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Purely self-rectifying memristor-based
passive crossbar array for artificial neural
network accelerators

Kanghyeok Jeon1,2,7, Jin Joo Ryu2,3,7, Seongil Im4, Hyun Kyu Seo5, Taeyong Eom2,
Hyunsu Ju4 , Min Kyu Yang5 , Doo Seok Jeong 1 & Gun Hwan Kim 3,6

Memristor-integrated passive crossbar arrays (CAs) could potentially accel-
erate neural network (NN) computations, but studies on these devices are
limited to software-based simulations owing to their poor reliability. Herein,
we propose a self-rectifying memristor-based 1 kb CA as a hardware accel-
erator for NN computations. We conducted fully hardware-based single-layer
NN classification tasks involving the Modified National Institute of Standards
and Technology database using the developed passive CA, and achieved 100%
classification accuracy for 1500 test sets.We also investigated the influences of
the defect-tolerance capability of the CA, impact of the conductance range of
the integrated memristors, and presence or absence of selection functionality
in the integrated memristors on the image classification tasks. We offer valu-
able insights into the behavior and performance of CA devices under various
conditions and provide evidence of the practicality of memristor-integrated
passive CAs as hardware accelerators for NN applications.

Artificial neural networks (ANN) are indispensable for a wide range of
artificial intelligence (AI) applications, including real-world data pro-
cessing, such as pattern recognition, classification, and predictive
modeling1–8. However, the growing complexity of these applications
requires advanced ANN architectures capable of processing vast
amounts of data with high precision and low power consumption. The
simultaneous development of software and hardware is crucial for
accelerating NN computations. Various software-level approaches
have been proposed to obtain lightweight semantic segmentation
networks, including quantization, compression, and lightweight
architecture design9–14. Quantization and compression are effective
strategies, but result in a large loss of accuracy9–12. By contrast, the
design of lightweight architecture, such as depth-wise separable con-
volution, can enhance computational efficiency without sacrificing
accuracy13,14. Hardware accelerators such as graphic processing units

(GPUs), field programmable gate arrays (FPGAs), and application-
specific integrated circuits (ASICs) can speed up NN algorithms15–18.
However, these devices are still limited by the memory wall in the von
Neumann architecture and cannot meet the high-speed and low-
energy-consumption requirements of ANNs.

The process-in-memory (PIM) computing architectures have
recently been proposed to overcome the limitations of conventional
systems for advanced ANNs. These architectures have gained popu-
larity as alternatives to conventional computing systems because of
their highly advantageous system topology, which enables the con-
current implementation of data processing and storage in a single
chip.Whenprocessing units are directly integrated into thememoryof
a PIM architecture, computations can be performed in the memory,
thereby eliminating the need for data transfer between the memory
andprocessing units, significantly reducing datamovement overheads
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and enhancing energy efficiency. Moreover, the PIM strategy enables
parallel data processing with reduced energy consumption and
increased memory bandwidth, rendering it a promising solution for
applications that require high speed, low power consumption, and
complex ANN operations19–23. Indeed, PIM computing has achieved 10-
and 100–1000-fold improvements over CPU and GPU accelerators in
terms of speed and energy efficiency, respectively24.

Memristive crossbar arrays (CAs) have emerged as a key compo-
nent that serves as the memory unit in PIM architectures. These CAs
enable fundamental computational operations, with vector matrix
multiplication (VMM) as a crucial operation that exploits the principles
of Ohm’s and Kirchhoff’s laws. Accelerating VMM operations using
memristive CAs offers significant advantages in tasks that involve
heavy matrix computations such as speech and image classification.
The processing efficiency of these matrix-intensive tasks can be sig-
nificantly enhanced by harnessing the power of memristors. A key
benefit of memristors is their non-volatile nature, which profoundly
impacts the overall computing systemperformance. The non-volatility
of memristors eliminates the need for frequent data fetching and
communication between the memory and processing units. This
reduction in data movement minimizes latency and results in sub-
stantial energy savings. Consequently, memristor-based CAs could
potentially improve the performance of computing systems, particu-
larly in applications in which speed and energy efficiency are critical.

Recent studies have utilized memristor CAs to implement NN
applications. Various memristor devices, including magnetic random-
access memory (MRAM), phase-change random-access memory
(PRAM), and resistive random-access memory (RRAM), have been
integrated into CAs to accelerate NN computations. In particular,
RRAM has gained significant attention owing to its favorable char-
acteristics, including high scalability, good analog-switching ability,
excellent endurance, low power consumption, and high switching
speed25–35.

However, the integration of memristors into CAs is critically
challengedby sneakcurrents fromneighboring cells, which can lead to
interference and inaccurate results. This issue is commonly addressed
by inserting selection functionality into CAs. Various approaches,
including the integration of transistors with memristors in a one-
transistor one-memristor (1T1M) configureation31,36–39, and the incor-
porating of selector devices such as ovonic threshold switching40–42,
mixed ionic-electronic conductors43, and field-assisted super-linear
threshold switching devices44 in a one-selector one-memristor (1S1M)
configuration have been explored.

However, integrating transistors in the 1T1M configuration can
result in area overhead issues, and integrating selectors in the 1S1M
configuration poses practical and compatibility challenges for mem-
ristors. Self-rectifying memristors (SRMs) have emerged as a promis-
ing solution to overcome these challenges. They possess inherent
selection functionality, which allows them to effectively suppress
sneak currents and enable accurate and efficient VMM operations in
CAs. The need for additional transistors or selectors can be eliminated
by leveraging the inherent rectifying behavior of SRMs, leading to
fewer area overhead and compatibility issues and straightforward and
efficient VMM operations.

Most previous research implementing NN applications, parti-
cularly classification, has concentrated on simulating the perfor-
mance and accuracy of CA computations, rather than showcasing
practical computations within memristor-based CAs. Hardware-
based implementations are highly practical and straightforward;
however, the resolution of reliability issues associated with the CA
and integrated memristors that constitute the hardware accelerator
is challenging. Several conditions must be satisfied to achieve the
practical implementation of this approach. First, the CA must have
sufficient yield and functional control. Second, the memristor
device must exhibit reliability in terms of non-volatility, uniform
operating characteristics across all cells, selection ability, and
operational repeatability. Developing a hardware-accelerating sys-
tem that fulfils these conditions is extremely difficult, which explains
the limited number of research results on hardware-based imple-
mentations for NN applications. Recent studies have shown that
memristor-based NN computations can accelerate VMM operations
for real-world data classification such as facial images and the
Modified National Institute of Standards and Technology (MNIST)
dataset. Hu et al.36. utilized a 128 × 64memristor-basedCA forMNIST
dataset classification and achieved 89.9% classification accuracy
using a 1T1M-based CA to prevent sneak currents. Kim et al.45. inte-
grated TiN/Al/Ti/TiO2-x/Al2O3/TiN stacked memristors into a 64 × 64
passive CA and demonstrated high recognition accuracy for MNIST
image classification. However, no studies on fully hardware-based
image classification implementations using SRM-based passive CAs
have been demonstrated. Moreover, most studies on SRMs have not
addressed reliability issues, such as non-volatility, lack of sufficient
selectivity, and feasibility of pulse-based operations, which are
crucial for practical CA circuit operations. We had previously
demonstrated.46 a highly reliable and energy-efficient SRM-based
passive CA with excellent performance, and identified the feasibility

Fig. 1 | CAdevice images and equipment for electrical performance. a SEM images of the 1 kbCAdevice.b Photographs of the electrical equipment used to characterize
the CA devices. The equipment included a semiconductor parameter analyzer (SPA), CA probe station, CA switching zig, and CA probe card.
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of a VMM accelerator using this CA; however, the device did not
achieve actual data processing, such as image classification.

In this study, we propose a fully hardware-based ANN computa-
tion accelerator using a 1 kb passive CA integrated with a previously
developed HfSiOx-based SRM. We successfully fabricated the 1 kb CA
in 100% yield. The high selectivity, low device-to-device (D2D) varia-
tion, and robust non-volatility of the developed device enabled highly
reliable VMM operations. Training and inferencing for image classifi-
cation operations were also achieved with very low error rates. We
then conducted experiments to validate the impact of key variables on
the inferencing accuracy of an SRM-based hardware accelerator. First,
we investigated the effect of the inclusion of 30% and 50% defective
cells in the 1 kb CA on the inferencing accuracy in image classification
operations. Second, we explored the impact of the memristor’s read-
ing margin (on/off ratio) on the classification accuracy. Although
previous researchers assumed that a large reading margin is essential
to improve inferencing ability, we found that the readingmargin of the
memristive device does not significantly affect its inferencing accu-
racy. Finally, we emphasized the importance of incorporating selection
functionality into CAs for the reliable operation of ANN computation
accelerators.We comparatively investigated the impact of the absence
of selection functionality on the accuracy of VMM operations by
integrating amemristive device without selection functionality into an
8 × 8 CA.We found that selection functionality is essential for accurate
VMM operations in a CA, and that the absence of selection function-
ality causes a significant degradation in NN computing accuracy.

Results
Electrical characteristics of the SRM-based 1 kb passive CA
A previously developed HfSiOx-based SRM was integrated into a 1 kb
CA (32 × 32). Figure 1a shows the scanning electronmicroscopy images

of the CA. The CAwas constructed using a straightforward structure in
which the patterned bottom (BE) and top (TE) electrode layers
were connected perpendicularly via a crosspoint and individual SRMs
were formed at each junction. The line width for each line comprising
the top and bottom electrodes is set at 2 µm, resulting in an effective
junction area of 4 µm². The fabrication details of the CA devices are
described in the Methods section. The electrical characterization
equipment is shown in Fig. 1b. A customized 32 × 32 CA switching zig,
CA probe station, and probe card were used for the individual-cell-
accessible characterization of the CA.

Figure 2a shows a schematic of the CA and the applied biasing
scheme used for its electrical operation. The red line represents the
biasing line for the operational voltage (Vop), and the dark-gray line
represents the ground (G). To prevent sneak currents from neigh-
boring cells, we biased the other upper and lower lines that do not
share the accessed cell (red cell) to 1/3 Vop (light gray) and 2/3 Vop

(gray), respectively; these voltages are referred to as inhibiting vol-
tages. Under this biasing scheme, if the voltage-drop segment through
the metal line is ignored (the resistance of SRM is much higher than
that ofmetal line.), the green and blue cells in the CA are biased to −1/3
Vop and 1/3 Vop, respectively. Thus, Vop is applied to the accessed cell
only. In a previous report, we investigated various biasing schemes to
suppress sneak currents in the CA using an identical SRM46,47. We
observed negligible differences between the one-half and one-third
biasing schemes because of the sufficiently high selectivity of our
SRM (Supplementary Fig. S1). Furthermore, the numerical analyses for
the limited density of the array and additional power consumption
stem from the sneak current under applying eachbiasing schemewere
conducted (Supplementary Fig. S2).

Using the biasing scheme described above, we examined the DC
current–voltage (I–V) characteristics of all cells (1024 cells in total) in

Fig. 2 | Electrical characteristics of our 1 kb CA device. a Schematic of the CA
utilizing a one-third biasing scheme during the DC I–V characterization. b DC I–V
characteristics of 1024 cells in the CA. The black curve marked ① denotes the SET
process, while the black curve marked ② denotes the RESET process. c Reading
current distributions of each state. The coefficient of variations of the LRS andHRS
were0.057 and0.06, respectively.d Schematic of theAC-basedoperationsutilizing

the biasing scheme. Inhibiting voltages were induced in the unselected cells and
had a larger pulse width than the operational voltage. e Electrical pulse-induced
behavior of 30 cells in the CA. f Amplitude distributions for the SET and RESET
processes. Very low deviation values were observed in each process. The highly
uniform electrical characteristics of the CA can be attributed to the nonfilamentary
characteristics of our previously developed SRM device.

Article https://doi.org/10.1038/s41467-023-44620-1

Nature Communications |          (2024) 15:129 3



the CA (Fig. 2b). During the electrical measurements, a positive bias
sweep from 0 to 3.2 V induced a resistance transition from the high-
resistance state (HRS) to the low-resistance state (LRS) (SET, denoted
by the black arrow in ①), while a negative bias sweep from 0 to −3.2 V
induced the inverse resistance transition (RESET, denoted by the black
arrow in ②). All cells in the CA showed a fine distribution without
operating failure. To enable the quantitative evaluation of these cells,
we investigated the current distributions of the HRSs and LRSs at a
reading voltage of 2 V using Eq. 1.

Coefficient of variation= δ=σ ð1Þ

where δ and σ represent the standard deviation and mean reading
current, respectively. As shown in Fig. 2c, the reading currents of the
HRSs and LRSs were cumulatively plotted, and the coefficient of var-
iations of these stateswere evaluated as0.060 and0.057, respectively.
These values indicate that our SRMs in the CA exhibit an operational
distribution of less than 6%.

The self-rectifying feature of the memristor, integrated into the
crossbar array (CA)with a selectivity of approximately 104 according to

the 1/3 biasing scheme, effectively suppresses sneak currents. Addi-
tionally, we observed that the non-filamentary (interface) switching
characteristic contributes significantly to minimizing variations
between cells. The analyses of the self-rectifying feature and non-
filamentary (interface) switching characteristic of the integrated
memristor are detailed in our prior research46. Moreover, memristors
operating in the low current range often exhibit a phenomenon of
current drop at specific voltages, and in thismemristor-based crossbar
array, a significant current drop was observed at −2 V and 1 V. This is
not an inherent characteristic of the device but rather a phenomenon
stemming from the resolution of the measurement equipment.
Although current drops may occur due to the high resolution for low
currents, it is important to note that this is not a phenomenon influ-
encing the actual characteristics of the device48–50.

We tested the electrical pulse (AC)-based operational parameters
of our SRM. Figure 2d illustrates the voltage-biasing conditions of each
signal line to estimate the parameters of the AC-based operating vol-
tages for the SET and RESET operations in the CA. A train of incre-
mental step pulses proportional to Vop was applied to each signal line
following a one-third biasing scheme. The same biasing scheme was

Fig. 3 | Overall hardware-based classification process. For hardware-based clas-
sification, a 32 × 30 array, representing a partial array of the 1 kbCA,was utilized. To
classify the three digits (0, 1, and 2), the 32 × 30 array is partitioned into 10 sets of
32 × 3 matrices. Each column in a submatrix (32 × 1) indicated the three digits 0, 1,
and 2. a The training and test (inference) datasets were processed by software
simulation. By downscaling the MNIST data, originally consisting of 28 × 28 pixels,
to 20 × 16 pixels to fit into the 32 × 30 array. To input the images into array for
training and inference tasks, the down-sampled images were converted to 320× 1
matrix and partitioned into 10 sets of 32 × 1 matrices. The training process was

performed using the resized data in the software, and the trained data were con-
verted into target conductance (resistance) values to obtain the distribution of
trained weights. Based on these weight values, each cell in the 32 × 30 CA was
programmed. b For the inferencing operations, the resized data were converted
into 320 × 1 input vectors with binary values of 0 and 1. These input vectors were
then converted into voltages and applied to the memristor matrix in 10 sets. The
VMM operation was performed, and the maximum values from the 10 sets were
classified as the outputs of the inferencing operations. The digit with themaximum
output signal was classified according to the max-current sensing rule36.
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applied to all cells in the CA. To verify the resistance state of the SRM, a
DC reading voltage was alternately applied after each AC pulse.

The pulse duration of the inhibiting biases was set so that it was
sufficiently long to cover that of Vop, thereby ensuring the proper
application of the biasing scheme. If the pulse duration of the inhi-
biting bias is identical to or shorter than that of Vop, the simultaneous
application of pulses can result in an uncontrollable current overshoot
within the cells and the electrical hardbreakdownof the cells in theCA.
To address this issue, we set the pulse durations of Vop and the two
inhibiting pulses to 200 and 500μs, respectively. The AC-based
switching characteristics of 30 randomly selected cells were then
investigated (Fig. 2e). Themeasurement results for the SET and RESET
operations are shown in the left and right panels, respectively. The
SRM exhibited a gradual resistance change during both the SET and
RESET operations in accordance with the incremental pulse train. This
characteristic is favorable for programming an arbitrary intermediate-
resistance state within the designated reading-current margin.

The voltage distributions during each SET and RESET operation
are plotted in Fig. 2f. We determined the AC-based SET and RESET
voltages for achieving the current values as those obtained from the
DC I–Vmeasurements (1.5 and 0.1 nA for SET and RESET, respectively).
The mean values of the AC-pulse amplitudes for the SET and RESET
operationswere4.3 and −4.9 V, respectively, with an identical standard
deviation of 0.1 V. According to Eq. 1, we determined that the coeffi-
cient of variations of the operating voltages for SET and RESET were
0.023 and 0.020, respectively (variation, ~2%). These coefficients
reflect the fine distribution characteristics of the operating voltages of
our SRM, which is favorable for achieving a high CA operating yield.

Considering advancements in electronic devices, a program
latency in the range of hundreds of microseconds is generally deemed
significant. Despite such notable program latency, the read latency of
the SRMwasmeasured at below 10 μs, indicating comparatively lower
latency46. In the realm of accelerating ANN applications, read opera-
tion latency takes precedence over program operation latency, given

Fig. 4 | Fully hardware-based demonstration of a single-layer neural network
for MNIST data classification and investigation of the impact of the defec-
tiveness of the CA on the classification accuracy. a Trained weight-mapping
results of the D0CA. After the training process, all cells in the CAwere read out at a
2 V reading voltage. b VMM operation results of the D0 CA focusing on three
parameters: VMM operation results (red bars), trained weight summations (green
circles), and simulatedweight summations (blue circles). The discrepancy between
the VMM operation results and calculated values indicates the feasibility of the
VMM operation, while the difference between the VMM operation results and the
simulated values indicates the training accuracy. c Experimental demonstration of
the fully hardware-based classification of the MNIST data using the D0 CA. One of
the classification results was showcased by following the max-current sensing rule.
The classification result is indicatedby thebluebars, which represent themaximum

values of the sensed signals. d Trained weight-mapping results, (e) VMM results
focusing on the three parameters described in (b), and (f) representative classifi-
cation results of the D30 CA. While the digits 0 and 2 were classified correctly, the
digit 1 was misclassified as 2. g Trained weight-mapping results, h VMM results
focusing on the three parameters described in (b), and (i) representative classifi-
cation results of the D50 CA. j Classification accuracy for each digit based on 1500
classifications. The classification accuracy of the D0, D30, and D50 CAs for each
digit is shown from left to right.kClassification accuracies for eachdigit indifferent
defective CAs and the total classification accuracy. The total accuracies for each
defective CA indicated that 100% accuracywas achieved in theD0CA.However, the
accuraciesdecreased to68.5% in theD30CAand49.8% in theD50CA.These results
demonstrate the practical impact of defects in the CA, particularly open-circuit
defects, which significantly degrade the classification accuracy.
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themore frequent occurrence of readoperations.While the readdelay
of a single SRM unit in the numbers of microseconds may appear
considerable compared to established electronic devices like dynamic
RAM, the parallel VMM operation of the array device engaged in ANN
computing acceleration can relieve the overall performance degrada-
tion from the relative high latency of single SRM.

Fully hardware-implemented classification with defective CAs
To identify the feasibility of our proposed SRM-based 1 kb CA for ANN
applications, we performed a single-layer NN inferencing operation for
handwritten-digit classification. Figure 3 illustrates the scheme of the
classification task. In this study, we used the MNIST datasets, specifi-
cally the digits 0, 1, and 2, for the classification task. Software-based
training was performed using a 32 × 30 sub-array of the 1 kb CA. To
match the dimensions of the CA network, the MNIST images were
resized from 28 × 28 pixels to 20 × 16 pixels. During the training pro-
cess, the resized MNIST data was reshaped into a 320× 1 matrix. Since
the CA density was insufficient to accommodate 320 inputs, we divi-
ded the 32 × 30 matrix into ten sets of 32 × 3 matrices. Therefore, the
reshaped 320 × 1 images were partitioned into 10 sets of 32 × 1 as
shown in Fig. 3a. Thefinalweightmap representing the conductanceof
the SRMfor image learningwas obtained after software-based training.
The detailed procedures for acquiring the software-based training set
and programming the weight map in the CA are described in the
Methods section.

Next, an image classification test was performed using a similar
CA-based training method. In brief, input images of 20 × 16 pixels (i.e.,
the test sets) were transformed into a 320× 1 vector, as illustrated in
the Fig. 3a. The input vectors were then partitioned into 10 sets of
32 × 1 matrices, utilizing binary input values of 0 and 1 to represent
black and white regions, respectively. Although the real images in the
test sets exhibit analog-like variations in grayscale intensity, the elec-
trical pulses used for the input signals must be reduced to binary
signals of 0 and 1 because the number of AC pulse generators available
is limited. The input vectors for test sets 0, 1, and 2 were sequentially
applied to the trained CA network to perform the VMM operation in
each column as illustrated in Fig. 3b. Each column of 32 × 3 matrix was
indexed to 0, 1, and 2 digits, respectively. The output current values
acquired from each column (32 × 1) through the VMM operation were
individually summed and compared to determine the maximum cur-
rent value, which represents the result of the inferencing operation
based on the max-current-sensing rule.

Fully hardware-based image classification was performed using
the aforementioned methods. To investigate the effect of defective
cells in the CA on the accuracy of classification operations, we utilized
three CAs with defect portions of 0% (D0), 30% (D30), and 50% (D50).
We assumed that the individual defective cells in the CA were in the
form of electrically open-circuit cells, and set the conductance of the
open-circuit cell to the HRS of each SRM.

Figure 4a, d, g display the weight-map distributions of the trained
CA in the cases of D0, D30, and D50, respectively. Upon verifying the
weight mapping results, we observed that all cells were accurately
trained in the case of D0. However, in the cases of D30 and D50, a
corresponding number of defective cells (indicated in black) remained
in the HRS. The cells remaining in the HRS represent non-switchable
cells in the CA that cause a decrease in CA yield. To evaluate the
training accuracy based on the defective cell portion in the CAs, we
performed the VMM operation. Figure 4b, e, h display the VMM
operation results obtained using CAs with D0, D30, and D50, respec-
tively. Each figure includes three plotted results: the experimental
VMM operation result (represented by the red bar), the calculated
VMM result based on the programmed weight of each CA column
(represented by the green circle), and the calculated VMMresult based
on the simulated weight values (along the case of D0) obtained
through software processing (represented by the blue circle). The

‘Experimental results’, ‘Calculated results’, and ‘Simulated results’
indicate the output current sensed (experimentally measured) from
the VMM operations, the sum of read current (conductance) in pro-
grammed CA (numerical calculation of current sum at each column
based on the programmed (already known) conductance states), and
the sum of conductance trained through simulation (the required
VMM result to achieve the inference accuracy of 100%), respectively.
All these parameters represent values sequentially sensed and calcu-
lated for each column. The detail of VMM operation using CA is
demonstrated in the ‘Method’ section. The experimental and calcu-
lated VMM results matched well regardless of the defective cell por-
tion, demonstrating that each CA case (D0, D30, and D50) is suitable
for the VMM operation without any interference between cells owing
to the characteristics of the SRM. However, we found significant dif-
ferences between the experimental and simulated VMM results in the
cases of D30 and D50, which implies that defective cells in the CA can
result in its inaccurate training.

Based on the three proposed CA types, fully hardware-based
classification operations were conducted using the MNIST dataset. In
this task, 1500 classifications were attempted (500 inferences for each
digit: 0, 1, and 2) to ensure classification accuracies. Figure 4c, f, i show
the representative classification results obtainedusingCAs ofD0,D30,
and D50, respectively. We applied the max-current sensing rule men-
tioned in Fig. 3, and denoted themaximum values of the experimental
VMM for the classification tasks using blue bars. The CA of D0 pro-
duced output results that were consistent with those of the input
(Fig. 4c). However, the CA of D30 showed amisclassification for digit 1,
and the CA of D50 showedmisclassifications for digits 0 and 1 (Fig. 4f,
i), respectively.

The statistical results for classification using CAs of D0, D30,
and D50 are summarized in Fig. 4j. The CA of D0 achieved a classi-
fication accuracy of 100%, indicating reliable performance. How-
ever, the CAs of D30 and D50 showed degradations in classification
accuracy for each input digit. Specifically, the classification accura-
cies of D30 and D50 for the digit 0 were 83% and 24%, respectively.
Similarly, the classification accuracies of D30 and D50 for digit 2
were 78% and 53%, respectively. Such findings demonstrate a con-
sistent trend of reduced accuracy in the presence of defective cells.
However, a deviation from the monotonous degradation trend of
classification accuracy was observed for input digit 1. The classifi-
cation accuracies of D30 and D50 for digit 1 were 45% and 71%,
respectively, indicating that accuracy was not solely dependent on
the portion of defective cells in the CAs for specific target classifi-
cation. The overall classification accuracies for 1500 classification
tasks are summarized in Fig. 4k. The CA of D0 achieved a classifi-
cation accuracy of 100%, whereas the CAs of D30 and D50 achieved
classification accuracies of 68.5% and 49.8%, respectively. These
results further highlight the impact of defective cells on the classi-
fication accuracy of CAs. Furthermore, the impact of defects, spe-
cifically those involving LRS stuck cells, was thoroughly
investigated, as illustrated in Supplementary Fig. S6.

Impact of the SRM reading margin on classification accuracy
A large reading margin, which is represented by the resistance ratio
between the HRS and LRS, is regarded as an essential property of
synaptic memristive devices to achieve high accuracy in classification
tasks because it can provide a low error rate to achieve a certain
intermediate conductance state within a given conductance range51. In
this context, conducting filament (CF)-based memristive devices have
received considerable interest owing to their high resistance ratio
despite their poor operating uniformity. Conversely, non-filament-
type (interface-type) memristive devices exhibit highly uniform oper-
ating characteristics with a relatively low resistance ratio52,53. If the
reading margin of a given memristive device is not a crucial factor for
achieving high accuracy in classification tasks, interface-type

Article https://doi.org/10.1038/s41467-023-44620-1

Nature Communications |          (2024) 15:129 6



memristive devices may be a stronger candidate than CF-based ones
for such tasks.

To demonstrate the impact of the reading margin on the classi-
fication tasks, we conducted investigations using different reading
margins by employing a reading voltage of 1.7 V. Prior to applying a
reading voltage of 1.7 V, we verified the retention characteristics of our
SRM using the same voltage. Figure 5a, b display the DC I–V curves of
the SRM and its corresponding retention characteristics, respectively,
as verified under a reading voltage of 1.7 V. The programmed LRS of
the SRMwas robustlymaintainedwithout significant degradation over
a 2 h period (initial and final LRS currents of 750 and 742 pA, respec-
tively). The variability among 1024 cells (D2D variability) at a reading
voltage of 1.7 V was also confirmed (Fig. 5c). The coefficient of varia-
tions (Eq. 1) for the HRS and LRS at 1.7 V were 0.093 and 0.142,
respectively, indicating reliable characteristics suitable for VMM
operations.

Based on the pretested reliability of our SRM, the CA was trained
using a reading margin of 1.7 V (Fig. 5d). During the training process,
we set the lowest and highest current values to 10 and 500 pA,
respectively, representing an expanded reading margin (resistance

ratio: 50) compared with the case in which a reading voltage of 2.0 V is
applied (resistance ratio: 15, Fig. 4a). To confirm the operational
reliability of the VMM using the CA, we compared the experimental
and calculated VMM results in each column (Fig. 5e). We observed
negligible discrepancies between the two, thus confirming the feasi-
bility of the VMM operation at a reading voltage of 1.7 V.

To assess classification ability under different reading margins,
we conducted the same tasks (Fig. 4). We performed 1500 classifi-
cations (500 inferences for each digit: 0, 1, and 2) to ensure statis-
tical reliability. The representative classification results presented in
Fig. 5f demonstrate accurate classification for all digits. Figure 5g
shows the statistical outcomes of the 1500 classifications tasks, all of
which reveal a classification accuracy of 100%. These experimental
findings suggest that the reading margin (conductance range) of a
given memristive device has an insignificant effect on the classifi-
cation task. Thus, interface-typememristive devices may be a strong
candidate for ANN applications. In addition, to compare with the
smaller read margin condition of CA, the classification results using
D30 and D50 for x 50 read margin condition are demonstrated in
Supplementary Fig. S7.

Fig. 5 | Investigation of the impact of the read margin on classification accu-
racy. a DC I–V characteristics of the SRM-integrated CA, and (b) retention char-
acteristics measured at a reading voltage of 1.7 V. Robust nonvolatility was
observed at1.7 V. c Read current distributions of the LRS and HRS at 1.7 V. The
coefficient of variations of the HRS and LRS (0.093 and 0.142, respectively) were
relatively low. d Trained weight-mapping results obtained at a reading voltage of
1.7 V. e Comparison of the VMM operation results and calculated weight

summations in each column. The feasibility of VMMoperationsusing a 1.7 V reading
voltagewas confirmed. fRepresentative classification results of theCAunder a 1.7 V
reading voltage, and (g) total classification accuracy for each digit. All digits were
classified accurately (1500 classification operations). Comparison of the two dif-
ferent reading margins (×50 @ 1.7 V and ×15 @ 2.0 V) revealed that the reading
margin of the nonfilamentary-type memristor had an insignificant effect on the
classification accuracy because of its highly uniform operating characteristics.
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Impact of selection functionality in a memristive device on
classification accuracy
Here, we experimentally demonstrate the significance of selection
functionality in memristive devices integrated into the CA to establish
an ANN accelerator. For these demonstrations, we prepared a mem-
ristive device without selection functionality (symmetric operating
current levels in both bias regions) as a control sample. Figure 6a
shows the DC I–V characteristics of 30 RS cycles (three RS cycles of 10
unit cells each) and the cumulatively plotted reading current variation
at 0.2 V. The coefficient of variations (Eq. 1) of the HRS and LRS
extracted from the cumulative plot were 0.745 and 0.108, respectively,
which are relatively larger values compared with those of the SRM.

Subsequently, the memristive device was integrated into an 8 × 8
CA to examine the electrical characteristics of a CA integrated with a
memristive device without selection functionality. During the elec-
trical characterization of the 8 × 8 CA, a one-third biasing scheme,
identical to that in Fig. 2a, was applied. As a pretest, two types of bias
schemes were examined, and the experimental results are shown in

Supplementary Fig. S3. Figure 6b shows the DC I–V characteristics of
64 cells in the 8 × 8 CA and the cumulatively plotted reading current
variation at 0.2 V. A significantly higher operational dispersion of the
CA was observed in the DC I–V characteristics. Furthermore, the
coefficient of variations (Eq. 1) of the HRS and LRS were 1.55 and 0.66,
respectively; these values are 2.08 and 6.11 times larger than those of
the unit device, respectively.

To reveal the feasibility of VMM operation using the 8 × 8 CA with
the memristive device, we arbitrarily programmed individual cells in
the 8 × 8CA to the LRSorHRS (Fig. 6c). A total of 23 randomly selected
cells were programmed into the LRS using the DC bias-sweepmethod,
and the other cells were maintained in the initial state of the HRS.
Subsequently, we verified the resistance state of each cell in the 8 × 8
CA under a reading voltage of 0.2 V and the corresponding one-third
biasing scheme. Figure 6d shows the verified resistance state dis-
tribution of the 8 × 8 CA, which exhibits a resistance state distribution
that is obviously different from that shown in Fig. 6c. While the
extracted reading currents of the HRS and LRS from the unit cell in

Fig. 6 | Investigation of the impacts of a non-selective memristor integrated
into the passive CA on VMM operation accuracy. a DC I–V characteristics of a
unit memristor device without selection functionality (left). Ten randomly chosen
cells weremeasured over three cycles (total number ofDC I–V curves: 30). The read
current distributions of each state were extracted from the DC I–V curves (right).
bDC I–V characteristics of an8 × 8CA integratedwith thememristor. All cells in the
CA were measured in one cycle in DC I–V sweep mode (graph). The read current
distributions of each state were extracted from the DC I–V curve (right).
c Programming scheme of the 8 × 8 CA. A total of 32 randomly chosen cells were

programmed to the LRS (black), and the rest of the cellsweremaintained in theHRS
(orange). d Resistance distribution of the 8 × 8 CA after the programming step. The
programmed weight values of the CA were not coincident with the proposed
programming scheme, indicating that programming and reading were not pro-
cessed accurately owing to sneak current effects. e Results of VMM operations
using the 8 × 8 CA. Nearly identical output currents were observed in each column,
which implies that the VMM operation was not processed accurately because of
significant interferences between integrated cells in the CA.
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Fig. 6a are 0.6 and 30μA, respectively, the observed reading current
distributions in the 8 × 8 CA are in range of 5–20μA. Nearly all cells
exhibited a reading current distribution close to that of the LRS, which
implies that correct programming or reading operations could not be
achieved.

Figure 6e shows the VMM operation results of the 8 × 8 CA. The
targeted resistance state distribution obviously differs between each
column (Fig. 6c), but the experimental VMM exhibits nearly invariable
values in each column, thereby revealing the infeasibility of the VMM
operation in the CA without selection functionality. This malfunction
in the VMM operation can be observed even at a small integration
density of 8 × 8 CA. We also tested a 32 × 32 CA using a memristive
device without selection functionality (Supplementary Fig. S4), and
observed a large operational distribution in the DC I–V characteristics.
Thus, accurate VMM operations for the ANN accelerator cannot be
guaranteed when the memristive device integrated into the CA lacks
selection functionality.

Discussion
In this study, we propose a fully hardware-based image classification
method using SRM devices integrated into a 1 kb CA. The successful
demonstration of image classification tasks using the CA is attributed
to the highly reliable characteristics of the integrated SRM. Although
general memristive devices are regarded as immature devices for
implementation in largely integrated devices owing to their stochastic
nature, we successfully achieved reliable characteristics in our mem-
ristive device and integrated the SRM into a 1 kb CA without the ren-
dering of a transistor. The most important characteristic of the SRM is
its non-filamentary switching operation, which can ensure a narrow
operational distribution for high yields in the CA. By excluding the
initial electroforming process, we can achieve favorable cycle to cycle
(C2C) and D2D characteristics; by contrast, CF-based memristive
devices suffer from a large operational distribution.Whereas CF-based
memristive devices generally show large reading-margin and robust
retention characteristics, non-filamentary-type devices generally
exhibit a low reading-margin and poor retention characteristics48,54,55.
However, the weaknesses of non-filamentary-type memristive devices
can be improved by modifying the materials and device structure. In
our previous research, we achieved reliable retention characteristics
even in the low-operating-current regime (<100nA) by adopting
functional layers (i.e., an oxygen reservoir andoxygen-diffusionbarrier
layers) in the SRM. In this study, we attempted to demonstrate that
another weakness of non-filamentary-type memristive devices, that is,
their low reading-margin, is not a crucial factor for image classification
tasks. As confirmed by our experiments, variations in reading margin
did not influence the inferencing accuracy in image classification tasks.

It has been thought that the CAs are able to tolerate defects in
performing VMMoperations owing to their severely parallel structure.
Thus, even if somedefective points are present in the CA, the array can
render the defective cells redundant and achieve the correct answer
through other signal pathways. However, the experimental demon-
stration in this study showed that defective cells in the CA had a sig-
nificant effect on the VMM operation and the accuracy of image
classification tasks. Note that we set the defective cells in the CA to its
HRS, assuming an open electrical circuit. However, if some defective
cells in the CA are in an electrical short circuit, the image classification
taskswould showanadditional degradation in accuracy. Therefore, for
reliable CA operation, the operational yield of individual memristive
devices in the CA should be close to 100%. In this case, non-
filamentary-type memristive devices may be a good candidate
because of their high yield and reliability.

In addition, considering the classification accuracy with terms of
bit precision in our system, it is essential to clarify the difference
between the nature of the proposed CA conventional digital archi-
tectures. While typical digital systems rely on bit precision, the

proposed CA operates primarily on analog signals. This fundamental
difference means that our approach does not directly engage with bit
precision in the traditional sense. However, it is crucial to understand
the steps taken to align the MNIST data set with the CA’s
operational mode.

MNIST’s input was reduced to 320 units and normalized pixel
values were rounded off to 0 or 1 to simulate the CA’s input. Though
digital, this process merely digitized input, not weights or CA proce-
dures. The device array utilizes experimental weights adjusted to
match its conductance and input current scales. This ensures the CA
computes using genuine analog values. To elaborate on the learning
process, the reduced input of 320 was chunked into groups of 10 and
fed to a three-line array. Each segment has 32 inputs and 3 outputs.
Multiplying by weights yields the handwriting classification result for
each 10-part segment. The final input is estimated using a soft-max
function after aggregating these scores. The calculated weights were
converted to the target conductance and applied to the CA using the
following formula:

GT =W× GLRS��GHRS

� � ð2Þ

Let, the conductance for training =GT, simulated synaptic
weight =W, GLRS = LRS conductance of CA, and GHRS =HRS
conductance of CA.

Regarding the weights obtained through software, they are
represented using the float 32 data type, offering sufficient precision
for our needs. Given that the device responsible for applying con-
ductance to the array can handle a range from 0.1 A to as precise as
0.1 pA, there should be confidence in the CA’s conductance resolution
to represent and manipulate these synaptic weights accurately. Fur-
thermore, in terms of the required precision for NN applications, it
varies based on the specific task and network architecture. However,
with our approach and the inherent precision of the CA’s design, we
believe that the system is well-equipped to meet and potentially
exceed the precision requirements commonly associated with NN
applications.

Thememristive device in theCAmust have selection functionality
to ensure reliable VMM operations based on the CA. This functionality
is necessary for both training and inferencing, as it enables correct and
accurate operations using the CA. In this study, we comparatively
investigated the operation of a CA integratedwith amemristive device
without selection functionality. Although our intention was to obtain
randomly distributed resistance states for the HRS and LRS in the 8 × 8
CA (Fig. 6c), the verification results (Fig. 6d) differed significantly from
the initially intended resistance state distribution. Previous research
often employed 1T1M-structured unit cells to implement selection
functionality in each cell in the CA. Given the increasing demand for a
vast memory capacity in future computing technologies to process
large amounts of data, a singular form of selection and memory can
provide an advantage in terms of the dense integration of electronic
devices. From this perspective, a non-filamentary switching-type SRM
with high selectivity offers reliable performance and robust
reproducibility.

In summary, we proposed a 1 kb CA integrated with SRMs as a
hardware accelerator for ANN applications. Image classification tasks
using our hardware accelerator revealed a remarkable recognition
accuracy of 100%, which is comparable with that of software-based
simulations. Furthermore, the impact of non-ideal factors on the
hardware accelerator was investigated. We highlighted the merits of
hardware accelerators based on SRMs. Our accelerator demonstrated
uniform operational characteristics across all devices in the CA, with
extremely low defectiveness (resulting in high yields) during fabrica-
tion and high immunity to sneak currents from neighboring cells. We
believe that non-filamentary-type-based SRMs can serve as a key
device component in future ANN applications. We also provide
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valuable insights for addressing reliability issues associated with
memristive devices.

Through this study, the NN applications utilizing memristive
crossbar arrays are compared in Table 1. It is noteworthy that our study
represents the first reported demonstration in the field of SRMs, uti-
lizing a purely self-rectifying memristor-based passive crossbar array
for hardware implementations of NN applications. While the energy
efficiency of the proposed CA is currently lower than ref. 36,56., we
anticipate that higher efficiency can be achieved by increasing the
array density.

Furthermore, we compare the energy efficiency of our hardware
accelerator with traditional microelectronic chips such as GPUs,
FPGAs, and ASICs in Table 2. The results of the comparison show that
our hardware accelerator achieves relatively high energy efficiency
due to significantly lower power consumption compared to traditional
microelectronic chips. For detailed calculations, refer to Supplemen-
tary Note 1.

Methods
Device fabrication
A SiO2/Si substrate was coated with a 200-nm-thick TiN layer by
sputtering. The TiN layer was then patterned onto the CA bottom
electrode (BE) using conventional photolithography and inductively
coupled plasma (ICP)-reactive ion etching. The ICP and substrate bias
powers weremaintained at 200 and 20W, respectively, during the TiN
etching process. Etching was performed using Ar and Cl2 gases at flow
rates of 5 and 30 standard cubic centimeters per minute, respectively.
The process temperature was kept at 25 °C using a water-circulation
cooling system, and the etching rate was approximately 70 nm/min.
Photoresist (PR) residues remaining on the patterned TiN BE were
removed using acetone, followed by cleaning with isopropyl alcohol
and deionized water. Next, 1-nm-thick Hf0.5Si0.5O2 and 2-nm-thick
Hf0.8Si0.2O2 layers were deposited onto the substrate using atomic
layer deposition (ALD) with a traveling wave-type ALD system.
Deposition was carried out at 250 °C using tetrakis(ethylmethylamido
hafnium) and bis(diethylamino)silane precursors as well as H2O andO2

plasma as sources of Hf and Si oxidants, respectively. The ALD process
involved supercycle deposition with alternating HfO2 and SiO2 layers.
The SiO2:HfO2 cycle ratios of the Hf0.5Si0.5O2 and Hf0.8Si0.2O2 layers
were set to 1:3 and 1:1, respectively. An intermediate Al2O3 thin-film
layer was deposited between the Hf0.5Si0.5O2 and Hf0.8Si0.2O2 layers
using ALD at 150 °Cwith trimethyl aluminum and H2O as the Al source
and oxidant, respectively. Subsequently, a crossbar-type top electrode
(TE) patternwasdefinedover these layers using photolithography, and
a 100-nm-thick Ru layer was deposited on it using DC magnetron
sputtering. Finally, a Ru/Hf0.8Si0.2O2/Al2O3/Hf0.5Si0.5O2/TiN stacked CA
device was fabricated using the conventional lift-off process. After its
fabrication, images of the CA were acquired using high-resolution
scanning electron microscopy (HR-SEM, S-4800, Hitachi, 3.0 kV, 7μA)

A TiN BE was formed via the same HfSiOx-based SRM fabrication
method to prepare a memristor without selection functionality. Sub-
sequently, a 4-nm-thick GeTe thin film was deposited on the electrode
as the active layer using a radio frequency (RF) magnetron sputtering
system. A TE pattern was formed using photolithography, and a 200-
nm-thickCu layerwasdeposited over these layers usingDCmagnetron
sputtering. After the final liftoff process, a Cu/GeTe/TiN-stacked
memristor device was successfully fabricated.

Electrical measurements
A customized CA switching zig, CA probe station, and CA probe card
were used to access individual cells in the CA and characterize the CA
devices. A semiconductor parameter analyzer (SPA, HP 4155 B) was
used as an electrical bias source for the CA. Four channels of bias
sources were used to induce the operational bias and ground into the
selected lines and the inhibiting biases into the unselected lines,
allowing the CA to operate properly. Electrical pulse-based switching
characteristics were measured using arbitrary function generators
(Agilent 81150A, Tektronix AFG31102) and RF electric circuit switch
boxes. The DC I–V characteristics of the CA were measured in DC I–V
sweep mode using the SPA and customized CA characterization
equipment. During the electrical measurements, the Ru (or Cu) TEwas
biased, whereas the TiN BE was electrically grounded. Specific word
and bit lines were biased to Vop and grounded to access the selected
cell in the CA, and the rest of the lines were biased to the inhibiting
voltages according to the bias scheme. In this study, 1/3 Vop and 2/3Vop

were applied as inhibiting voltages.

Classification of MNIST handwritten digits
Data preprocessing. The original 28 × 28 pixel MNIST images were
subjected to a center-cropping process to reduce their size to 24 × 24
pixels. This cropping technique helped highlight the central regions of
interest. Subsequently, the cropped images were resized to 20 × 16
pixels. This resizing step helped maintain the inherent visual char-
acteristics of the original MNIST images while efficiently utilizing the
available data. A pixel-value normalization step was performed to
ensure consistent pixel values across the dataset. This step involved
rounding the pixel values to either 0 or 1, effectively binarizing the
images.

Software-based data processing and learning of CA. To emulate the
CA’s input, the MNIST dataset was modified where its input was
reduced to 320 units and normalized pixel values were rounded off to
either 0 or 1. This process, though digital in nature, only digitized the
input, not the weights or the internal operations of the CA. The device
array utilizes experimentally derived weights, which were adjusted to
match the conductance scale and input current scale of the array. This
ensures that the CA processes genuine analog values throughout its
computation. To elaborate on the learning process in more detail: the

Table 1 | Thecomparison results of hardware implementation for neural network applications usingmemristive crossbar arrays

This work Ref. 57. Ref. 36. Ref. 30. Ref. 31. Ref. 56.

Array configuration 1 R (SRC) 1S-1R 1T-1R 1T-1R 1T-1R 1T-1R

Array density 32 × 32 (1 kb) 9 × 9 (<1 kb) 128 × 64 (8 kb) 54 × 108 (~5 kb) 128 × 16 (2 kb) 128 × 64 (8 kb)

Array yield (%) 100 100 98.9 Not available 99 Not available

Energy efficiency (TOPS/W) 4.35 Not available 115 1.37 11 77.4

Application MNIST classification Pattern classification MNIST classification Pattern classification MNIST classification MNIST classification

Accuracy 100 100 89.9 94.6 96.19 92.3

Integrated device stack Ru/HfSiOy/
Al2O3/HfSiOx/TiN

Pt/Ru
/TiO2

/RuO2/Pt
/HfO2

/TiN

Ta/HfOx

/Pd
Pd/
WOx/Au

TiN/TaOx

/HfOx

/TiN

Pt/TaOx

/Ta
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reduced input of 320 was chunked into groups of 10, which were then
used as inputs for an array with three lines. As a result, each section
received 32 inputs and produced 3 outputs. The output generated by
multiplying with the weights represents the score for the handwriting
classification within each divided section of 10. These scores are then
aggregated, and a soft-max function is applied to estimate the
final input.

In the training (learning) and testing (inference) tasks in the
software-based classification process, we utilized the MNIST dataset
comprising 18623 and 3147 samples for training and testing our single-
layer NN, respectively. Subsequently, in the fully hardware-based
classification process, we evaluated the classification performance of
our developed memristor CA under varying defect ratios and read
margins. This assessment utilized a total of 1500 test data points, with
500 data points allocated to each digit.

Hardware implementation forMNIST-digit classification. The single-
layer NNwas trained using preprocessedMNIST digits with a software-
based training method. The weight values of the trained network were
derived by mapping analog values between binary 0 and 1. These
resulting weights for each cell in the Crossbar Array (CA) were analog
values ranging between 0 and 1. Subsequently, these weights were
converted to corresponding conductance values within the reading
current range of the SRM, specifically between 0.1 and 1.5 nA. In this
conversion, a value of 0 from the software-based procedure was
mapped to a High-Resistance State (HRS), while a value of 1 was
mapped to a Low-Resistance State (LRS). Intermediate values between
0 and 1 were proportionally converted to intermediate conductance
states between HRS and LRS following Eq. (2) in the ‘Discussion’
section.

Our digit classification procedure, designed for the CA array,
involves dividing the input data into ten distinctive chunks, given our
input size of 320. This segmentation is crucial for our architecture,
which relies on processing individual data chunks through dedicated
modules to leverage the CA array’s intrinsic parallel processing cap-
abilities. Eachmodule is assigned the task of capturing unique features
from its respective segment of the data. After individual processing,
the outputs from all these modules are aggregated, resulting in a
combined prediction. This combined prediction is then transformed
to provide probability scores for the digits 0, 1, and 2.

Our network architecture is uniquely designed for this data seg-
mentation. Instead of a traditional fully connected approach, we
separate the input data into ten smaller chunks, each comprising 32
units. Each of these chunks is processed through a specific module,
consisting of a linear layerwith 32 input features and 3 output features.
The collective output from these ten modules produces the final
prediction.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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