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Radiomic tractometry reveals tract-specific
imaging biomarkers in white matter

Peter Neher 1,2,3 , Dusan Hirjak 4 & Klaus Maier-Hein1,2,3,5

Tract-specific microstructural analysis of the brain’s white matter (WM) using
diffusionMRI has been a driver for neuroscientific discovery with a wide range
of applications. Tractometry enables localized tissue analysis along tracts but
relies on bare summary statistics and reduces complex image information
along a tract to few scalar values, and so may miss valuable information. This
hampers the applicability of tractometry for predictive modelling. Radiomics
is a promising method based on the analysis of numerous quantitative image
features beyond what can be visually perceived, but has not yet been used for
tract-specific analysis of white matter. Here we introduce radiomic tracto-
metry (RadTract) and show that introducing rich radiomics-based feature sets
into the world of tractometry enables improved predictive modelling while
retaining the localization capability of tractometry. We demonstrate its value
in a series of clinical populations, showcasing its performance in diagnosing
disease subgroups in different datasets, as well as estimation of demographic
and clinical parameters. We propose that RadTract could spark the estab-
lishment of a new generation of tract-specific imaging biomarkers with bene-
fits for a range of applications from basic neuroscience to medical research.

A key element in understanding healthy and impaired brain structure
and function is the analysis of its neural pathways, the white matter
(WM). Over the last decades, the development of diffusion-weighted
magnetic resonance imaging (dMRI) has revolutionized our ability to
studyWM in vivo. By probing themovement of watermolecules, dMRI
provides information about the microstructure, integrity, and con-
nectivity of WM tracts. Many highly influential studies based on dMRI
have been published, analyzing the WM and its alterations to gain
insights into brain development, aging, injuries, and diseases or to
study normal brain structure and function1–8.

Analysis of brain-MRI data has progressed from global histogram-
based analysis9,10, over voxel-based statistical analysis matching indi-
vidual subjects using registration algorithms11,12, toWM-skeleton-based
analysis ofwhole-braindatausing tract-based spatial statistics (TBSS)13.
While used frequently, these techniques have several limitations

discussed extensively in the literature13–15. Recently, there has been a
shift towards tract-specific approaches based on fiber
tractography16–18. These methods enable the targeted investigation of
WMmicrostructure in the formof dMRI-derivedparametermaps, such
as the fractional anisotropy (FA) or mean diffusivity (MD)19, within
specific tracts.

Tract-specific analysis itself has evolved from studying tract
averages17,18,20 to an analysis of microstructural parameters along
individual tracts21–24. Tract averages involve the calculation of statistics
over the entire tract, which can be useful for investigating global
changes in tract integrity. However, it does not provide information
about regional variationswithin the tract,which are quite significant. In
contrast, along-tract analysis (tractometry) involves dividing the tract
into smaller parcels along its course and analyzing the diffusion
metrics in each parcel separately. It is based on models of individual
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WM tracts obtained using fiber tractography16. The tract models con-
sist of individual fibers, or streamlines, each of which is a series of 3D
points that define its trajectory. To analyze the image along the tract, it
is evaluated at these points and each value is assigned to one of n
parcels depending on its position. The values within each parcel are
then aggregated, usually by averaging, resulting in a vector of scalar
values along the tract that can be used for further analysis. This
method provides a detailed picture of variations within the tract,
allowing for the investigation of localized tissue alterations and spe-
cific functions associated with different parts of the tract. Tractometry
has been used extensively in a variety of applications and can be
considered as the state-of-the-art in tract-specific WM analysis24–33.

Nevertheless, tractometry as well as other techniques widely used
in neuroscience such as voxel-based analysis or TBSS are designed for
group-level statistical analysis and only allow limited or no statements
at the individual subject-level. In case of tractometry, we hypothesize
that one reason for this is the drastic reduction of the complex image
information along the tract to only few scalar values. This can result in
the loss of information about variations and patterns along the tracts
that might be crucial for subject-level predictions.

In other radiological domains, the concept of radiomics is awidely
used approach for imaging-based tissue analysis34,35. The fundamental
idea behind radiomics is that medical images contain a wealth of
information beyond what is evident to the naked eye or what can be
captured with simple scalar measures such as mean signal intensities
or structure diameters. It involves the extraction and analysis of a large
number of quantitative features from medical images that quantify
subtle variations in pixel intensities, textures, shapes, and spatial
relationships within an image. Radiomics has shown to yield valuable
insights and promising results for subject-level predictions in various
tasks, such as automated diagnosis, patient stratification, risk assess-
ment and response monitoring36,37. In the context of brain imaging,
radiomics has been used extensively for the analysis of tumors38,39 and
also for studying psychiatric and neurodegenerative diseases40–43.
Nevertheless, the concept of radiomics has not yet found its way into
the domain of tract-specific WM analysis.

Radiomics and tractometry are orthogonal approaches, in the
sense that tractometry is focusedon the localizationof changes using a
reduced feature set, while radiomics is focused on extracting as much
information from an image region as possible and on providing
advanced biomarkers, e.g. for predictive machine learning (ML),
without specific focus on the localization of changes. We show that
combining both approaches, by introducing rich radiomics-based
feature-sets into theworld of tractometry enables improvedpredictive
modeling on the basis of individual WM tracts and also provides
localization of tract regions that are most informative for the respec-
tive task. We call this approach radiomic tractometry (RadTract) and
demonstrate its capabilities on four distinct datasets comprising
individuals with Alzheimer’s disease, Mild Cognitive Impairment, Par-
kinson’s disease, prodromal Parkinson’s disease, schizophrenia, and
catatonia as well as matched healthy controls. RadTract markedly
outperforms classic tractometry in diagnosing disease subgroups in all
datasets. Using RadTract further yields promising results in estimating
demographic and clinical parameters, such as age, education, symp-
tom severity, or daily medication dose.

Overall, our results indicate that even well-studied parameter
maps, such as the FA, contain a wealth of information that could be
valuable for a wide range of applications, but that is currently lost for
the state-of-the-art.

We anticipate this work to be a starting point for the development
of a new generation of tract-specific imaging biomarkers, enabling not
only better neuroscientific studies by providing a muchmore detailed
view on microstructural patterns of WM tracts and their changes, but
serving as a first step towards improved predictions on a subject-level.
RadTract is alsonot limited todMRI andWManalysis, but it is generally

applicable to all kinds of imaging contrasts and also to all kinds of
research questions involving fibrous tissue and tractography thereof,
such as the analysis ofmicrostructural properties ofmuscular tissue or
the neurovascular anatomy of the prostate44,45.

RadTract is available on GitHub (https://github.com/MIC-DKFZ/
radtract) and as a ready to use python package (https://pypi.org/
project/radtract/).

Results
We present results obtained on four datasets, including data obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, www.
adni-info.org/), the Parkinson’s Progression Markers Initiative (PPMI,
www.ppmi-info.org/access-data-specimens/download-data, RRID:
SCR_006431), the UCLA Consortium for Neuropsychiatric Phenomics
LA5c Study (SCHZ, https://openfmri.org/dataset/ds000030/)46 and a
non-public dataset (CAT) acquired at the Central Institute of Mental
Health (CIMH, https://www.zi-mannheim.de/en/)27. These distinct
datasets enabled a broad range of experiments on imaging data of
healthy and diseased individuals, well suited to demonstrate the cap-
abilities and general applicability of our approach. A total of 46 WM
tracts were investigated individually. Features were calculated from
four widely used tensor-based parameter maps, namely FA, apparent
diffusion coefficient (ADC), axial diffusivity (AD) and radial diffusivity
(RD). As baseline methods, we used two variations of classic tracto-
metry, Centerline Tractometry and Static Tractometry, which are
state-of-the-art for tract-specific analysis. Other widely used techni-
ques, such as voxel-based analysis or TBSS were not included as
benchmarks, since they are designed for purely global group-level
analysis and do not yield tract-specific features. Please refer to the
methods section for more details on the used datasets, preprocessing,
parameter calculation, tract modeling and benchmark methods.

All classification and regression experiments described in the
following were performed for each tract individually using a random
forest with 100 trees, a maximum tree depth of 4 and no further
hyperparameter optimization. To obtain reliable performance indica-
tors, each experiment was realized as ten times differently seeded
leave-one-out cross-validation (LOO-CV).

RadTract features enable a rich representation of image infor-
mation along tracts
Classic tractometry reduces the complete image information along the
tract to a relatively small number of averages. For the two benchmark
approaches, n was set to 100, as suggested in the literature47,48,
resulting in 400 features extracted from the four parameter maps.

In contrast, RadTract leverages the well-established concept of
radiomics for extracting as much information as possible from the
image section covered by the respective tract of interest in the form of
well-defined and standardized features34,49. To this end, RadTract
subdivides each tract into n parcels. For each parcel, we calculated a
set of 18 first-order statistics, 14 shape-based, and 73 texture features,
using RadTract, resulting in 105 features per parcel and parameter
map. Since this process results in a very large number of features
(4 � 105 � n), an automatic pre-selection of k features was performed on
the training set of each of the following ML experiments.

Details about the parcellation, feature calculation and the auto-
matic feature pre-selection can be found in the methods section.
Figure 1 visualizes the RadTract features for the CST. The complete list
of features used in this work can be found in Supplementary Table 9.

RadTract features enable improved automatic diagnoses
To analyze the value of RadTract features for automatic diagnosis, we
performed classification experiments to identify patient subgroups
with distinct diagnoses in all datasets. These subgroups not only
comprised the classes “healthy” and “diseased” but different stages of
the diseases, which made the task much more challenging but at the
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same time more relevant. Please refer to the methods section for a
description of the datasets and subgroups.

As a metric to quantify classification performance, we chose the
area under the receiver operating characteristic (AUROC). We favor
this metric over metrics such as the accuracy to avoid introducing a
bias into the results due to arbitrary probability thresholds. In the
multi-class case, we used the One-vs-the-Rest (OvR) strategy50.

We optimized the number of selected features k and, in case of
RadTract, the number of parcels n on the SCHZ dataset. The experi-
ments on all other datasets were then performed using these opti-
mized parameters.

In case of RadTract, n was chosen for each tract individually to
ensure roughly constant parcel thicknesses across tracts of different
lengths: nv =nvoxels=v, where nvoxels is the average number of voxels
traversed by the streamlines and v is the desired thickness of the tract
parcels in tract direction. nv was fixed for all subjects as the average
value of ten random subjects.

Figure 2 shows AUROC scores for k 2
f50, 100, 150, 200, 300, 400, 750, 1000, 1500g of the two benchmark
methods, as well as RadTract with four different parcellations
(n 2 f1,n2:5,n5,n7:5g). For visualization purposes, only the mean values
and the variance across repetitions and tracts are shown.

Table 1 shows the optimal values for k andn,maximizing themean
and minimum AUROC while at the same timeminimizing the variance
thatwereused in all experiments. The resulting values forn used in our
experiments can be found in Supplementary Table 1.

RadTract features lead to improved results for all datasets and
markedly outperformed classic tractometry (Centerline/Static) by 3.5/
4.6, 4.6/6.5, 7.8/9.0, and 3.7/5.6 points AUROC on average across all
tracts and repetitions in the datasets SCHZ, CAT, ADNI, and PPMI,
respectively.

RadTract ranked first in 36 out of 46 tract/dataset combinations
(14 statistically significant (p <0.05), p-values can be found in Sup-
plementary Tables 2–5), second in 6 and third in 4. The proposed

Fig. 2 | AUROC results of the experiments performed to optimize the hyper-
parameters k and n for all successive experiments. AUROC scores are presented
asmeanvalues +/− variance (14 tracts examinedover 10experiments each for each k).

The optimal k for each curve was determined as the k that maximizes the product of
minimum, maximum and 1/variance. See Table 1 for the optimal values of each
approach.
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Fig. 1 | Illustrationof the RadTract process. a RadTract-based CSTparcellation of
an exemplary subject. b Features corresponding to a as a heatmap. Per line, i.e.,
parcel, all 420 features are visualized. c The CST features (columns) of all CAT

subjects (rows) with their respective class (color bar). Differences between the
three classes are clearly visible in the features.
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approach further yields very promising results in 13 tracts, where
tractometry features only yield results close to the level of random
guessing (AUROC<0.55). AUROC values > 0.7 are achieved in 5 tract/
dataset combinations (RadTract) as compared to only 3 and 2 by the
two benchmark approaches respectively. Figure 3 provides an over-
view over the classification performance of the applied approaches.

For all methods, intra-tract variations due to differently seeded
repetitions are relatively low, with standard deviations of around 0.01.
Results for all tracts individually can be found in Supplementary
Figs. 1–8. A description of the statistical tests for significance can be
found in the methods section.

RadTract features enable improved prediction of demographic
and clinical parameters
To demonstrate the potential of RadTract for tasks beyond automatic
diagnosis and also beyond medical applications, we performed
experiments to automatically predict demographic (age, number of
pack-years, years of education) and clinical parameters (BPRS total,
PANSS total, GAF scores, and olanzapine equivalents (OLZe)) on
patients of the CAT dataset. A description of the individual parameters
can be found in the methods.

Pearson’s correlations between the predicted parameters and the
true parameters are in general very low across all methods, except for

the Age, as can be seen in Fig. 4a. At least weak correlations (r >0.15)
could be observed in 38, 29 and 27 tract/target combinations by the
approaches RadTract, Centerline Tractometry and Static Tractometry,
respectively.

Out of those, RadTract yielded the lowest mean squared error
(MSE) in 31 tract/target combinations, while the benchmark approa-
ches yielded the lowestMSE inonly 11 and 5 combinations, respectively
(see Fig. 4b). The results for all tracts and targets individually (MSE,
Pearson’s Correlation r, coefficient of determination R²), as well as the
ranges of the clinical parameters can be found in Supplementary
Table 6 and Supplementary Figs. 9–29.

RadTract enables a detailed analysis of feature, tract parcel and
parameter map importance
RadTract allows a detailed analysis of the importance of different
classes of features as well as of the different tract parcels, here
demonstrated for the automatic diagnosis task. The importance of
individual features is providedby the random forests in the formof the
mean decrease in impurity introduced by each feature. Using the
values of individual features, it is possible todetermine the importance
of complete feature classes or of the individual parameter maps as
aggregates of the individual importance values.

The FA is by far the most important parameter for automated
diagnoses (Fig. 5a).While this is the case in all datasets, it is particularly
pronounced for SCHZ. In contrast, theRDparameter seems tohold the
least information. While there are no large differences between the
datasets for AD, ADC maps are relatively important for distinguishing
CAT and ADNI subgroups and RD for distinguishing PPMI subgroups.

The top ten most important feature types, independent of the
parameter map, are dominated by first order features (Fig. 5b). Three
texture features can be found in the top-ten and no shape feature. The

RadTract Centerline 
Tractometry

Static 
Tractometry

Rank 1 36 (14) 5 (0) 5 (2)

Rank 2 6 25 15

Rank 3 4 16 26

RadTract Centerline 
Tractometry

Static 
Tractometry

SCHZ 10 (1) 2 (0) 2 (0)

CAT 10 (4) 3 (0) 1 (1)

ADNI 10 (6) 0 (0) 0 (0)

PPMI 6 (3) 0 (0) 2 (1)

a  Number of tracts per rank

b Tracts where method ranked first

d Per-dataset AUROC 

RadTract Centerline 
Tractometry

Static 
Tractometry

4 17 20

c Not better than random

Fig. 3 | Classification results. a Number of tracts in which the compared approa-
ches were ranked first, second or third, respectively. b Number of tracts and in
which dataset the compared approaches ranked first. c Number of tracts across
datasets where the compared approaches performed not better than random, i.e.,
AUROC<0.55. Numbers in brackets in a–c indicate the number of statistically
significant results (p <0.05) obtained using Delong’s method without correction
for multiple comparison. P-values can be found in Supplementary Tables 2–5.

Details about the statistical analysis can be found in the methods section.
d AUROCs of all methods on all datasets across tracts and repetitions, i.e., the
summarized classification results across tracts. Results for all tracts individually can
be found in Supplementary Figs. 1–8.Weuse standardboxplots including themean
value (whitemarker)with 1.5 IQRwhiskers. Thenumber of experiments displayed in
d is indicated in brackets in the graph legend.

Table 1 | Optimized parameters for k and n for RadTract and
the two benchmark approaches

n k

RadTract n5 100

Centerline Tractometry 100 (fixed) 400

Static Tractometry 100 (fixed) 100
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most important features for each dataset individually can be found in
Supplementary Figs. 30–33.

When looking at complete feature classes (first order, texture and
shape), further differences become apparent. Aggregated, the texture
features are by far the most important features (Fig. 5c). On average,
individual first order features aremore important (Fig. 5d). This can be
attributed to the fact that muchmore texture features exist, and while
eachof themonly contributes a little to the overall classification result,
in total they are quite important. An exception is the ADNI dataset,
where individual texture features are as important as first order fea-
tures. In summary, texture features seem to be the most relevant
feature class in our experiments, followed by first order features.

By analyzing the aggregated feature importance values for indi-
vidual tract parcels, it is possible to assess the relevance of certain tract
locations for distinguishing the patient subgroups. Supplementary
Figs. 34–79 provide parcel importances for all tracts, datasets and
methods.

Discussion
We present radiomic tractometry (RadTract), a new approach for
quantifying fibrous tissue such as the brain WM along its course.
RadTract extends the state-of-the-art in tract-specific tissue analysis
(tractometry) from simple tract profiles to descriptive feature sets that
capture the full richness of the image information along the tract and
enable improved predictive modeling. This is achieved by computing
105 standardized first-order, shape, and texture features per parcel
and parameter map in contrast to the limited information provided by
classical approaches (tractometry). To our knowledge, this is the first
approach to translate the concept of radiomics, which has been suc-
cessfully used in many other radiological domains, to the world of
tract-specific WM analysis.

We conducted a series of experiments in multiple psychiatric and
neurological datasets, illustrating the general applicability of RadTract
as well as its promising performance compared to the state-of-the-art
in various tasks. Our experiments show that RadTract is capable of
extracting much more meaningful information from images than it is
possible with classic tractometry, enabling new insights even when
using well-studied and long-established parameter maps such as the
FA, ADC,ADandRD. In general, RadTract supports arbitraryparameter
maps besides the ones chosen in this work as well as other image

contrasts as input, which, if chosen smartly for the respective task at
hand, are expected to yield even more valuable features.

The improvements using RadTract aremost pronounced in the
ADNI dataset. Interestingly, this is also the dataset where texture
features show a much higher importance compared to the other
datasets. This could for example be related to the nature or severity
of the specific pathology, but a thorough investigation of this
aspect is beyond the scope of this work and planned for future
projects.

While our experiments showed that RadTract outperforms the
state-of-the-art in many cases, overall classification performance can
still not be considered sufficient for reliable subject-level predictions.
This is also the case for the performed regression experiments, where
correlations are mostly close to zero across methods. Nevertheless,
RadTract yields lower errors in more tracts that hold at least some
information that might be suitable for group analysis.

A limitation of RadTract related to this aspect is its large feature
set. On the one hand, this is its greatest asset. On the other hand, it
makes the issue of dataset size increasingly critical and studies invol-
ving larger samples may be required to leverage RadTract’s full
potential by enabling amore reliable selection of robustly generalizing
features from the complete feature set. In this context, automatic
feature selection plays a crucial role. While we obtained promising
results with a simple univariate feature selection approach, usingmore
advanced techniques could further improve the performance of Rad-
Tract features in the downstream tasks. Powerful feature selection in
combination with large sample sizes gain even more relevance when
considering even further increased sets of features, e.g., by including
features from filtered versions of the original image, which has the
potential to further boost predictive performance51. While we show
increased classification performance using RadTract, these results are
only statistically significant in a part of the analyzed tracts. Larger
cross-sectional and longitudinal datasets of different patient popula-
tions will be required to obtain a more comprehensive picture of
RadTracts performance in the other tracts.

An approach that has to be discussed in the context of our work is
the Detect system recently presented by Chamberland and
colleagues52. As RadTract, Detect has the goal of improving patient-
level predictions using tract-specific features. Nevertheless, Detect
does not aim at improving the used features. In fact, it uses standard

Measure RadTract Centerline 
Tractometry

Static 
Tractometry

Age 12 2 0

Pack-Years 5 6 2

Education 5 0 1

BPRS total 2 1 0

PANSS total 4 2 1

GAF 1 0 1

OLZe 2 0 0

b Tracts with lowest MSE and r > 0.15a Pearson correlation per target

Fig. 4 | Regression results. a Pearson’s correlations for three demographic (Age,
Pack-Years, Education) and four clinical (BPRS total, PANSS total, GAF, OLZe)
parameters. We use standard box plots including the mean value (white marker)
with 1.5 IQR whiskers. The number of experiments displayed in a is 140 (14 tracts
examined over 10 experiments each). Correlations are low for all methods in most

targets. b Tract/target combinations where correlations are at least somewhat
apparent (r >0.15). Here, RadTract yields the lowest MSE more often than the
benchmark approaches. The results for all tracts and targets individually can be
found in Supplementary Figs. 9–29.
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Centerline Tractometry features. The important aspect of Detect is
that it is based on an unsupervised approach for outlier detection,
making it a powerful tool for detecting tissue changes without being
trained on them. Thismakes Detect complementary to RadTract in the
sense that Detect could very well employ RadTract features instead of
classic tractometry features, which has the potential to increase its
performance, as indicated by our results. We are planning to investi-
gate this in future studies.

Tobe consideredwhenusingRadTract and tractometry in general
is its dependence on the accurate delineation of the target tract, and
segmentations that for example spill into neighboring gyri might
confound the resulting features. When performing studies using
RadTract, it is therefore advisable to performa proper quality check of
all used segmentations. A related aspect is the actual definition of the
tract shapes and courses, which might vary between segmentation
methods. RadTract is agnostic towards the tool used to generate the
tracts, and in this proof of concept study themost important aspect to
ensure is that all methods use the same tract definitions as input. Since
it is a popular approach that covers all tracts of interest for our work,
we used TractSeg. This choice might not be ideal for other studies,
though, and the optimal tool for the task at hand has to be chosen each
time anew.

In summary, RadTract defines a new state-of-the-art for tract-
specific tissue analysis. We expect the presented work to be a
starting point for a new generation of imaging biomarkers in the
neuroscientific research domain and beyond. We believe that, used
as an out-of-the-box tool for the calculation of advanced and
standardized tract-specific imaging features, RadTract will be a
valuable resource for the research community, opening up new
research avenues and stimulating new investigations of the human
brain white matter.

Methods
In the following subsections, we will describe the data used in our
experiments, the preprocessing of the data, the used benchmark
approaches, the actual RadTract methodology itself, consisting of the
tract parcellation and the feature calculation, as well as the employed
statistical tests and some implementation details of RadTract.

Datasets
We included dMRI data of 216 subjects from theADNI dataset (all ADNI
phases) in our classification experiments. The data comprises three
subgroups: 72 patients with diagnosedAlzheimer’s disease, 72 patients
with mild cognitive impairment, and 72 healthy controls. The three
groups were matched for age and sex (see Supplementary Table 10).
All datasets as well as further information about the data are accessible
via https://ida.loni.usc.edu/. The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging, other biological markers, and clinical
and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment and early Alzheimer’s dis-
ease. For up-to-date information, see www.adni-info.org. Data were
acquired onGEand Siemens 3TMRI scannerswith a varying number of
gradient directions between 16 and 48 at b= 1,000s=mm�2 and a
varying anisotropic resolution between 1.0 and 2.7mm. The IDs of all
included subjects can be found in Supplementary Table 7 and the
corresponding imaging parameters can be accessed via the dataset
webpage.

We included dMRI data of 129 subjects from the PPMI dataset
(baseline visit) in our classification experiments. The data comprises
three subgroups: 43 patients with diagnosed Parkinson’s disease, 43
patients with prodromal Parkinson’s disease, and 43 healthy controls.

Fig. 5 | RadTract enables a detailed analysis of feature, tract parcel and para-
metermap importance. a Importanceof the individual parametermaps.bTop ten
most important features across datasets. c, d Importance of individual feature
classes (first order, shape and texture). Texture features have a relatively lowmean

importance (d) but due to their large number a high aggregated importance (c) and
therefore most likely still a large influence on the result. We use standard box plots
including the mean value (white marker) with 1.5 IQR whiskers. The number of
tracts in a, c and d is indicated in the graph legends.
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The three groups were matched for age and sex (see Supplementary
Table 10). All datasets as well as further information about the data are
accessible via https://ida.loni.usc.edu/. Data were acquired on a Sie-
mens 3T MRI scanner with 64 directions with varying b-values
ofb=600s=mm�2 and b= 1,000s=mm�2 as well as 2mm isotropic
resolution. The IDs of all included subjects can be found in Supple-
mentary Table 7 and the corresponding imaging parameters can be
accessed via the dataset webpage.

We included dMRI data of 98 subjects from the SCHZ dataset in
our classification experiments. The data comprises two subgroups: 49
patients with diagnosed schizophrenia and 49 healthy controls. The
groups were matched for age and sex (see Supplementary Table 10).
This data was obtained from the OpenfMRI database (https://
openfmri.org/dataset/ds000030/)46. Its accession number is
ds000030. Data were acquired on a Siemens 3T Tim TrioMRI scanner
with 64 directions at b = 1,000s=mm�2 and 2mm isotropic resolution.
The IDs of all included subjects can be found in Supplementary Table 7
and the corresponding imaging parameters can be accessed via the
dataset webpage.

We included dMRI data of 87 subjects from the CAT dataset in
our classification experiments. The data comprises three sub-
groups: 30 schizophrenia patients with catatonia, 29 schizophrenia
patients without catatonia, and 28 healthy controls. The groups
were matched for age and sex (see Supplementary Table 10). For
the regression experiments, we used 59 schizophrenia patients
from the CAT dataset and 49 additional schizophrenia patients
which were not previously considered in the CAT analyses due to
the lack of matching with healthy controls (108 patients total). The
following demographic and clinical measures were included in our
experiments:

• Age in years
• Pack-Years: the number of packsof cigarettes smokedper day by

the number of years the person has smoked.
• Education: the number of years the person spent in an educa-

tional institution, such as high school or university.
• BPRS total: aggregated score on the Brief Psychiatric Rating

Scale (BPRS), measuring the severity of various psychiatric
symptoms.

• PANSS total: aggregated score on the Positive and Negative
Syndrome Scale (PANSS), measuring symptom severity of
patients with schizophrenia.

• GAF: score on the Global Assessment of Functioning scale,
measuring the social, occupational, and psychological func-
tioning of the person.

• OLZe: indicating the daily doses of antipsychotic medication in
terms of Olanzapine equivalents (OLZe).

Data were acquired at CIMH on a Siemens 3T Tim Trio MRI
scanner with 60 directions at b= 1,500s=mm�2 and 1.7mm isotropic
resolution. The studies on the acquisition of CAT and healthy control
data were approved by the local ethics committees (Medical Faculties
Mannheim and Heidelberg at Heidelberg University, Germany). Writ-
ten informed consent was obtained from all participants after a
detailed explanation of the aims and procedures of the study. The CAT
participants received financial compensation for their participation in
the study. Further details about the dataset can be found in the work
presented by Wasserthal and colleagues27.

Data preprocessing and tract modeling
The following artifact and noise correction steps were conducted for
all dMRI images using MRtrix and FSL53,54: noise level estimation and
denoising55, Gibbs ringing removal56, eddy current and inhomogeneity
distortion correction57,58 aswell asbiasfield correction59. The corrected
images were then rigidly registered and resampled to the MNI-space
FA template (1.25mm isotropic resolution) contained in the TractSeg

package using MITK Diffusion. Brain masks were calculated using FSL
Bet60. Tensors and FAmaps were calculated and constrained spherical
deconvolution (CSD)with a successive extractionof the threeprincipal
fiber directions (peaks) was performed using MRtrix61. The peaks
served as input to TractSeg, which was used to calculate tract seg-
mentations, tract start- and end-region segmentations, tract orienta-
tion maps, and as well as tractograms of each tract. A complete list of
the used commands and parameters can be found in Supplementary
Table 8.

Analyzed tracts
The corpus callosum (CC) serves as one of the most prominent tracts
in the human brain that is responsible for the mediation of inter-
hemispheric transfer, in terms of increased inhibition or reduced
facilitation62. Intact transcallosal functioning is essential for sustained
attention,motor control, and synchronization of bilateralmovements.
For these reasons, the CCplays a crucial role in the pathophysiology of
all psychiatric disorders. Therefore, the Rostrum (CC_1), Genu (CC_2),
Rostral Body (CC_3), Anterior Midbody (CC_4), Posterior Midbody
(CC_5) and Isthmus (CC_6) of the CC were analyzed in all datasets. Due
to frequent errors in the TractSeg results in all datasets, the Splenium
of the CC (CC_7) was excluded from the analysis (see Supplementary
Fig. 80). Because thismanuscript aims to present a newmethod rather
than the pathophysiology of each of the four psychiatric cohorts,
besides CC, we have focused on the pathophysiologically most plau-
sible WM tracts. The choice of these additional WM tracts per cohort
will be described in the following paragraphs.

The scientific community is becoming more interested in cere-
bellar circuitry as a result of the cerebellum’s crucial involvement in
motor, cognitive, and emotional activities as well as the deterioration
of its functioning with age63. Further, recent neuroimaging studies
showed that the cerebellum is involved in Alzheimer’s disease64. Since
WMmicrostructural alterations of the cerebellum are relevant for both
Alzheimer’s disease and mild cognitive impairment patients, we deci-
ded to include the left and right Inferior Cerebellar Peduncle (ICP) and
Superior Cerebellar Peduncle (SCP) in our experiments on the ADNI
dataset.

WM microstructural alterations of the corticospinal tract (CST)
are discussed as possible biomarkers of Parkinson’s disease65,66. Fur-
thermore, previous studies also showed that WM microstructural
alterations of CST could serve as an early marker for prodromal Par-
kinson’s disease67–69. Since CST plays a crucial role in all three motor
stages of Parkinson’s disease (e.g., silent, prodromal and clinical Par-
kinson’s disease), we decided to include the left and right CST in our
experiments on the PPMI dataset.

SCHZ patients show structural and functional alterations in both
cortical (e.g. frontal, prefrontal, parietal, temporal, cingulate, and
insular cortex)70,71 and subcortical (e.g. hippocampus, amygdala,
nucleus accumbens, striatum, and thalamus) regions72. Therefore,
besides CC, we included WM tracts connecting the majority of the
neurobiologically plausible cortical and subcortical regions, i.e., left
and right Thalamo-Prefrontal Tract (T_PREF), Thalamo-Parietal Tract
(T_PAR), Striato-Parietal Tract (ST_PAR) and Striato-Fronto-Orbital
Tract (ST_FO), in our experiments on the SCHZ dataset.

Themajority ofMRI studies proposed apathophysiologicalmodel
of catatonia including right hemispheric neural network abnormalities
that include the medial and lateral orbitofrontal cortex, prefrontal
cortex, supplementary motor area, primary motor cortex, posterior
parietal cortex, anterior cingulate cortex, amygdala, thalamus, and
cerebellum, respectively73–75. Therefore, besides CC, we included WM
tracts connecting these regions, i.e. the left and right CST, Striato-
Fronto-Orbital Tract (ST_FO), Thalamo-Premotor Tract (T_PREM) and
Striato-Premotor Tract (ST_PREM), in our experiments on the CAT
dataset.
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Benchmark methods
As described in the introduction, tractometry involves evaluating the
parameter map of interest along the points of the individual fibers.
Each value is assigned to one of n parcels depending on its position.
The values within each parcel are then aggregated, usually by aver-
aging, resulting in a vector of scalar values along the tract that can be
used for further analysis. There are two main approaches for parcel
assignment:

Approach (1) statically resamples the streamlines to n points (1)
and the parcel ID for each point is directly given by the point’s position
along the streamline23. Here, we refer to this approach Static
Tractometry.

Approach (2) assigns each value at a streamlinepoint to the closest
point on a tract-centerline composed of n points (2)48. In this case, the
parcel ID is given by the position of the respective closest point on the
centerline. This approach avoids parcel assignment errors of approach
(1), which arise from misalignment among the individual streamlines,
causing image values at the same spatial position to be assigned to
different parcels based on their respective positions along the
streamline. Here, we refer to this approach as Centerline Tractometry.

Both approaches were used as benchmark methods for our pro-
posed approach in all experiments. As described in the results, n was
set to 100, as suggested in the literature47,48. Figures 6a and b illustrate
both parcellation types.

Tract parcellation
As described in the previous section, classic tractometry assigns par-
cels to points in streamline space. RadTract, on the other hand, cal-
culates radiomics features in the image- or voxel-space. To this end,
RadTract assigns each voxel of the corresponding binary tract envel-
ope to a parcel using the same centerline-based approach as used in
Centerline Tractometry. The binary envelope of a tract is created by
labeling each voxel of the corresponding image that is traversed by a
fiber with 1 and all other voxels with 0. Small holes arising from spar-
sely populated tracts are filled using a standardmorphological closing
operation on the binary mask. Figure 6c illustrates the resulting Rad-
Tract parcellation in voxel space. In case of the voxel-space parcella-
tion of RadTract,n = 100, asused for the benchmark approaches, is not
feasible since the voxel spacing imposes a natural and tract-dependent
upper limit on n. The choice of n for RadTract is described in the
results section.

Feature calculation
RadTract calculates 105 radiomics features in each parcel and for each
parameter map. The calculated features can be categorized in the
following types:

• First Order Statistics (18)
• Shape-based (14)
• Texture (73):

• Gray Level Cooccurence Matrix (22)
• Gray Level Run Length Matrix (16)
• Gray Level Size Zone Matrix (16)
• Neighbouring Gray Tone Difference Matrix (5)
• Gray Level Dependence Matrix (14)

Feature calculation is based on pyradiomics, a widely used open-
source Pythonpackage for radiomics feature calculation34. The Feature
calculation can be easily customized using yaml-based parameter files.
The complete list of features used in this work can be found in Sup-
plementary Table 9 and the yaml file used to parameterize the feature
extraction is included in the supplementary code.

Since RadTract produces numerous features per tact, automatic
feature selection is vital for later analysis. A large variety of feature
selection techniques exist, and the best choice depends on the con-
crete task. Adetailed analysis of this aspectwould gobeyond the scope
of this work. In our experiments, wefirst removed all constant features
as well as all highly correlated (Pearson correlation >0.95) and there-
fore likely redundant features. Second, we used a simple and fast
univariate feature selection implemented in scikit-learn on the training
data to further automatically reduce the respective input feature set to
k features76. This type of feature selection works by selecting the best
features based on univariate statistical tests. In case of a classification
experiments, this method computes the ANOVA F-value between each
feature and the target variable. In case of a regression task, this is done
by calculating the linear correlation of each feature with the target
variable. Both approaches return the F-value and p-value for each
feature. The F-value measures the difference in means between the
classes or the linear correlation coefficient, for classification and
regression respectively, while the p-value measures the significance of
the difference/correlation. The higher the F-value and the lower the
p-value, the more significant the feature is in predicting the target
variable. This approach for feature selection is supervised, meaning it
does indeed use the target variables. Therefore, the feature selection is
performed on the training samples only, not on the test samples. The

Fig. 6 | Comparison of CST parcellations. a Static Tractometry. b Centerline
Tractometry. c RadTract. The RadTract parcellation corresponds to the Centerline
Tractometry parcellation, only in voxel space instead of streamline space. For

illustration purposes, all approaches were parameterized with the same number of
parcels n instead of the n used in the experiments.
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process is deterministic, meaning that given the same samples, the
same features will be selected. Nevertheless, the selected features
might be different across folds.

Statistical tests
Tests for significanceof the classification experimentswere performed
using Delong’s method for statistical comparisons of ROC curves
(https://github.com/yandexdataschool/roc_comparison, commit hash
44fcd23). A tract-level-result was deemed significant if the mean p
across repetitions was smaller than 0.05. In case of a multi class
experiment, the tests were performed for each class independently
using the One-vs-the-Rest (OvR) strategy and an improvement was
deemed significant if p <0.05 for at least one of the classes.

Implementation details
We used the support vector classification as well as random forest
classification and regression implemented in scikit-learn (v1.1.2) in our
implementation of the RadTract parcellation function as well as all
classification and regression experiments76. Default parameterization
was used if not stated otherwise. Pyradiomics v3.0.1 was used for all
radiomics feature calculations34. Further used python packages
include numpy (v1.23.3), scipy (v1.9.1), pydicom (v2.3.0), nibabel
(v4.0.2), skimage (v0.19.3), dipy (v1.5.0), TractSeg (v2.7) and vtk
(v9.2.0)47,77–82. Python version 3.10 was used in all experiments.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
In this study, no new data was gathered. Instead, it incorporated four
existing datasets. The first two, the ADNI and PPMI datasets, are
accessible through the Image and Data Archive (IDA, https://ida.loni.
usc.edu/). For the ADNI data, access can be obtained through the IDA’s
ADNI section (https://adni.loni.usc.edu/data-samples/access-data/),
and for the PPMI data, access can be obtained through the PPMI’s
information page (https://www.ppmi-info.org/access-data-specimens/
download-data). The third dataset, SCHZ, is available in the Open-
Neuro database under the accession code ds000030 (https://
openneuro.org/datasets/ds000030/versions/00016/download). The
fourth dataset (CAT) is a non-public dataset acquired at the Central
Institute of Mental Health (CIMH). Due to data privacy laws, the CAT
data are protected and not available. The IDs of all subjects included
from the public datasets can be found in Supplementary Table 7, and
the corresponding imaging parameters canbe accessed via the dataset
webpage. Source data are provided with this paper.

Code availability
The RadTract code is available as supplementary software. RadTract
version 0.1.9 was used for the presented experiments83. Updated ver-
sions can be found on https://github.com/mic-dkfz/radtract and
https://pypi.org/project/radtract/.
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