when
screening is enhanced, the greater barrier heights prevent sponta-
neous bubble dynamics. As a result, the increasing bias triggers a first-
order transition between the bubble and homogeneous states. Such
transition is also characterized by multiple meta-stable minima cor-
responding to various static configurations of bubble arrays. Thereby,
the vicinity of the first-order transition line can be used to induce
bubble motion by, e.g., local electric fields.

Notably, the phenomena that we predict are in line with the pre-
viously reported dynamics of magnetic skyrmions and polar disloca-
tions. For instance, the dynamical bubble state at the second-order
transition (Fig. 2e1 and Fig. 2e2) closely resembles the liquid phase of
magnetic skyrmions15. Moreover, our simulations of the tip-induced

continuous bubble dynamics (Fig. 3a) are conceptually similar to the
displacements of polar disclinations under the TEM beam17. In both
cases, the external perturbations distort the local energy landscape,
leading to a displacement of the correspondingpolar feature. Thereby,
we are confident that our predictions will soon find their experimental
confirmations in heterostructures comprising ferroelectric (PZT or
PTO) and dielectric layers.

For example, in order to experimentally realize a dynamical
bubble state, the screening has to be low enough so that an increasing
bias field triggers a continuous transition. This can be achieved by
varying the thickness of the dielectric spacer. Another possibility lies in
varying the height of the intra-basin barriers with an external para-
meter other than screening. For instance, for thinner ferroelectric
layers, the barrier heights will be lower as fewer dipoles will need to be
switched during the bubble motion. Finally, another possibility would
be to trigger a critical point by increasing temperature rather than
increasing the bias. In such a scenario, the height of the energy barriers
will not be affected, but the increasing thermal fluctuations could
activate bubble displacements.

Another result of our study is the teleportation of electric bub-
bles, which, thus far, do not have any analogs in ferroelectric or
magnetic systems. The origin of this phenomenon lies in the con-
servation of the number of bubbles that can be achieved only under
the right balance of the depolarizing and bias fields. Indeed, bubble
teleportation requires that thebubbledensity in the vicinity of the PFM
tip exceeds the equilibrium bubble density. Otherwise, the local field
would simply create a new bubble. In other words, external conditions
need to assure an energy increase with an increasing number of bub-
bles (e.g., Ez > 52 × 107 V/m in Fig. 5a). An experimental realization of
such a scenario can be a challenging task. Nonetheless, in order to
prove its feasibility, we have conducted PFM experiments with the
epitaxial Pb(Zr0.2Ti0.8)O3/SrTiO3/Pb(Zr0.2Ti0.8)O3 heterostructures
deposited on the La0.67Sr0.33MnO3 buffered (001)-oriented stepped
SrTiO3 substrate4. The thicknesses of the top layer PZT, STO space
layer, bottom layer PZT, and LSMO layer are 3 nm, 1 unit cell, 3 nm, and

Fig. 6 | Experiments on bubble teleportation. a PFM amplitude image of the
pristine domain statebefore applying thePFMpulse.bThedomain structure after a
+2.5 V pulse with a 0.2 s width was applied at the point X1 marked by a red cross.
R1–R3 are labeled as reference points. c Line profile along points 1–3, and R1 and R2
path before and after applying pulses, are shown in the left and right panel of (b),
respectively. d, e Schematic representation of the domain pattern along the line

profile before and after the pulse. The pulse creates a new nanodomain at point X1,
while domains at pointsX2 andX3eitherdisappear (i.e., point 2)or partlydisappear
with a faded contrast (i.e., point 3). The location of R1–R3 reference points remains
unchanged, with constant distances between each point, suggesting no observable
drifting during scanning.
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15 nm, respectively. To investigate the domain teleportation, a +2.5 V
pulse bias with a pulse width of 0.2 s was applied (through bottom
electrode to the probe) at a point approximately 10 nm away from the
nearest bubble domains (Fig. 6a). The second PFM domain image was
captured immediately after applying the pulse bias (Fig. 6b). By com-
paring the domain configurations before and after applying pulsed
bias, we note that the pulse creates a new nanodomain, while one the
nearest nanodomains (e.g., at points X2) disappears. Interestingly,
nanodomains located further away from the tip (i.e., at point X3 in
Fig. 6) appear suppressed, judging by the partially faded contrast in
Fig. 6b. These experiments thereby prove the experimental feasibility
of bubble teleportation.Gaining control over thisprocesswouldbe the
subject of our further studies.

In summary, in this study, we have presented evidence for
particle-like dynamics of polar bubbles. We hope that these findings
will inspire new research directions in the domain of polar topologies
and open new avenues of technological applications of electric bub-
bles. For example, given the similarities between bubbles and mag-
netic skyrmions, one might envision electric analogs of skyrmion-
based stochastic computing20 or racetrack memory16. Likewise, we
hope that our result will trigger new ideas in the field of magnetic
skyrmions.

Methods
All simulations are performed for a Pb(Zr0.4Ti0.6)O3 system with an
effective Hamiltonian model described in refs. 1,2,22,29. The (001)
oriented thin-film or slab geometry of ~2 nm (5 u.c.) thickness is
mimicked by a 32 × 32 × 5 supercell with periodic boundary conditions
imposed along [100] and [010] pseudo-cubic axes. For the results of
Fig. 3, the electric boundary conditions along the z-axis mimic elec-
trodes that effectively screen 80% of the polarization-induced surface
charges. The depolarizing field in each unit cell is computed using an
accurate atomistic model23 that accurately takes into account inho-
mogeneities of the polarization gradient distribution and hence
accounts for intrinsic size effects in low-dimensional ferroelectrics. For
all simulations, we assume a compressive strain of −2%. Such value
approximately accounts for the mismatch of lattice constants of the
cubic phases of strontium titanate (STO) and PZT. A first-principles-
based effective Hamiltonian model is used within Monte-Carlo30 (MC)
and molecular dynamics31 simulations to determine the equilibrium
microscopic states and dynamics of local electric dipoles in each
perovskite five-atom cell of these supercells. The validity of this
approach was demonstrated by previous theoretical studies of ultra-
thin PZT films under compressive strains that (1) yield the vortex stripe
domains that periodically alternate along [100] (or along [010])1,2, in
agreement with experimental observation32; (2) predict a linear
dependency between the width of these periodic stripes and the
square root of the film’s thickness33, as consistent with
measurements34; and (3) have also led to the prediction of various
topological defects such as vortices35, dipolar waves36, bubbles2 and
merons (or convex disclinations)10,37 in ferroelectrics, that have been
experimentally confirmed4,37,38.

The results presented in Fig. 1b, c and Fig. 2a–c of the manu-
script are obtained from Monte Carlo annealing simulations. For
each of the considered values of β, the system is first cooled from
2000 K down to 300 K with 50 K steps under zero external electric
field. Then, an external electric field with progressively increasing
magnitude is applied. Each run associated with constant values of
β, T, and E consists of 40,000MC sweeps with 20,000 sweeps to be
considered as the thermalization period. For both the cooling and
the external electric field simulations, the starting configuration for
the subsequent parameter value is taken to be the final microscopic
state obtained from the preceding run. Fig. 1b, c shows the ground-
state dipolar structure at 10 K. In molecular dynamics simulations,
we use a predictor–corrector numerical integration scheme31 with a
discrete time step of 0.5 fs.

To demonstrate the field-driven displacements of electric bub-
bles (Fig. 3), we have used the perturbing potential approximating an
electric field generated by a PFM probe. The specific external field
model employed here corresponds to the following electric
potential24

ϕ= � 2Q
4πϵ0

1
1 + ϵ1=ϵ0

X1

n=0

ζ nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz +2nhÞ2 + r2

q �

2

64

� 1� ϵ1=ϵ2
ð1 + ϵ1=ϵ0Þð1 + ϵ1=ϵ2Þ
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X1

n=0

ζ nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ðn+ 1Þh� zÞ2 + r2

q

3

75,

ζ =
ð1� ϵ1=ϵ0Þð1� ϵ1=ϵ2Þ
ð1� ϵ1=ϵ0Þð1� ϵ1=ϵ2Þ

,

ð2Þ

where h denotes the film thickness, ϵ0, ϵ1, and ϵ2 denote the vacuum,
film, and substrate dielectric permittivities, respectively. The z and r
indicate the out-of-plane and radial cylindrical coordinates. This
equation is derived under the assumption of the contact mode
operation of the tip (the tip located at the surface of the film). The
constant Q is determined so as to assure the proper normalization of
the corresponding electric field magnitude distribution. Specifically,
we require the maximum value of ∣∇ϕ∣ to be equal to the specified
magnitude E of the perturbing electric field. An example of the
resultingdistributionof the local driving electricfield is shown in Fig. 7.
Note that the total external electric field at each lattice site
corresponds to the sum of the bias background field constant within
the supercell volume and the position-dependent electric field
perturbation.

Data availability
Data supporting this study is available from the corresponding author
on request.

Code availability
The codes used in this study are available from the corresponding
authors on request.

Fig. 7 | Driving electricfield profile.Arrows indicate the direction of the position-dependent driving electric field within the y =0 plane of the 32 × 32 × 5 supercell for the
PFM tip located at x = y =0 and z = 5.5 u.c. Colors from purple to red indicate the increasing field magnitude normalized to its maximum value.
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