
Article https://doi.org/10.1038/s41467-023-44554-8

Moving event detection from LiDAR point
streams

Huajie Wu 1,2, Yihang Li1,2, Wei Xu1, Fanze Kong1 & Fu Zhang1

In dynamic environments, robots require instantaneous detection of moving
events with microseconds of latency. This task, known as moving event
detection, is typically achieved using event cameras. While light detection and
ranging (LiDAR) sensors are essential for robots due to their dense and
accurate depth measurements, their use in event detection has not been
thoroughly explored. Current approaches involve accumulating LiDAR points
into frames and detecting object-levelmotions, resulting in a latency of tens to
hundreds of milliseconds. We present a different approach called M-detector,
which determines if a point is moving immediately after its arrival, resulting in
a point-by-point detection with a latency of just several microseconds.
M-detector is designed based on occlusion principles and can be used in dif-
ferent environments with various types of LiDAR sensors. Our experiments
demonstrate the effectiveness of M-detector on various datasets and appli-
cations, showcasing its superior accuracy, computational efficiency, detection
latency, and generalization ability.

Autonomous robots, including self-driving vehicles and autonomous
drones, have the potential to revolutionize various applications such
as last-mile delivery, robotaxi, agriculture, and aerial imaging, making
them increasingly relevant to our daily lives. However, one of the key
challenges in deploying these robots is the detection and avoidance of
non-cooperative moving objects that are prevalent in real-world
environments. Accidents caused by collisions with fast-moving
objects, such as tossed objects or birds that collide with drones1,2,
and sudden-crossing pedestrians or cyclists hit by self-driving
vehicles3–5, are examples of these challenges. To avoid such acci-
dents, a robot must detect fast-moving objects or any of their moving
parts immediately after the occurrence of the motion. This task is
known as moving event detection, or event detection.

The task of event detection is usually achieved by, and also
obtains its name from, event cameras6. These cameras are designed to
detect changes in a scenewith a reaction time ofmicroseconds. Unlike
traditional cameras, which measure the intensity of a pixel at a fixed
rate (i.e., the frame rate), an event camera measures the change in
intensity (rather than the intensity itself) of a pixel. When a change in
intensity is detected at a pixel, such as due tomoving objects, an event
is triggered at that pixel to indicate a change in the scene. This

generates a stream of asynchronous events with microsecond-level
latency. Due to the high dynamic range, low power consumption, and
low detection latency7, event cameras have been used in many inter-
esting applications such as dynamic obstacle avoidance for
quadrotors8, video reconstruction in high-speed motion9, and visual-
inertial odometry for extreme motion conditions10.

Light detection and ranging (LiDAR) sensors are another type of
sensors widely used for autonomous robots. Unlike cameras that mea-
sure the intensity or intensity change at each pixel, LiDAR sensors
measure the depth of that pixel by emitting a laser pulse along the pixel
direction and computing the laser time of flight (ToF). Such an active
and direct ranging mechanism can produce depth measurements that
are very accurate (e.g., centimeter level), efficient (e.g., without extra
triangulation for depth estimation), and independent of external illu-
mination, enabling the robot to perceive its surrounding environments
precisely and timely even at night. Moreover, LiDAR sensors often have
tens to hundreds of laser emitters stacked in an array and each one
emits laser pulses at microseconds interval11,12, producing tens of thou-
sands to millions of points per second. These high-frequency point
measurements, although at a fixed rate, has a temporal resolution of
microseconds to sub-microseconds that is similar to event cameras.

Received: 12 April 2023

Accepted: 2 December 2023

Check for updates

1Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China. 2These authors contributed equally: HuajieWu,
Yihang Li. e-mail: fuzhang@hku.hk

Nature Communications | (2024) 15:345 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0009-0008-8242-5542
http://orcid.org/0009-0008-8242-5542
http://orcid.org/0009-0008-8242-5542
http://orcid.org/0009-0008-8242-5542
http://orcid.org/0009-0008-8242-5542
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44554-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44554-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44554-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44554-8&domain=pdf
mailto:fuzhang@hku.hk

Fully exploiting these high-frequency measurements could provide
extremely timely detection of any moving events in the scene. Specifi-
cally, it requires a moving point to be detected immediately after its
arrival to minimize the latency. This online detection of moving events
at the rate of point sampling is analogous to event cameras and hence
referred to as event detection.

Moving event detection could be achieved at the measuring stage
of a LiDAR sensor, such as the Frequency-Modulated Continuous Wave
Laser Detection and Ranging (FMCW-LADAR) sensors. Compared to the
standard ToF LiDAR, FMCW-LADAR involves a continuously emitted
laser beam and utilizes the Doppler effect to acquire information on
range and velocity13. While being able to measure the velocity of each
measured point, FMCW-LADAR can only measure the point velocity
component along a laser ray, failing to detect any movements perpen-
dicular to the ray14. Besides, the FMCW-LADAR scene acquisition time
could take several times longer than LiDAR’s15, which restricts its frame
rate that is crucial for robotics applications. Furthermore, the current
FMCW system requires a fairly large processing unit, leading to a system
of bigger size, weight, and power (SWaP) requirements13.

Standard ToF LiDARs have gained much wider applications in
robotics due to their rapidly decreasing cost and requirements for
SWaP. Nevertheless, there are few works addressing the task of event
detection using ToF LiDAR measurements. A relevant task that has
caught much research attention is moving object segmentation (MOS),
which aims to segment points on moving objects from a LiDAR frame.
Existing works on MOS are mainly based on consistency check16–19,
occupancy map20–23, semantic segmentation24–29, and motion
segmentation30–35. Consistency check methods16–19 typically compare
points in a new frame to points from previous frames, labeling incon-
sistent measurements as on moving objects. Occupancy map
methods20–23 often build an occupancy-grid map and label points in a
known-free grid asmoving objects. Semantic segmentationmethods24–29

first segment the LiDAR points, and then determine the points’moving
status based on their segmented class. For example, points belonging to
vehicles or pedestrians are labeled as moving and points belonging to
walls or traffic lights are labeled as static. This labeling mechanism can
detect movable objects (e.g., a parked car) rather than truly moving
ones as required by the MOS task. To address this issue, recent works
focus on training neural network classifiers30–35 to segment true moving
objects in a frame by enforcing the neural networks to learn the
movements instead of appearance contained in the input LiDAR points.

Existing works on moving object segmentation cannot adequately
fulfill the task of event detection for a few reasons. First, existing
methods operate on frames at a rather low frequency (e.g., 10 Hz),
requiring the accumulation of LiDAR points into frames. This accumu-
lation causes an obvious delay that is equal to the frame interval, typi-
cally 100 ms, which nullifies the inherent high-rate sampling feature of
LiDAR sensors. In addition, ref. 19 relies on a future frame for detecting
moving objects, which exacerbates the delay further. For methods that
employ occupancy grid maps20–23, constructing the occupancy map is
often computationally and memory intensive, particularly when
detecting movements over long ranges (e.g., hundreds of meters) or
with small movements (e.g., a few centimeters), making real-time
operation challenging. Moreover, ref. 21–23 are offline systems that
require all LiDAR frames for occupancy map construction. For learning
methods26–35, they often require a substantial amount of ground-truth-
labeled data for training neural networks, which can be difficult to
obtain, especially given the diverse range of LiDAR types used in the
robotics community. Generalization to classes, LiDAR types, and scenes
not included in the training data remains a significant challenge.

Ourmethod for moving event detectionmakes full use of the high-
rate sampling of a ToF LiDAR sensor by detecting themovement of each
point immediately upon its arrival. This point-by-point detection
mechanism leads to an online system operating on the LiDAR point
streams. Moreover, it eliminates the need for frame accumulation and

achieves a detection latency of just 2–4 μs per point. Unlike existing
methods that rely on the appearance of objects in the input point
cloud26–35, ourmethod uses themotion cues of each point. This provides
two key benefits: first, it detects moving, rather than movable, objects
(Fig. 1b); second, it detects anymoving object, or anymoving part of the
object, regardless of its shape or class (Fig. 1a). As a model-based
method that explicitly exploits the motion cues, our method can be
easily adapted to different object classes, LiDAR types, and scenes.

We term our method as M-detector (Supplementary Video 6),
which stands for moving event detector. The low detection latency of
the M-detector also resembles the Magnocellular cell (M-cell) located in
the lateral geniculate nucleus (LGN) of human visual systems, which is a
specialized “motion-sensitive" cell that detects changes in the visualfield
with rapid response time due to their larger sizes and faster processing
capabilities compared to other cells in the LGN36 (Fig. 2).

Themotion cue that enablesM-detector is the occlusion principle
(Fig. 3), where an object that crosses the laser rays of a LiDAR sensor
will occlude the background thatwas visible in the past (Fig. 3a) and an
object that moves along the laser rays will recursively occlude (or be
occluded by) itself (Fig. 3b, c). The occlusion principles hold as long as
the sensor returns points collected on the first visible object, which is
true for existing robotic LiDARs. Building on these basic physical
principles, the M-detector is highly generalizable without requiring
massive ground-truth labels for training.

The system design of M-detector is depicted in Fig. 4. The system
accepts either an individual point or a frame of points as its input, with
the sensor ego-motion compensated in advance. In the case of a frame
input, the system serializes the frame into a stream of individual
points. Each point, whether input directly or serialized from a frame,
undergoes three parallel tests (i.e., event detection) corresponding to
the three occlusion principles (Fig. 3). The point is labeled as amoving
event if any of the three tests are positive or else labeled as a non-event
point (see Methods). The labeled point is then output immediately,
leading to a detection delay equal to the processing time of the event
detection. Then, the currently labeled points are accumulated for a
certain time period, where clustering and region growth are per-
formed to improve the detection results by rejecting possible outliers
and accepting further inliers (see Methods). The accumulated points
with event labels are finally transformed into a depth image, which is
saved in the depth image library for use in detecting future points. The
system can also output the event labels as frames after clustering and
region growth are completed. This mode of output increases the
accuracy but introduces a longer delay due to the time required for
point accumulation, clustering and region growth. A more detailed
explanation forM-detector’s workflow can be found in Supplementary
Notes 2.

Wedemonstrated the effectiveness of the proposedM-detector in
terms of detection accuracy, computation efficiency, success rate
(Supplementary Notes 3), and practical applications. Results on mul-
tiple open datasets, including KITTI37, SemanticKITTI38, Waymo39, and
nuScenes40, as well as our in-house dataset, AVIA-Indoor, showed that
the M-detector achieved consistently higher accuracy while consum-
ing the least computation time among the benchmarked methods.
Notably, it ran in real-time and achieved a detection latency of just 2–4
μs for each received LiDAR point. The method also demonstrated a
high level of generalizability, successfully detecting moving objects of
various sizes, colors, and shapes in different environments (e.g.,
laboratory, road, park, at night, see Supplementary Notes 4) and with
different LiDAR types (e.g., multi-line spinning LiDARs, non-repetitive
scanning LiDARs). Moreover, the high detection accuracy, low detec-
tion latency, and training data-free nature of M-detector provide
timely and robust moving event detection at a low cost (Supplemen-
tary Video 1), which could benefit a substantial number of real-world
robotic applications. We demonstrated several practical applications
of the M-detector, including moving object detection in autonomous

Article https://doi.org/10.1038/s41467-023-44554-8

Nature Communications | (2024) 15:345 2

driving, avoidance of fast-moving obstacles in quadrotor navigation,
vehicle counting in traffic monitoring, intruder detection in surveil-
lance, and dynamic points removal in LiDARmapping. TheM-detector
allowed the quadrotor to avoid obstacles with relative speeds up to 7.6
m/s even when the obstacle has a similar color to its background.

Results
Weevaluate the accuracy and computation efficiencyofM-detector on
three open datasets, including KITTI37, Waymo39, and nuScenes40, and
one in-house dataset, AVIA-Indoor (Supplementary Notes 5), leading to
a total number of 119 sequences and a total duration over 51min

(Supplementary Table 1). These datasets cover various types of LiDARs
(e.g., 32 lines, 64 lines, and non-repetitive irregular scanning), scenes
(urban, residential, highway, and indoor laboratory), objects to be
detected (vehicles, pedestrians, cyclists, and tossed objects of differ-
ent sizes or colors (Supplementary Fig. 1)), platforms (e.g., road vehi-
cles, handheld device), and illumination conditions.More details of the
datasets and their labeling are shown in Supplementary Notes 5 and
Supplementary Notes 6.

In all evaluations,we compared theM-detectorwith twomethods,
LMNet30, which is a representative learning-based motion segmenta-
tion method, and SMOS20, a representative method based on

Fig. 1 | M-detector detects the movements in a scene instantaneously.
aDetection of a sudden-crossing pedestrian. The pedestrian emerged from behind
a wall at 0.01 s and quickly entered the road without checking the road condition.
b Detection of a stationary pedestrian starting to move. The lady waited at an
intersection until 0.4 s, when she lifted her leg and began to cross the street. The
other pedestrians remain stationary and have not begunmoving. In both cases, the
upper row shows the sequence of images (for visualization only). The lower row

shows the detection results over the last 100 ms of M-detector on a Livox AVIA
LiDAR, which has a non-conventional non-repetitive irregular scanning pattern.
M-detector determines whether a point is on amoving object right after the point’s
arrival, leading to a detection latency less than the LiDAR point sampling interval (a
few microseconds). Designed on a first principle, the occlusion principle,
M-detector detects points sampled on any moving part of the scene regardless of
its shape.

Article https://doi.org/10.1038/s41467-023-44554-8

Nature Communications | (2024) 15:345 3

occupancy map. Methods based on semantic segmentation and con-
sistency check are not benchmarked. The reason is that methods
based on semantic segmentation only segment movable objects, not
moving ones, and thus have a different objective fromM-detector. For
consistency check-basedmethods, to the best of our knowledge, there
are no open-source implementations available for a fair comparison.
Weused twovariants of LMNet, namely LMNet-1 andLMNet-8*, and the
author-tuned parameters of SMOS, as detailed in Supplementary
Notes 7. For M-detector, different parameters were adjusted for dif-
ferent LiDAR sensors (Supplementary Table 2) based on the tuning
guidelines provided in Supplementary Notes 8. For each type of LiDAR

used in one dataset, the parameters were kept the same for all
sequences.

Since all datasets were collected in the frame mode, where
points were packed into frames at certain frequencies (Supplemen-
tary Table 1), M-detector serialized a frame into a stream of points
and labeled the movement of each point sequentially (Fig. 4). In
contrast, LMNet and SMOS were both based on frames, where they
leveraged all information in the frame to label each point. To make a
fair comparison, in addition to the point-outmode of theM-detector,
we also compare its frame-out mode, where the event labels were
output after the step of clustering and region growth (Fig. 4). The

Fig. 3 | Principle of occlusion. aWhen an object is crossing the LiDAR’s laser rays,
the current points (blue points) will occlude the previous points (orange points)
collected at time Tk−1. b When an object is moving along laser rays and away from
the sensor, the current points (blue points) will be occluded by all previous points
(i.e., orange points at Tk−1 and green points at Tk−i) that are further occluded by

themselves (i.e., orange points at Tk−1 are occluded by green points at Tk−i). cWhen
an object is moving along laser rays and towards the sensor, the current points
(blue points) will occlude all previous points (i.e., orange points at Tk−1 and green
points at Tk−i) that further occlude themselves (i.e., orange points at Tk−1 occlude
green points at Tk−i).

Fig. 2 | Analogy of M-detector to M-cell. The M-detector detects moving events
from the stream of LiDAR points in a point-by-point manner, leading to a detection
latency of just 2-4 μs. The low latency of M-detector is similar to the Magnocellular
cells (M-cells) in the lateral geniculate nucleus (LGN) of human visual systems61,

which also have a fast response time but a low resolution. In contrast, accumulating
points into frames leads to a higher resolutionbut also a longerdelay (e.g., 100ms),
a phenomenon similar to the Parvocellular cells (P-cells) in the LGN. This figure is
created with the help from a paid third party (https://www.shiyanjia.com).

Article https://doi.org/10.1038/s41467-023-44554-8

Nature Communications | (2024) 15:345 4

https://www.shiyanjia.com

odometry for ego-motion compensation in all methods is based on
FAST-LIO241.

Accuracy
To quantify the accuracy, we adopted a commonly used metric for
Moving Object Segmentation (MOS), the Intersection-over-Union
(IoU)42, which is defined below

IoU=
TP

TP+FP+ FN
ð1Þ

where TP, FP, FN denotes the number of true positive, false positive,
and false negative points on moving objects over all sequences in a
dataset.

Figure 5a shows the comparison among M-detector, LMNet, and
SMOS in termsof the IoU.On theKITTIdatasetwhere LMNet and SMOS
were both well trained or tuned, they were still outperformed by
M-detector (frame-out mode) with large margins. Specifically,
M-detector outperformed SMOS by 263.9% (0.746 versus 0.205) and
LMNet-8* by 17.5% (0.746 versus 0.635) despite the lack of semantic
information used by LMNet-8*. Without such semantic information
(i.e., LMNet-1), LMNet’s performance dropped evenmore, achieving an
IoUeven lower than the point-outmode ofM-detector although it used
one entire frame to label each point, while theM-detector labeled each
point sequentially. The performance degradation of LMNet wasmainly
due to false detection caused by static pedestrians or cars and missing
detection on partially occluded moving cyclists (Fig. 5b). This is rea-
sonablebecause itwas difficult to enforce theneural network classifiers
in LMNet to learn the objects’ movements rather than appearances.
The trained neural networks often falsely detected objects that were
movable but not actually moving. In contrast, the M-detector, by
design, is sensitive to only objects’ movements instead of their
appearance, shape, size, etc. As a consequence, the M-detector is able
to distinguish an object inmoving from that at stationary, regardless of
its appearances (e.g., pedestrians, cars, partially occluded cyclists)
(Fig. 5b). For SMOS,manymissing detection occurred due to its design

(Fig. 5b). The method used the number of points in a voxel to deter-
mine the voxel’smoving status, whichwas not effective for objectswith
movements less than the voxel size or objects at far with fewer mea-
sured points (they set the detection range to 25 m in KITTI). These two
factors deteriorated the performance of SMOS considerably.

For the rest three datasets, the performance of LMNet dropped
drastically because its training data do not contain the LiDAR types
(e.g., Velodyne HDL-32E, Waymo-64, and Livox AVIA) or objects (e.g.,
tossed balls) of these datasets. The model-based method, SMOS, per-
formed better than LMNet on the three datasets with our fine para-
meter tuning, but the overall performance was still quite low. In
contrast to LMNet and SMOS, M-detector, both point-out mode and
frame-outmode, achieved consistently high IoU on these datasets and
outperformed LMNet (LMNet-1 and LMNet-8*) and SMOS with large
margins, demonstrating that the M-detector can maintain high accu-
racy across different types of LiDAR (e.g., multi-line spinning (Fig. 5b)
and incommensurable scanning (Fig. 5c)) and scenes (urban, residen-
tial, highway and indoor laboratory). It is also noted that the
M-detector has an IoU that is higher on nuScenes than on the other
datasets. This is because nuScenes has many dynamic points collected
on the ego-vehicle, which is detected by the M-detector. A large
number of event points contributed to a high TP and hence a high IoU
according to Eq. (1).

Time consumption and detection latency
We evaluated the computation efficiency ofM-detector in terms of the
time consumed by processing each frame (or point), including event
detection, clustering and region growth, and depth image construc-
tion (Fig. 4a). The evaluation was conducted on a desktop with a
central processing unit (CPU) of Intel i7-10700 (2.90 GHz, 8 cores) and
48 GB random access memory (RAM). We further compared the
computation time to LMNet on the same computation platform. Since
LMNet involves neuralnetworkswhicharebest performedonGraphics
ProcessingUnit (GPU), we also ran it on adesktopwith an Intel Xeon(R)
Gold 6130 CPU (2.10 GHz, 16 cores), a RAM of 64 GB, and a single
GeForce RTX 2080 Ti graphics card.

Occlude & map consistency check

Test 1 Test 2 Test 3

Is occluded by & map consistency check
Current point

a b

OR

OR

OR OR

Point in

AND

AND

AND

AND

AND

AND

Event non-event point

OREvent detection

OR AND AND

 Point accumulation &
Cluster & Region growth

Point in
 or
Frame in

Frame out
 or
Point out

Depth image library

t

Point serialization

Test 1

Test 2

Test 3

Depth image
construction

Fig. 4 | System workflow of M-detector and details of the event detection step. a The system workflow. b The three tests in the event detection.

Article https://doi.org/10.1038/s41467-023-44554-8

Nature Communications | (2024) 15:345 5

Figure 6a shows the time consumption of M-detector and LMNet.
Overall, M-detector consumed only around 1–6% computation time of
LMNet-1 when running on the same CPU, and only around 20–60% of
LMNet-1 even when LMNet-1 additionally used a GPU. The resultant
time consumption of the M-detector was less than the frame period
(87.3ms versus 100ms inKITTI, 86.2ms versus 100ms inWaymo, 33.6
ms versus 50 ms in nuScenes, and 16.1 ms versus 100 ms in AVIA-
Indoor), suggesting a real-time running performance. The detailed
computation timebreakdownof LMNet is shown in the Supplementary
Table 3. The inference time of LMNet-1 on GPU was 51.1 ms. Never-
theless, other modules, such as residual image construction, con-
tributed substantial computation time, the total timewas0.8–1.9 times
the frame period on the GPU desktop. For LMNet-8*, it infers the
points’ moving status using eight recent residual images and further
leverages the semantic labels generated by SalsaNext. Although the
semantic segmentation ran in parallel to the moving events inference,
the residual image construction contributed considerably more com-
putation time (Supplementary Table 3). As a result, the mean per-
frame computation time of LMNet-8* on CPU was around 10% more
than LMNet-1 and on GPU is 200–500%more than LMNet-1, leading to
an even larger gap fromM-detector. Finally, for themethod SMOS, the
open-source implementation from20 was based on MATLAB, whose
running time was not optimized for efficiency. As a reference, the

computation time of SMOS on the CPU platform was 10-20 times
higher thanM-detector (615.0 ms in KITTI, 2043.9 ms inWaymo, 848.7
ms in nuScenes and 793.5 ms in AVIA-Indoor).

In addition to the computation time, we further evaluated the
detection latency, which plays a crucial role in dynamic objects
avoidance. The detection latency ofM-detector in point-outmodewas
caused by the event detection and that in frame-out mode was caused
by both event detection and clustering & region growth (Fig. 4a). As
shown in Fig. 6b, in the frame-out mode, M-detector had a detection
latency ranging from 11.5 ms to 65.1 ms due to the varying frame rate
and point number in each frame (see further latency breakdown in
Supplementary Table 4). In the point-out mode, the detection latency
was 2–4 μs per point, which ensured a low latency detection. In con-
trast, the detection latency of LMNet and SMOS consisted of the time
consumed by all processing steps in their design. Consequently, the
values of their detection latency were equal to the computation time,
which caused a delay per frame at the level of hundreds of micro-
seconds to seconds.

Application on autonomous driving
The detection of sudden crossing pedestrians is a critical challenge in
autonomous or assisted driving vehicles, particularly in scenarios
where a pedestrian unexpectedly enters the road, providing very little

c

a

nuScenes

KITTI

AVIA-Indoor

Waymo

Io
U

M-detector (point-out) M-detector (frame-out) LMNet-1 LMNet-8* SMOS
Io

U

Scene image

M-detector (frame-out)

False detection on static objects

Missing detection on moving cyclist

LMNet-8*

b

Missing detection on moving pedestrians

Missing detection on moving cyclist
SMOS

Fig. 5 | Theperformance ofM-detectorondifferent datasets. aThe IoU results of
different methods on different datasets. b The comparison among M-detector,
LMNet-8*, and SMOS on KITTI. The scene image (for visualization only) is the 68th
frame in sequence 15. c Details of the AVIA-Indoor dataset. The left column shows
images captured in the scene, and the right column shows the corresponding

detection results of M-detector in frame-out mode. In all detection results shown
above, the red points represent event points labeled by the method and the white
points represent non-event points. Boxes in the images and detection results are
manually labeled to highlight the regions of interest.

Article https://doi.org/10.1038/s41467-023-44554-8

Nature Communications | (2024) 15:345 6

time for the vehicle to react. This challenge is further exacerbated
when the sudden crossing occurs outside of intersections, as the
vehicle may not anticipate such behavior in these areas. According to
the National Highway Traffic Safety Administration (NHTSA)43, 6,516
people in the United States were killed in motor vehicle crashes in
2020, with 75% of these fatalities occurring outside of intersections
due to sudden road crossing. The proposed M-detector is particularly
suitable for this scenario due to two reasons: (1) it leverages the
occlusion principle to detect moving objects of any shape, color, or
size; and (2) the method utilizes point-by-point detection (Fig. 4),
allowing for microsecond-interval detection of moving objects. These
features enable the vehicle to immediately detect crossing pedestrians
as soon as any part of the pedestrian enters the sensor’s line of sight or
begins moving.

Figure 1a shows the casewhere apedestrianbehindawall suddenly
entered the road. The M-detector successfully detected the pedestrian
in 10 ms, among which the major delay was due to the LiDAR scanning
(i.e., the time spent on driving the LiDAR prisms to a direction pointing
to themoving objects). Theprocessingdelay from the receipt of a point
to its labeling was only a few microseconds. These point-wise event
labels with microseconds-level delay provide extremely timely feed-
back for a vehicle tomake an emergent decisionwithout going through
the full perception pipeline that requires more complete measure-
ments (e.g., a complete frame) and a longer processing time, causing a
perception delay up to hundreds of milliseconds. Moreover, at the
moment the pedestrian was detected, the sensor only measured a very

small part of the pedestrian’s head. These partial measurements are
very challenging for learning-based methods26–35 to detect because
these methods often leverage the object appearance information and
require massive such unusual data to train. Figure 1b shows the case
where a lady waiting at an intersection began to cross the street. Initi-
ally, she stood still at the intersection. At around0.4 s, she lifted her leg,
which triggered theM-detector todetect twoevent points immediately.
At 0.5 s, she stretched out her leg and triggeredmore event points. The
number of detected event points then increased as her movements
became more apparent while no event points were detected on the
other pedestrians who have not begun moving. These event labels on
moving part of a pedestrian provide timely feedback for the vehicle
decision even before the pedestrian has any actual displacement.

Application on UAV obstacle avoidance
Due to the low detection latency and high computing efficiency,
M-detector can be well applied for UAVs with constrained computa-
tion resources to evade fast-moving obstacles (e.g., tossed objects,
birds). To validate this application, we constructed a quadrotor UAV
carrying a Livox AVIA LiDAR and a DJI manifold2-C microcomputer
with an Intel i7-8550 U CPU (1.8 GHz, 4 cores) and 8 GB RAM (Fig. 7a).
The LiDAR frame rate was set to 50 Hz. Once a LiDAR frame was
received, M-detector began detecting the event points. The labeled
event points were then sent to the planning module for calculating an
evasive trajectory. Details of the system and its modules are presented
in Supplementary Notes 9.

Ti
m

e
co

ns
um

pt
io

n
pe

r f
ra

m
e

(m
s)

a

Waymo nuScenes AVIA-IndoorKITTI

LMNet-8* (GPU)LMNet-1 (GPU)LMNet-8*LMNet-1M-detector (frame-out)

87.3 86.2

33.6
16.1

1684.0 1678.0 1490.7 1501.4
1878.0 1963.3

1549.1 1542.8

141.0
189.9

82.5
70.5

852.8
1192.1

320.0

221.3

b

AVIA-Indoor
(100 ms)

Waymo
(100 ms)

Detection latency (frame-out) Detection latency (point-out)
Depth image constructionClustering & Region growthEvent detection Idle

(100 ms)
KITTI nuScenes

(50 ms)

Fig. 6 | Time consumption and detection latency on different datasets. a The
time consumptionper frameof differentmethods ondifferent datasets. The results
for each dataset were obtained by running all frames of all sequences in that
dataset. Each bar in the plot denotes the mean time consumption. The two edges
around each bar represent one standard deviation among all results in the corre-
sponding dataset and the numbers above the top edges are the value of the mean
time consumption. The red dashed lines denote the frame periods of each dataset.
Note that the time consumption is shown in log scale. b The time consumption
breakdown and detection latency of M-detector on different datasets. The outer
rings represent the time consumption breakdown, including event detection,

clustering & region growth, and depth image construction. The ring’s total length
denotes the frame period, which is occupied by the above three steps shown in
different colors and corresponding numbers. The uncolored portion of each ring
denotes the idle time per frame. The middle ring sectors in pink represent the
detection latency of the M-detector in frame-out mode, which is caused by both
event detection and clustering & region growth. The inner points in brown denote
thedetection latency of theM-detector inpoint-outmode,which is causedby event
detection of a single point only. The words and numbers at the center of the rings
denote the name of the datasets and the corresponding frame period.

Article https://doi.org/10.1038/s41467-023-44554-8

Nature Communications | (2024) 15:345 7

Figure 8a shows one of the indoor experiments, where the UAV
successfully avoided a thrown ball with a diameter around 20.4 cm. In
the experiment, at 0.00 s, the UAV hovered at a stationary position
until the detected moving object was within a specified safety
threshold (i.e., 4 m). Then from 0.20 s to 0.70 s, the UAV began to
avoid the object by moving a certain distance (e.g., 1.5m) along a
direction that is perpendicular to the object incoming direction
(Supplementary Notes 9). The speed of the object at the safety
threshold was about 7.6 m/s. Figure 8b shows one of the outdoor

experiments with a tennis ball of diameter 6.5 cm. The object speed at
the safety threshold was about 6.7 m/s. In both experiments, the time
for event detection per frame was 1.11 ms on average (Supplementary
Table 5), and the total processing time from the receipt of a LiDAR
frame to the transmission of an actuator command was around 1.27
ms, comprising 1.11 ms for event detection, 0.13 ms for trajectory
planning, and 0.03 ms for control (Supplementary Table 5). The low-
latency detection and planning enabled the quadrotor UAV to avoid
the thrown obstacles stably. We have also conducted multiple

b
HKROBOT camera

Intel NUC Livox AVIA LiDAR

x-axis is positive forwards z-axisy-axis

DJI Manifold2-C

Livox AVIA LiDAR

CUAV Nora+ flight controller

a

Fig. 7 | Platforms used in the experiments. a A small-scale quadrotor equipped
with a Livox AVIA LiDAR, a DJI Manifold2-C with an Intel i7-8550 U CPU (1.8 GHz, 4
cores) and 8 GB RAM, and a CUAV Nora+ flight controller. b A handheld platform

equippedwith a Livox AVIA LiDAR, aHKROBOTcamera, and an Intel NUCwith Intel
i7-1260P CPU (2.1 GHz and 12 cores) and 64 G RAM.

t=0.00s t=0.18s t=0.50s

a

c d e

without event points removal

with event points removal

traffic count: 18

t=0.20s t=0.70st=0.00s
b

Fig. 8 | Demonstrations of applications. a A sequence of the UAV avoiding a
thrown ball with a diameter of 20.4 cm in an indoor environment. b A sequence of
the UAV avoiding a thrown ball with a diameter of 6.5 cm (i.e., a tennis ball) in an
outdoor environment. In both (a, b) to enhance the visualization, a coordinate
framewas attached to the UAV and a box was attached to the thrown ball. c Vehicle
counting at a footbridge. The upper image shows the actual scene and the lower
image shows the LiDARpointswith detection results. In the lower image, the points
colored in red are the detected moving vehicles and the points colored in green

indicate the current vehicle being counted with its number shown as “18".
d Intruder detection at night. Two guests were detected by M-detector (the red
points in the lower picture). The red rectangles on the upper picture were added
manually for better visualization. eComparison ofmappingwith andwithout event
points removal on sequence 00 of KITTI, accumulated from the 7th frame to the
57th frame. With the M-detector, points due to moving vehicles on the road were
successfully detected and removed, leading to a clean point cloudmapof the static
environments.

Article https://doi.org/10.1038/s41467-023-44554-8

Nature Communications | (2024) 15:345 8

experimentswhere the objectwas tossedwhen theUAVwas in forward
flights (Supplementary Video 2). In all the experiments, the UAV
avoided the tossed objects and arrived at its prescribed target posi-
tions successfully. Additional information of the methods and
demonstrations can be found in Supplementary Notes 9.

Application on traffic monitoring
M-detector could be used for traffic monitoring, which aims to obtain
information such as traffic flow and congestion conditions at the
macro level and model the behaviors of the road participants (e.g.,
cars, pedestrians, and cyclists) at themicro level44,45. These information
is key to traffic planning46 aswell as enhancing the sensing capability of
autonomous driving vehicles (e.g., roadside LiDARs47, V2X
techniques48). Based on a first principle, the occlusion principle,
M-detector can detect moving objects on the road reliably, in real-
time, and at a very low cost. To demonstrate this application, we
constructed a sensor suite comprising of a Livox AVIA LiDAR and an
Intel NUC onboard microcomputer with Intel i7-1260P CPU (2.1 GHz
and 12 cores) and 64 G RAM (Fig. 7b) and used it to count the number
of passing vehicles on a road. The LiDAR frame rate was set to 10 Hz.
Once a LiDAR frame was received, the M-detector began to detect
moving points contained in the frame. The labeled points were then
clustered, tracked, and counted (Supplementary Notes 10).

Figure 8c showed the results obtained on a footbridge. Once the
sensor suite was installed, a straight line on the road below the sensor
was calibrated. If a vehicle passed through the line from the prescribed
side, the traffic count would increase by one. As shown in Fig. 8c and
Supplementary Video 3, the system counted the passing vehicles reli-
ably. The average processing time per frame was 66.99 ms (Supple-
mentary Table 5), which ensured real-time running on the onboard
microcomputer.

Application on surveillance and people counting
M-detector could also benefit applications like surveillance andpeople
counting substantially. For surveillance, due to the active measure-
ments of LiDAR sensors, the M-detector could detect any movements
(e.g., caused by intruders) in the scene with low lighting conditions or
even at night. One demonstration of the M-detector was shown in
Fig. 8d (also see Supplementary Video 4). We used a Livox AVIA
LiDAR49 due to its incommensurate scanning12, which ensured a more
complete scanning within the sensor field of view (FoV). With an
onboard microcomputer Intel NUC with Intel i7-1260P CPU (2.1 GHz
and 12 cores) and 64 G RAM, the averaging processing time per frame
was 47.73 ms, which was shorter than frame period (100 ms at 10 Hz)
and suggested a real-time performance. When compared to thermal
cameras, LiDAR sensors augmented by theM-detector could serve as a
potentially more cost-effective alternative due to emerging low-cost
LiDARs. They could also complement thermal cameras by providing
direct 3D measurements and detecting non-human moving objects
(e.g., drones) that have no thermal difference with surroundings.
People counting is an application that aims to improve the spaceusage
or to model human behaviors by analyzing the number of people who
visit a place (e.g., workplaces, supermarkets, malls) or the duration of
the visit50,51. When compared with visual cameras deployed for this
application, LiDAR solutions cause fewer privacy concerns from the
participants due to the inability to perform facial identification.

Application on mapping
LiDAR sensors have been widely used for 3D mapping and
reconstruction52–54. A major problem in LiDAR mapping is the non-
existentmap points caused bymoving objects appearing in the sensor
FoV during data collection. M-detector could address this issue by
removing points on moving objects in each frame. A clean, moving
points-free map could be obtained instantly for preview without any
post processing. Fig. 8e shows one demonstration of the M-detector

onKITTI sequence 00 (also see Supplementary Video 5). The averaging
time of event detection was 84.48ms (versus the frame period 100ms
at 10 Hz).

Discussion
Here we discuss the unique features of the M-detector in comparison
to existing methods, as well as its potential integration with current
robotic techniques. We also discuss the limitations of the M-detector
and its implications in robotics applications. Given space constraints,
we present only the discussion of the M-detector’s new features in the
main text. For a more comprehensive discussion, readers are directed
to the Supplementary Notes 1.

Among existing moving object segmentation methods,
M-detector is unique in both its design principle and exhibited beha-
viors. Designed on the occlusion principle, M-detector is a model-
based method that does not require massive training data of learning-
based methods26–35. This ensures a high level of generalization to dif-
ferent LiDAR types, object classes, scenes, and carrying platforms
without noticeableaccuracy degradation. In contrast, theperformance
of learning-based methods, such as ref. 30, could drop considerably
if the test dataset is different from the training dataset. Although
re-training the network with samples from the test dataset would
improve the accuracy, it would require massive labeled data, which is
exactly the bottleneck problem faced by the community. The data
labeling problem is even more severe for emerging solid-state
LiDARs12,55 whose scanning patterns are often different from multi-
line spinning LiDARs where existing data were labeled.

Besides eliminating the requirement for labeled data, the
M-detector is only sensitive tomovements in the scene. Consequently,
it detects points on objects that are truly moving instead of just
movable. In contrast, learning-based methods26–35 could easily detect
points on movable objects. The reason is that a training dataset con-
tains only a few classes of labeled moving objects (e.g., cars, pedes-
trians, cyclists). Hence it is difficult to enforce the neural networks not
to overfit the object appearance but to learn only features of move-
ments. This further causes two problems: one is the false detection of
movable but stationary objects, and the other is the missing detection
for objects whose appearances were not seen in the training data (e.g.,
untrained objects, trained objects but partially occluded in the test).
These two issues also apply to the semantic segmentationmethods for
moving objects segmentation24–29.

When compared to methods based on consistency check16–19 and
occupancymap20–23, occlusion is a stronger andmore efficient clue for
movements detection. Consistency check16–19 cannot distinguish
between new points scanned from unseen areas and moving points
scanned from seen areas (i.e., the moving points that should be
detected), because both cases lead to inconsistencies between current
and previous frames. Our occlusion principle does not have such
ambiguity since new points scanned from unseen areas would not
occlude or be occluded by any points in previous frames andwould be
always labeled as static (as it should be because it is not possible to
decide if an object is moving by looking it only once). Likewise, the
occupancy map used in ref. 20–23 can address this ambiguity by dis-
tinguishing the unseen areas from seen ones. However, building the
occupancy map is rather time-consuming due to the large number of
traversed voxels caused by long LiDAR measuring range, large points
number, or high map resolution. In contrast, the occlusion principle
examines the occlusion relation between current points and map
points directly without traversing voxels in between them (see Meth-
ods). This leads to a computationally-efficient design that is able to run
in real-time on a single CPU. The computation time was only half of
learning-based methods (e.g., LMNet30) that even leveraged GPU
acceleration.

Another unique feature of the M-detector is the ability to detect
the eventness of a LiDAR point right after its arrival without

Article https://doi.org/10.1038/s41467-023-44554-8

Nature Communications | (2024) 15:345 9

accumulating a frame (i.e., an online system). This point-by-point
detectionmechanism enables an extremely low detection latency (i.e.,
2-4 μs per point). In contrast, existing methods all operate on frames
(e.g., 10 Hz), where a current frame of LiDAR points (or even a future
frame19)must be accumulated to compare the point cloud difference16,
compute point descriptors17, extract surfels18 or semantic features24,25,
or apply a neural network classifier26–35. This point accumulation
completely relinquishes the high-rate sampling nature of a LiDAR
sensor and causes hundreds of milliseconds delay.

The first occlusion principle employed by M-detector to detect
objects crossing the LiDAR laser rays (Fig. 3a) is not the first time it is
used for moving object segmentation. Ref. 56, 57 used the first
occlusion principle to detect scene changes in long-term simultaneous
localization and mapping (SLAM) and ref. 58 used a similar occlusion
principle for environment monitoring. In these applications, the two
frames for movement detection were often temporally and spatially
distant. Moreover, they were not online systems and required either
all56 or one future frame57 or a prior map of the environment58 for the
detection. In contrast, M-detector exploits the occlusion principle to
detect moving objects continuously and in an online and real-time
fashion without any prior map of the scene. Further, the second and
third occlusion principles proposed in this work for detecting objects
moving along the LiDAR laser rays (Fig. 3b, c) have rarely been
reported before to the best of our knowledge.

Methods
As shown in Fig. 4, the key step of M-detector is event detection
(Fig. 4b), which examines the occlusion between the current point and
points in the past. The event detection consists of three independent
tests, which correspond to the three occlusion principles (Fig. 3),
respectively. If any of the tests are positive, the current point will be
labeled as an event or else non-event. In all the three tests, the occlu-
sion check with previous points is achieved by organizing previous
points into a series of depth images. Moreover, after each occlusion
check in the tests, map consistency check is applied to reject any false
occlusion if the point is too close to any stationarymap points. Finally,
points are accumulated into a frame where clustering & region growth
is utilized to reject the isolated event points and bring back non-event
points mislabeled by the three tests.

Depth image
A depth image refers to a two-dimensional array, where each location
(i.e., a pixel) saves the information, such as event labels and spherical
coordinates of each point that was projected to the reception field of
this pixel (Fig. 9a). A pixel also summarizes those statistical informa-
tion, including the number of points in this pixel, themaximumdepth,
and the minimum depth among all the contained points for fast
inquiry. A depth image is attached with a pose (R, t), referred to as the

depth image pose, which indicates the pose of the LiDAR body frame
(x0 � y0 � z0) with respect to a global reference frame (x − y − z), at the
moment the depth image is constructed.

Depth image construction. Depth images are constructed in a fixed
interval T, where LiDAR points sampled in this interval are all used to
construct the image (Fig. 9b). We choose the LiDAR pose at the
beginning of the interval as the depth image pose, so that all the
subsequent points in the interval can be projected to the depth image
with their event labels. Specifically, let Gp be a labeled point, which has
been registered to the global reference frame (e.g., by the odometry
module). The projection of the point to the depth image could be
achieved by the following steps. First, transform the point into the
depth image frame via

Lp=R�1 Gp� t
� � ð2Þ

where Lp= ½ Lpx ,
Lpy,

Lpz �
T
denotes the coordinate of the point in the

depth image frame. Second, project the transformed point to the
image pixels by obtaining its spherical coordinates (Fig. 9a):

φ= atan2 Lpy,
Lpx

� �
ð3Þ

θ= atan2
ffi
Lp2

x + Lp2
y

q
, Lpz

� �
ð4Þ

d =
ffi
Lp2

x + Lp2
y + Lp2

z

q
ð5Þ

where φ, θ, and d represent the point’s azimuthal angle, polar angle,
and radial distance (i.e., depth) in spherical coordinates, respectively.
Finally, determining the pixel location (i, j) of the projected point by

i= bðφ+πÞ=rhc, j = bðθ+π=2Þ=rvc ð6Þ

where rh, rv are the horizontal, and vertical pixel size (i.e., resolution) of
the depth image, and ⌊. ⌋ denotes the floor function. The depth image
could be implemented at the fixed resolution mentioned here or at
multiple resolutions if necessary. After the pixel location is deter-
mined, the point information, such as the spherical coordinate and
event labels, are saved to the pixel and the pixel statistical information
(e.g., point number, maximum and minimum depths) are updated
accordingly.

Note that the construction of the current depth image Ik is parallel
to the event detection (Fig. 4a), which depends on only depth images
up Ik−1 (Fig. 4b). Therefore, the construction does not cause any
detection delay for the event detection in both point-out and frame-
out modes. Furthermore, an initialization stage is required to

Event point
Non-event point

a b

LiDAR

Fig. 9 | Illustration for depth image construction inM-detector. aAdepth image
is a two-dimensional array. A point Gp in global reference frame (x − y − z) is trans-
formed into the depth image frame (x0 � y0 � z0) via Eq. (2) and then projected into

the depth image according to its spherical coordinate (φ, θ, d) and image resolu-
tions (rh, rv). b A depth image is constructed using points sampled in a fixed
interval T.

Article https://doi.org/10.1038/s41467-023-44554-8

Nature Communications | (2024) 15:345 10

construct the first few depth images, during which the event detection
is not performed. This initialization time is often small (e.g., 0.5 s).

Occlusion check on depth image. Based on the depth image repre-
sentation of the previous points, the occlusion check between the
current point and previous points in a depth image can be conducted
as follows. Let Gp be the current point to check, it is projected into the
depth image according to Eqs. (2)–(6) to obtain its pixel location and
depth. If the point depth is larger (with threshold εd) than the max-
imum depth saved in current pixel and that in the neighboring pixels,
the point is considered as being occluded bypoints in the depth image
(Fig. 10a). If the point depth is smaller (with threshold εd) than the
minimum depth saved in current pixel and that in the neighboring
pixels, the point is considered as occluding points in the depth image
(Fig. 10b). Otherwise, the occlusion between the current point and
points in the depth image is undetermined. The neighboring pixels are
those pixels whose distance to the current pixel is less than nh pixels in
the horizontal direction and nv in the vertical direction.

The above occlusion check based on themaximum andminimum
depth of a pixel avoids the enumeration of each point in the pixel,
leading to a high computation efficiency. However, it does not give all
points in the depth image that occlude or are occluded by the current
point. To address this issue, an alternative occlusion check is also
developed. In this strategy, every point in the current pixel and
neighboring pixels is enumerated. If its position on the image plane is
within a small neighborhood (εh degrees in the horizontal direction
and εv degrees in the vertical direction) of the current point, it is
appended to the neighboring point set N . Then, we compare the
depth of each point in the setN to the current point. If the point is εd
further, it is added to the set of occluded pointsN occluded. Otherwise, if
the point is εd closer, it is added to the set of occluding points
N occluding. This finer occlusion check will be used in the test two and
test three of the event detection, while the previous occlusion check
based on pixels will be used in the test one (Fig. 4 and the following
section).

Event detection
The event detection conducts three independent tests according to
the three occlusion principles for each current point (Fig. 3). If any of
them is positive, the point is labeled as an event.

Event detection for perpendicular movement. The first test detects
event points of objects whosemoving direction is perpendicular to the
LiDAR laser rays. In this case, the object must occlude the background
objects that have been observed previously (Fig. 3a). According to this
occlusion principle, the test is developed as shown in Fig. 4b. We
project the current point pcurr to the most recent N depth images and
examine its occlusion with each of them. If there are more than M1

depth images (M1≤N) whose points are occluded by the current point,
the current point is labeled as an event.

Event labeling based solely on the occlusion check may cause
some false positives due to the limited resolution of the depth image.
For example, for a stationary object placed in front of a stationary
background, points collected on the object edge may be projected to
the pixel with points from thebackgrounddue to the rounding error in
the projection (Eq. (6)). Consequently, these points will be falsely
labeled as events. Other factors, such as measurement noises, could
also bring some false positive detection.

Tomitigate such false positive detection, we introduce a rejection
strategy termed as map consistency check. The key idea is that an
event point should not lie in the neighborhood of any stationary map
points. Otherwise, it could be safely treated as part of the stationary
objects since it cannot distinguish if this occlusion is caused by true
movements or measurement noises. If the map consistency check is
positive (i.e., the point is close to anymap points), the candidate event
point will be rejected and labeled as a non-event.

Event detection for parallel movement. The second test detects
points ofobjects that aremoving away fromthe LiDAR inparallel to the
sensor laser rays. In this case, objects must be occluded by themselves
repeatedly (Fig. 3b). According to this occlusion principle, the test is
developed as shown in Fig. 4b. We examine if the current point pcurr is
occludedby anypoints in all of thepreviousM2 depth images (denoted
aspIk�1 , � � � ,pIk�M2 , respectively). Further,we test if each of thesepoints
is occluded by all of its subsequent points (i.e., if pIk�i is occluded by
pIk�j for all i = 1,⋯ ,M2 − 1 and j = i + 1,⋯ ,M2). If all these tests are
positive, it implies that the current point pcurr and previous points
pIk�1 , � � � ,pIk�M2 are on objects that are moving in the mentioned way,
and hence should be labeled as events. To reject possible false posi-
tives, we further apply themapconsistency check similar to test one to
pcurr and pIk�1 , � � � ,pIk�M2 after each of the above occlusion test. If all the
occlusion tests are positive without being rejected by their respective

The neighboring pixelsThe current pixel
The point with the minimum depth in a pixel

The current point

a b

The neighboring pixelsThe current pixel
The point with the maximum depth in a pixel

The current point

Fig. 10 | Illustration for occlusion check in M-detector. a In this figure, after
projecting the current point Gp into the depth image (x0 � y0 � z0) according to Eqs.
(2)–(6), the depth of Gp (denoted in black) is larger (with threshold εd) than the
maximum depth saved in current pixel (denoted in yellow) and that in the neigh-
boring pixels (denoted in cyan), hence thepoint is considered as being occludedby

points in this depth image.b In this figure, after projecting the current point Gp into
the depth image (x0 � y0 � z0) according to Eqs. (2)–(6), the depth of Gp (denoted in
black) is smaller (with threshold εd) than theminimumdepth saved in current pixel
(denoted in purple) and that in the neighboring pixels (denoted in orange), hence
the point is considered as occluding points in this depth image.

Article https://doi.org/10.1038/s41467-023-44554-8

Nature Communications | (2024) 15:345 11

map consistency check, the current point is labeled as an event.
Otherwise, it is a non-event point.

The third test detects points of objects that are moving towards
the LiDAR in parallel to the sensor laser rays. In this case, objects must
occlude themselves repeatedly (Fig. 3c). According to this occlusion
principle, the test is developed as shown in Fig. 4b. We examine if the
current point pcurr occludes any points in all of the previous M3 depth
images (denoted as pIk�1 , � � � ,pIk�M3 , respectively). Further, we test if
each of these points occludes all of its subsequent points (i.e., if pIk�i

occludespIk�j for all i = 1,⋯ ,M3 − 1 and j = i + 1,⋯ ,M3). If all these tests
are positive, it implies that the current point pcurr and previous points
pIk�1 , � � � ,pIk�M3 are on objects that are moving in the mentioned way,
and hence should be labeled as events. Similarly, we further apply the
map consistency check to pcurr and pIk�1 , � � � ,pIk�M3 after each of the
above occlusion test. If all the occlusion tests are positive without
being rejected by their respective map consistency check, the current
point is labeled as an event. Otherwise, it is a non-event point.

Map consistency check. Map consistency check aims to reject wrong
event points according to the principle that a point on the moving
object should be distant from stationarymap points. To maximally re-
use the existing data structure, we perform themap consistency check
on the depth images,where themappoints have been saved. Sinceone
depth image contains only a part of map points, we perform map
consistency check on multiple recent depth images along with each
occlusion check required in the three tests above. Specifically, after
each occlusion check, we retrieve all non-event points in the pixel
where the current point is projected and that inneighboring pixels. For
any retrieved point, if its spherical coordinate is in a small neighbor-
hood (i.e., [− εφ, εφ] degrees in azimuthal angle, [− εθ, εθ] degrees in
polar angle, and [− εf, εb] meters in depth) of the current point, the
current point is considered as a stationary point and the occlusion
check on this depth image (if positive) should be rejected.

To further increase the accuracy of themapconsistency check,we
interpolate the depth at the current point image location, using the
neighboring points retrieved above. Specifically, given a depth image
and an image location ðφ,θÞ 2 R2 whose depth needs to interpolate,
we first find its three neighboring points in the depth image, pi

(i = 1, 2, 3) with spherical coordinates (φi, θi, di). Then, we determine
the contribution of each point,wi, by solving the following three linear
equations:

X3
i= 1

φi

θi

� �
wi

� �
=

φ

θ

� �
,

X3
i = 1

wi = 1 ð7Þ

With the solved weights wi, the interpolated depth is hence

�d =
X3
i = 1

diwi ð8Þ

To avoid extrapolation causing degraded depth estimate, the three
neighboring points should be close to (φ, θ) as much as possible, and
the (φ, θ) should lie in the convex hull formed by (φi, θi) (i.e.,
wi≥0, i = 1, 2, 3) (Supplementary Fig. 2). To fulfill these two conditions,
we enumerate all the neighboring points in a neighbor of εh × εv
degrees around (φ, θ). First, all 3n combinations of three points among
all the n neighboring points are listed and sorted based on the sum of
the absolute difference between the (φ, θ) values and the (φi, θi),
denoted as

P3
i= 1 jφ� φij+ jθ� θij. Then, the weights wi are solved

using Eq. (7) in the order of the sorted sums (fromsmall to large). If the
resulting weights satisfy the condition of wi≥0, i = 1, 2, 3, the inter-
polated position is considered to fall within the convex hull formed by
the three points and the interpolated depth is obtained from Eq. (8). If
the condition is not satisfied, the process continues with the next

combination of three points. If no successful interpolation is achieved
among all neighboring points, the depth interpolation fails.

If the depth is interpolated successfully and its value is in a small
neighborhood (i.e., within [−εf, εb] meters) of the current point, the
current point is considered as a stationary point. Since the interpola-
tion is more time-consuming than the direct comparison, it is only
performed for points at far, where the point density is low.

Clustering and region growth
Clustering and region growth are designed to further suppress possi-
ble false positive event points in the current depth image. The con-
sequences are twofold. In the point-outmode, they donot improve the
detection accuracy of points in the current frame (since these event
labels have been output), but they prevent the adverse effect of cur-
rent false labels on future point detection. For example, the map
consistency check for future points will require to excluding current
event points, hence being affected by the current labels. In the frame-
outmode, the clustering and region growth further improve the event
detection accuracy of the current frame.

Clustering is performed to remove isolated event points since it is
unlikely to collect only one point on a moving object with existing
LiDARs’ resolutions. Clustering directly on event points could be
computationally expensive when the point density is high. To address
this issue, event points are voxelized (voxel size Lv). Those voxels
containing event points are called event voxels, which are clustered by
DBSCAN59 based on their center position. In this way, isolated event
voxels and their contained event points are rejected. Furthermore, all
rawpoints in event voxels are labeled as events,which helps bring back
some event points that weremislabeled by the event detection as non-
events.

The above voxelization can recall some event points, but the
number is not high due to the small voxel size (e.g., 0.3 m), which is
necessary to suppress false detection. To recover more event points,
region growth is performed. For each clustered group of event voxels
in above steps, the minimum axis-aligned bounding box (AABB) con-
taining all the event voxels in this cluster is extracted. Then, the AABB
is expanded to twice its size resulting in an expansion space. A ground
plane isfitted using points in the expansion space by RANSAC60 so that
the ground points and the respective voxels in the expansion space
andAABBcanbe removed. Then,we grow the event voxels in theAABB
by examining its neighboring voxels recursively. If its neighboring
voxels contain non-ground points, they are merged to the set of event
voxels. The growth ends until reaching the boundary of the expansion
space. Finally, all raw points in the set of event voxels are labeled as
events and used to construct the depth image.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data presented in the manuscript have been deposited in
Figshare and can be accessed at https://doi.org/10.6084/m9.figshare.
24481966.

Code availability
Source code of M-detector has been provided on the GitHub reposi-
tory. This code is freely accessible. All the information needed to install
and use it, as well as any updates, can be found here: https://github.
com/hku-mars/M-detector.

References
1. Mills, K.A. Drone is Destroyed by Boy’s Perfect Football Kick in this

Footage from the Stricken Aircraft https://www.mirror.co.uk/news/

Article https://doi.org/10.1038/s41467-023-44554-8

Nature Communications | (2024) 15:345 12

https://doi.org/10.6084/m9.figshare.24481966
https://doi.org/10.6084/m9.figshare.24481966
https://github.com/hku-mars/M-detector
https://github.com/hku-mars/M-detector
https://www.mirror.co.uk/news/world-news/drone-destroyed-boys-perfect-football-6734479

world-news/drone-destroyed-boys-perfect-football-6734479
(2018).

2. Dalton, A. Gull Attack Brings Down Drone in Stranraer https://www.
scotsman.com/news/transport/gull-attack-brings-down-drone-
stranraer-2997661 (2022).

3. Levin, S. &Wong, J.C. Self-Driving Uber Kills Arizona Woman in First
Fatal Crash Involving Pedestrian https://www.theguardian.com/
technology/2018/mar/19/uber-self-driving-car-kills-woman-
arizona-tempe (2019).

4. Bernama, M. Two Elderly Pedestrians Killed While Crossing Road
https://www.nst.com.my/news/nation/2019/05/491374/two-
elderly-pedestrians-killed-while-crossing-road (2020).

5. Hogan, B. Man Dies After Being Struck While Crossing University
Boulevard https://www.clickorlando.com/traffic/2022/08/20/
man-dies-after-being-struck-while-crossing-university-boulevard-
troopers-say/ (2021).

6. Lichtsteiner, P., Posch, C. & Delbruck, T. A 128 × 128 120 db 15 μs
latency asynchronous temporal contrast vision sensor. IEEE J. Solid
State Circuits 43, 566–576 (2008).

7. Gallego, G. et al. Event-based vision: a survey. IEEE Trans. Pattern
Analysis Mach. Intell. 44, 154–180 (2020).

8. Falanga, D., Kleber, K. & Scaramuzza, D. Dynamic obstacle avoid-
ance for quadrotors with event cameras. Sci. Robot. 5, 9712 (2020).

9. Rebecq, H., Ranftl, R., Koltun, V. & Scaramuzza, D. High speed and
high dynamic range videowith an event camera. IEEE Trans. Pattern
Analysis Mach. Intell. 43, 1964–1980 (2019).

10. Mueggler, E., Gallego,G., Rebecq,H. &Scaramuzza, D.Continuous-
time visual-inertial odometry for event cameras. IEEE Trans.
Robot.34, 1425–1440 (2018).

11. Schwarz, B. Mapping the world in 3d. Nat. Photon. 4,
429–430 (2010).

12. Liu, Z., Zhang, F. &Hong, X. Low-cost retina-like robotic lidars based
on incommensurable scanning. IEEE/ASME Trans. Mechatron. 27,
58–68 (2021).

13. Anderson, J. et al. Ladar: frequency-modulated, continuous wave
laser detection and ranging. Photogram. Eng. Remote Sens. 83,
721–727 (2017).

14. Ma, Y., Anderson, J., Crouch, S. & Shan, J. Moving object detection
and tracking with doppler lidar. Remote Sens. 11, 1154 (2019).

15. Massaro, R. et al. in International Archives of the Photogrammetry,
Remote Sensing & Spatial Information Sciences 8521–8852
(IAPRS, 2014).

16. Kummerle, R. et al. A navigation system for robots operating in
crowded urban environments. In 2013 IEEE International Con-
ference on Robotics and Automation 3225–3232 (IEEE, 2013).

17. Dewan, A., Caselitz, T., Tipaldi, G.D. & Burgard, W. Motion-based
detection and tracking in 3d lidar scans. In 2016 IEEE International
Conference on Robotics and Automation (ICRA) 4508–4513
(IEEE, 2016).

18. Chen, X., Milioto, A., Palazzolo, E., Giguere, P., Behley, J. & Stach-
niss, C. Suma++: Efficient lidar-based semantic slam. In 2019 IEEE/
RSJ International Conference on Intelligent Robots and Systems
(IROS) 4530–4537 (IEEE, 2019).

19. Yoon, D. et al. Mapless online detection of dynamic objects in 3d
lidar. In 2019 16th Conference on Computer and Robot Vision (CRV)
113–120 (IEEE, 2019).

20. Asvadi, A., Premebida, C., Peixoto, P. & Nunes, U. 3d lidar-based
static and moving obstacle detection in driving environments: an
approach based on voxels and multi-region ground planes. Robot.
Autonom. Syst. 83, 299–311 (2016).

21. Pfreundschuh, P., Hendrikx,H.F., Reijgwart, V., Dube, R., Siegwart, R.
& Cramariuc, A. Dynamic object aware lidar slam based on auto-
matic generation of training data. In 2021 IEEE International Con-
ference on Robotics and Automation (ICRA) 11641–11647 (IEEE, 2021).

22. Pagad, S. et al. Robust method for removing dynamic objects from
point clouds. In 2020 IEEE International Conference onRobotics and
Automation (ICRA) 10765–10771 (IEEE, 2020).

23. Gehrung, J. et al. An approach to extract moving objects from mls
data using a volumetric background representation. ISPRS Annals
of Photogrammetry, Remote Sensing & Spatial Information Sciences
(ISPRS, 2017).

24. Moosmann, F. & Stiller, C. Joint self-localization and tracking of
generic objects in 3d range data. In 2013 IEEE International Con-
ference on Robotics and Automation 1146–1152 (IEEE, 2013).

25. Wang, D.Z. et al. What could move? finding cars, pedestrians and
bicyclists in 3d laser data. In 2012 IEEE International Conference on
Robotics and Automation 4038–4044 (IEEE, 2012).

26. Dube, R. et al. Segmap: 3d segment mapping using data-driven
descriptors. arXiv https://doi.org/10.15607/RSS.2018.XIV.003
(2018).

27. Milioto, A. et al. Rangenet++: Fast and accurate lidar semantic
segmentation. In 2019 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) 4213–4220 (IEEE, 2019).

28. Bogoslavskyi, I. & Stachniss, C. Efficient online segmentation for
sparse 3d laser scans. PFG J. Photogram. Remote Sens. Geoinform.
Sci. 85, 41–52 (2017).

29. Cortinhal, T., Tzelepis, G. & Erdal A. E. Salsanext: fast, uncertainty-
aware semantic segmentation of lidar point clouds. In International
Symposium on Visual Computing 207–222 (Springer, 2020).

30. Chen, X. et al. Moving object segmentation in 3d lidar data: a
learning-based approach exploiting sequential data. IEEE Robot.
Automat. Lett. 6, 6529–6536 (2021).

31. Sun, J. et al. Efficient spatial-temporal information fusion for lidar-
based 3d moving object segmentation. In 2022 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS)
11456–11463 (IEEE, 2022).

32. Kim, J., Woo, J. & Im, S. Rvmos: range-view moving object seg-
mentation leveraged by semantic and motion features. IEEE Robot.
Automat. Lett. 7, 8044–8051 (2022).

33. Shi, H. et al. Subsequencenet Semantic segmentation network
on 4d point clouds. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
4574–4583 (IEEE, 2020).

34. Thomas, H. et al. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision 6411–6420 (IEEE, 2019).

35. Mersch, B. et al. Receding moving object segmentation in 3d lidar
data using sparse 4d convolutions. arXiv https://doi.org/10.48550/
arXiv.2206.04129 (2022)

36. Cheng, A., Eysel, U. T. & Vidyasagar, T. R. The role of the magno-
cellular pathway in serial deployment of visual attention. Eur. J.
Neurosci. 20, 2188–2192 (2004).

37. Geiger, A., Lenz, P. & Urtasun, R. Are we ready for autonomous
driving?TheKITTI visionbenchmark suite. InProceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
3354–3361 (IEEE, 2012).

38. Behley, J. et al. Towards 3D LiDAR-based semantic scene under-
standing of 3D point cloud sequences: the semanticKITTI dataset.
Int. J. Robot. Res. 40, 959–967 (2021).

39. Sun, P. et al. Scalability in perception for autonomous driving:
Waymo open dataset. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition 2446–2454
(IEEE, 2020).

40. Fong, W. K. et al. Panoptic nuscenes: a large-scale benchmark for
lidar panoptic segmentation and tracking. IEEE Robot. Automat.
Lett. 7, 3795–3802 (2022).

41. Xu, W., Cai, Y., He, D., Lin, J. & Zhang, F. Fast-lio2: fast direct lidar-
inertial odometry. IEEE Trans. Robot. 38, 2053–2073 (2022).

Article https://doi.org/10.1038/s41467-023-44554-8

Nature Communications | (2024) 15:345 13

https://www.mirror.co.uk/news/world-news/drone-destroyed-boys-perfect-football-6734479
https://www.scotsman.com/news/transport/gull-attack-brings-down-drone-stranraer-2997661
https://www.scotsman.com/news/transport/gull-attack-brings-down-drone-stranraer-2997661
https://www.scotsman.com/news/transport/gull-attack-brings-down-drone-stranraer-2997661
https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe
https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe
https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe
https://www.nst.com.my/news/nation/2019/05/491374/two-elderly-pedestrians-killed-while-crossing-road
https://www.nst.com.my/news/nation/2019/05/491374/two-elderly-pedestrians-killed-while-crossing-road
https://www.clickorlando.com/traffic/2022/08/20/man-dies-after-being-struck-while-crossing-university-boulevard-troopers-say/
https://www.clickorlando.com/traffic/2022/08/20/man-dies-after-being-struck-while-crossing-university-boulevard-troopers-say/
https://www.clickorlando.com/traffic/2022/08/20/man-dies-after-being-struck-while-crossing-university-boulevard-troopers-say/
https://doi.org/10.15607/RSS.2018.XIV.003
https://doi.org/10.48550/arXiv.2206.04129
https://doi.org/10.48550/arXiv.2206.04129

42. Everingham, M., Van Gool, L., Williams, C. K., Winn, J. & Zisserman,
A. The pascal visual object classes (VOC) challenge. Int. J. Comp.
Vision 88, 303–338 (2010).

43. Crash, S. Traffic safety facts 2020 data: Pedestrians https://
crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813310 (2020).

44. Zeroual, A., Harrou, F., Sun, Y. & Messai, N. Monitoring road traffic
congestion using a macroscopic traffic model and a statistical
monitoring scheme. Sustain. Cities Soc. 35, 494–510 (2017).

45. Lough, N. L., Pharr, J. R. & Geurin, A. I am bolder: a social cognitive
examination of road race participant behavior. Sport Market. Quart.
25, 90 (2016).

46. Steiner, W., Craciunas, S. S. & Oliver, R. S. Traffic planning for time-
sensitive communication. IEEE Commun. Stand. Magaz. 2,
42–47 (2018).

47. Zhang, J., Xiao, W., Coifman, B. & Mills, J. P. Vehicle tracking and
speed estimation from roadside lidar. IEEE J. Select.Topics Appl.
Earth Observ. Remote Sens. 13, 5597–5608 (2020).

48. Zhou, H., Xu,W., Chen, J. &Wang,W. Evolutionary v2x technologies
toward the internet of vehicles: challenges and opportunities. Proc.
IEEE 108, 308–323 (2020).

49. Livox, A. User Manuel https://terra-1-g.djicdn.com/
65c028cd298f4669a7f0e40e50ba1131/Download/Avia/Livox%
20Avia%20User%20Manual%20202204.pdf (2020).

50. Farahat, B. I. & Alaeddine, H.O. Towards improving the quality of
workspaces for a better human performance in Lebanon. In Pro-
ceeding of the International Conference on Architecture and Civil
Engineering 84–102 (ICACV, 2020).

51. Mohammadmoradi, H., Munir, S., Gnawali, O. & Shelton, C. Mea-
suring people-flow through doorways using easy-to-install IR array
sensors. In 2017 13th International Conference on Distributed Com-
puting in Sensor Systems (DCOSS) 35–43 (IEEE, 2017).

52. Liu, X., Liu, Z., Kong, F. & Zhang, F. Large-scale lidar consistent
mapping using hierarchical lidar bundle adjustment. IEEE Robotics
and Automation Letters (IEEE, 2023).

53. Park, C. et al. Elasticity meets continuous-time: map-centric dense
3d lidar slam. IEEE Trans. Robot. 38, 978–997 (2021).

54. Jiao, J., Ye, H., Zhu, Y. & Liu, M. Robust odometry and mapping for
multi-lidar systems with online extrinsic calibration. IEEE Trans.
Robot. 38, 351–371 (2021).

55. Wang, D., Watkins, C. & Xie, H. Mems mirrors for lidar: a review.
Micromachines 11, 456 (2020).

56. Kim, G. & Kim, A. Remove, then revert: Static point cloud map
construction using multiresolution range images. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)
10758–10765 (IEEE, 2020).

57. Pomerleau, F., Krusi, P., Colas, F., Furgale, P. & Siegwart, R. Long-
term 3d map maintenance in dynamic environments. In 2014 IEEE
International Conference on Robotics and Automation (ICRA)
3712–3719 (IEEE, 2014).

58. Underwood, J. P., Gillsjo, D., Bailey, T. & Vlaskine, V. Explicit 3d
changedetectionusing ray-tracing in spherical coordinates. In2013
IEEE International Conference on Robotics and Automation
4735–4741 (IEEE, 2013).

59. Ester, M. et al. A density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise 226–231 (Kdd, 1996).

60. Fischler, M. A. & Bolles, R. C. Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography. Commun. ACM 24, 381–395
(1981).

61. Brodal, P. The Central Nervous System: Structure and Function
(Oxford University Press, 2004).

Acknowledgements
This project has received funding from Hong Kong Research Grants
Council General Research Fund (17206421) and DJI research donation
fund, both received by F. Z. We thank Nan Chen and Jiarong Lin, who
offered valuable suggestions to themanuscript.We sincerely appreciate
Yunfang Ren, Chaoran Yu, Hongyi Pan, Yixi Cai, Guozheng Lu, Fang-
cheng Zhu, Xiyuan Liu, and Erchao Rong for their help on experiments
and data acquisition. Furthermore, we are truly grateful to Dr. Ximin Lyu
for providing the space for indoor experiments. At last, we also give
thanks to Dr. Xieyuanli Chen, the author of LMNet30, for his discussion
with us on the time consumption of LMNet.

Author contributions
F.Z. proposed the initial idea of the research. With the advice of F.Z.,
H.W., Y.L., and W.X. designed the complete system framework and
experiments. H.W. and Y.L. implemented all software modules. X.W.
validated part of the feasibility of the initial idea and conducted the initial
analysis. With the contribution of F.K., H.W. performed the UAV experi-
ments and data acquisition of AVIA-Indoor. Y.L. and H.W. collected the
data demanded by the five applications in Results. H.W., Y.L., and F.Z.
finished all data analyses for different datasets and wrote the manu-
script. F.Z. provided funding and supervised the research.

Competing interests
The University of Hong Kong filed a provisional U.S. patent application
(No. PCT/CN2023/085922) on this work on 4 April 2022. F.Z., W.X., and
H.W. are inventors. All the other authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-44554-8.

Correspondence and requests for materials should be addressed to Fu
Zhang.

Peer review informationNatureCommunications thanks Peter J. Jin, and
the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024, corrected publication 2024

Article https://doi.org/10.1038/s41467-023-44554-8

Nature Communications | (2024) 15:345 14

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813310
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813310
https://terra-1-g.djicdn.com/65c028cd298f4669a7f0e40e50ba1131/Download/Avia/Livox%20Avia%20User%20Manual%20202204.pdf
https://terra-1-g.djicdn.com/65c028cd298f4669a7f0e40e50ba1131/Download/Avia/Livox%20Avia%20User%20Manual%20202204.pdf
https://terra-1-g.djicdn.com/65c028cd298f4669a7f0e40e50ba1131/Download/Avia/Livox%20Avia%20User%20Manual%20202204.pdf
https://doi.org/10.1038/s41467-023-44554-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Moving event detection from LiDAR point streams
	Results
	Accuracy
	Time consumption and detection latency
	Application on autonomous driving
	Application on UAV obstacle avoidance
	Application on traffic monitoring
	Application on surveillance and people counting
	Application on mapping

	Discussion
	Methods
	Depth�image
	Depth image construction
	Occlusion check on depth�image
	Event detection
	Event detection for perpendicular movement
	Event detection for parallel movement
	Map consistency�check
	Clustering and region�growth
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

