
Perspective https://doi.org/10.1038/s41467-023-44539-7

Membrane transformations of fusion and
budding

Ling-Gang Wu 1 & Chung Yu Chan 1

Membrane fusion and budding mediate fundamental processes like intracel-
lular trafficking, exocytosis, and endocytosis. Fusion is thought to open a
nanometer-range pore that may subsequently close or dilate irreversibly,
whereas budding transforms flat membranes into vesicles. Reviewing recent
breakthroughs in real-time visualization of membrane transformations well
exceeding this classical view, we synthesize a new model and describe its
underlying mechanistic principles and functions. Fusion involves hemi-to-full
fusion, pore expansion, constriction and/or closure while fusing vesicles may
shrink, enlarge, or receive another vesicle fusion; endocytosis follows exocy-
tosis primarily by closing Ω-shaped profiles pre-formed through the flat-to-Λ-
to-Ω-shape transition or formed via fusion. Calcium/SNARE-dependent fusion
machinery, cytoskeleton-dependent membrane tension, osmotic pressure,
calcium/dynamin-dependent fission machinery, and actin/dynamin-depen-
dent force machinery work together to generate fusion and budding modes
differing in pore status, vesicle size, speed and quantity, controls release
probability, synchronization and content release rates/amounts, and underlies
exo-endocytosis coupling to maintain membrane homeostasis. These trans-
formations, underlying mechanisms, and functions may be conserved for
fusion and budding in general.

Membrane fusion and budding mediate fundamental biological pro-
cesses, such as neurotransmitter and hormone release crucial for brain
functions, intracellular trafficking, formation of membrane-bound
organelles (e.g., vesicles, exosomes, and mitochondria), fertilization,
vesicle recycling, nutrient uptake, cell fusion and division, and viral
infection1–3. Current understanding of their membrane transforma-
tions is mainly derived from exo- and endocytosis studies in neurons
and endocrine cells. Half a centuryof studies (Fig. 1a–c) established the
classical exo-endocytosis framework (Fig. 1d)—vesicle fusion at the
plasma membrane (PM) opens a narrow (<~5 nm) pore, which may
close rapidly to limit vesicular content release, called kiss-and-run, or
dilate until the vesicle flattens to promote release, called full-collapse
fusion; subsequent flat-to-round endocytic membrane transformation
retrieves fused vesicles2,4–9. Studies of exo-endocytosis and fusion
budding in general have been interpreted under this view, which has
not been verified by real-time observation in live cells2,7,10,11.

Recent super-resolution microscopy visualized exo-endocytosis
membrane dynamics in live neuroendocrine cells. Novel membrane
transformations, underlyingmechanisms, and functions far exceeding
the classical view have emerged. Here, we review visualization meth-
ods, real-time-observed membrane transformations, underlying
molecular mechanics, and functions in governing exo-endocytosis
(Figs. 2–5). We synthesize a new fusion-budding membrane dynamics
framework (Fig. 6), replacing the classical framework as the new
platform for building a future comprehensive molecular model and
reinterpreting previous studies working under the classical view.

Classical exo-endocytosis framework
Electronmicroscopic (EM) observation of pore-like structures at nerve
terminals milliseconds after stimulation led to the full-collapse fusion
hypothesis (Fig. 1aI)6. Full-collapse fusion was thus used to interpret
thewidelyobserved abrupt fusionporeconductance increases beyond
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detection limit (estimated as ~5 nm)12–15, fast synaptic currents, and fast
catecholamine-generated amperometric currents in secretory cells
(Fig. 1aII–III)2,7,13,15,16. An equally possible interpretation—large pores
without collapse—was neglected. EM observation of Ω-profiles led to
the kiss-and-run proposal (Fig. 1bI)5. Subsequent observations at live
synapses and endocrine cells support the kiss-and-run proposal: (1)
capacitance flickers (equal up- and down-steps) reflecting single vesi-
cular membrane addition and subtraction were sometimes accom-
panied by a detectable pore conductance or a slower amperometric
current (Fig. 1bII–III)13,15,17, and (2) failure in releasing quantum dots or
proteins from fusing vesicles2,7,18–20.

Endocytic vesicle formation may undergo a flat-to-round trans-
formation. This concept is supported by EM observation of shallow

and deep membrane pits (Fig. 1cI)4,21, and detection of pore con-
ductance decreases reflecting fission, the final step of endocytosis, in
live synapses (Fig. 1cII)22,23.

Full-collapse fusion followed by endocytic flat-to-round transition
is considered the primary exo-endocytosismode. In contrast, kiss-and-
run, despite receiving stronger support in live cells, had been ques-
tioned and considered at most a minor mode ever since its
proposal2,7,24. Real-time visualization of these modes is needed to
establish the classical exo-endocytosis framework (Fig. 1d).

A system for visualizing fusion and budding
Fusion and budding are most studied for small ~30–80nm synaptic
vesicles and ~40–100 nm clathrin-coated vesicles. Various super-
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resolution microscopies with stochastic optical reconstruction or
photoactivated localization, structured illumination, stimulated emis-
sion depletion (STED), or minimal photon flux have led to nanoscale
insights into exo- and endocytic sites, protein composition, protein
localization, nanocolumn structures, and single molecule dynamics at
nerve terminals25–38. However, rapid membrane transformations of
~30–100 nm vesicles have not been visualized owing to insufficient
spatial-temporal resolution.

To visualize membrane transformation regularly requires abun-
dant, synchronized exo-endocytosis events imaged at sub-vesicle and
sub-second resolution. These criteria weremet by STEDmicroscopy at
~60–80nm resolution every ~26–300ms in live bovine adrenal chro-
maffin cells in primary culture, where tens to hundreds of
~200–1500 nm vesicle exo-endocytosis are induced within seconds
after a 1-s depolarization (Fig. 2a, Box 1)39–42. With fluorescent probes
labeling PM cytosol-facing leaflet, extracellular-facing leaflet, extra-
cellular solution, vesicular lumen contents, and/or exo-endocytosis
proteins, 2- and 3-color STEDmicroscopy recently real-time visualized
exo-endocytosis membrane transformations and proteins driving
these transformations (Fig. 2a, Box 1). For example, in cells bathedwith
Atto 532 (A532) and overexpressed with phospholipase C ΔPH domain
attached with mNeonGreen or EGFP (PHG), which binds PtdIns(4,5)P2
at, and thus labels, PM cytosol-facing leaflet, PHG and A532 diffusion
into fusing or endocytic structures allows for imaging membrane
transformations (Fig. 2b–d, Supplementary Movies 1-3). For fusing or
endocytic Ω-profile’s pores below STED resolution, permeation of
small fluorescent molecules like A532 is used to indicate an opened
pore (Fig. 2b, c; Box 1)40. These labeling strategies can be used to
visualize fusion and budding in general.

Dynamic membrane transformations
Exocytotic membrane transformation
The hemi-fusion pathway in live cells. Hemi-fusion, the fusion
between proximal leaflets of two fusing membrane bilayers, was pro-
posed as the pathway to full fusion43–45. A competing hypothesis with a
protein-lined pore made of SNARE proteins as the initial fusion pro-
ductwas also proposed46–49. Distinguishing these hypotheseswas once
considered impractical. Recent imaging in live cells visualized the
hemi-fusion structure as a PHG-labeled Ω-profile (labeling cytosol-
facing leaflet) impermeable to small molecules like A532 and H+ (Fig.
2aI, Supplementary Movie 1), and impermeable to probes labeling the
extracellular-facing leaflet39. A surprisingly large fraction (~30–40%) of
fusion undergoes hemi-fusion with a detectable lifetime, amongwhich
one-third undergoes hemi-to-full fusion within ~0.1–26 s (Fig. 2bII,

Supplementary Movie 2), and the remainingmay undergo hemi-to-full
fission39. Excluding the pure protein-lined pore hypothesis, these
results revealed the hemi-fusion pathway in live cells. However, SNARE
proteins might form parts of the fusion pore, as SNARE proteins were
found to be exposed to polar solvents during fusion in nano-disks50.

Fusion pore opening dynamics. Conductance measurements may
derive fusion pores less than ~5 nm within milliseconds under the
assumption of a fixed pore geometry13,15,17,23,51,52. In contrast, STED
microscopy visualizes pores directly, but only for large pores (~60 nm)
at a slow speed (every 26-300 ms): ~180–720 nm vesicles open a
~0–490nm pore (Fig. 2c–e); these pores may expand rapidly at
>~9 nm/ms to support fast content release (Fig. 2d, Supplementary
Movie 3); somepores are initially small (<~60 nm) for ~0.5–4 s, butmay
expand abruptly (Fig. 2c)40. These results visualized fusion pore
expansion implicated from recordings of small pore conductance
preceding an abrupt increase (Fig. 1aIII) or slow amperometric foot
signal preceding a fast spike (Fig. 2cII)12,13,53. Themaintenance of theΩ-
shape with large pores (Fig. 2c, d)40 indicates that traditional inter-
pretation of abrupt pore conductance increase and/or fast ampero-
metric spike as full-collapse fusion should not be practiced.

Seven fusion modes regarding Ω-profile size and pore. Fusion-
generated, PHG-labeled Ω-profiles may remain unchanged (same size,
Fig. 2b–d), shrink partially or completely within seconds (Fig. 3a,
Supplementary Movie 4), or enlarge (Fig. 3b, Supplementary Movie 5),
while its pore may stay open or close40,41,54. Accordingly, there are
sevenmodes reflectingΩ-profile size and pore status (Fig. 3c): enlarge-
stay (enlarged, pore opened), enlarge-close (enlarged, pore closed),
stay (same size, pore opened), close (same size, pore closed), shrink-
stay (partially shrink, pore opened), shrink-close (partially shrink, pore
closed), and shrink fusion (Ω-profile shrinks completely)40,41,54. Sur-
prisingly, full-collapse fusion, the primary fusion mode generally
thought40,41,55,56, was not observed.

These fusion modes are common but have not been fully recog-
nized previously. For example, capacitance up-steps reflecting single
vesicle fusion were sometimes followed by larger down-steps in mast
cells (Fig. 3bII)57, or smaller down-steps at nerve terminals58, support-
ing enlarge-close and shrink-close fusion, respectively. Unequal capa-
citance up- and down-steps observed at calyx nerve terminals15,23,59 and
likely many other cell types could be caused by, but had not been
interpreted as, shrink-close or enlarge-close fusion. Extremely large
vesicles (~1–10μm) may shrink in minutes in exocrine cells
(Fig. 3aIII)55,56, consistent with shrink or shrink-stay fusion.

Fig. 1 | Classical exo-endocytosis model. a Full-collapse fusion. I, EM images
showing the hypothesized sequence of full-collapse fusion (from upper left to
upper right, then lower left to lower right). Images were taken from neuromus-
cular junctions that were frozen 3.7, 5.2, 5.2, 5.2, 20ms, and 50ms after stimu-
lation. These data led to a full-collapse fusion proposal. Reproduced from J E
Heuser, T S Reese; Structural changes after transmitter release at the frog neu-
romuscular junction. J Cell Biol 1 March 1981; 88 (3): 564–580. https://doi.org/10.
1083/jcb.88.3.564. II Cell-attached recordings of amperometric current (Amp),
vesicular membrane capacitance (Cv), and fusion pore conductance (Gp) at a
chromaffin cell. Reproduced from Albillos, A., Dernick, G., Horstmann, H. et al.
The exocytotic event in chromaffin cells revealed by patch amperometry. Nature
389, 509–512 (1997). https://doi.org/10.1038/39081. III Cell-attached capacitance
recordings of Cv and Gp at the release face of a calyx of Held nerve terminal.
Adapted from He, L., Wu, XS., Mohan, R. et al. Two modes of fusion pore opening
revealed by cell-attached recordings at a synapse. Nature 444, 102–105 (2006).
https://doi.org/10.1038/nature05250. b Kiss-and-run I. EM image of a Ω-shape
profile in a frog neuromuscular junction led to kiss-and-run proposal. Repro-
duced from B. Ceccarelli, W. P. Hurlbut, A. Mauro; DEPLETION OF VESICLES
FROM FROG NEUROMUSCULAR JUNCTIONS BY PROLONGED TETANIC STIMU-
LATION. J Cell Biol 1 July 1972; 54 (1): 30–38. https://doi.org/10.1083/jcb.54.1.30. II

Cell-attached recordings of Amp, Cv, and Gp at a chromaffin cell. Reproduced
from Albillos, A., Dernick, G., Horstmann, H. et al. The exocytotic event in chro-
maffin cells revealed by patch amperometry. Nature 389, 509–512 (1997). https://
doi.org/10.1038/39081. III Cell-attached recordings of Cv and Gp during a capa-
citance flicker at the release face of a calyx of Held nerve terminal. Adapted from
He, L., Wu, XS., Mohan, R. et al. Two modes of fusion pore opening revealed by
cell-attached recordings at a synapse. Nature 444, 102–105 (2006). https://doi.
org/10.1038/nature05250. c Endocytic membrane transformations. I. Freeze-
fracture EM images of frog neuromuscular junctions arranged in this order to
illustrate the hypothetical endocytic process starting from a shallow pit to a
vesicle-like Ω-profile. Reproduced from T M Miller, J E Heuser; Endocytosis of
synaptic vesicle membrane at the frog neuromuscular junction. J Cell Biol 1
February 1984; 98 (2): 685–698. https://doi.org/10.1083/jcb.98.2.685. II Cell-
attached recordings of Cv and Gp reflecting fission pore closure at a calyx of Held
release face. Adapted from He, L., Xue, L., Xu, J. et al. Compound vesicle fusion
increases quantal size and potentiates synaptic transmission. Nature 459, 93–97
(2009). https://doi.org/10.1038/nature07860. d Classical exo-endocytosis model.
Fusion undergoes kiss-&-run or full-collapse fusion, the latter of which is followed
by endocytic flat-to-round transformation at an endocytic zone. Blue dots: vesi-
cular contents before fusion (applies to all figures).
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Fig. 2 | A dynamic pore model of fusion. a Schematic diagram for setup and
labeling method. I In a chromaffin cell, vesicles are preloaded with FFN511 (blue),
PM inner leaflet labeled with overexpressed PHG (green), extracellular solution
labeled with A532 (red), a pipette at the whole-cell voltage-clamp configuration for
delivering depolarization and recording calcium currents (ICa) and membrane
capacitance (Cm). II Fusion dynamics (hemi-fusion, pore opening and expansion)
are visualizedwith three probes: FFN511 for release, PHG for PM inner leaflet fusion,
and A532 for A532-permeable pore. b STED XZ plane images of PHG (green) and
A532 (red) showing hemi-fusion (I) and hemi-fusion followed by hemi-to-full fusion
(II). Images taken at times relative to 1-s depolarization as labeled (also applies to cI
and dI). Adapted from Zhao, WD., Hamid, E., Shin, W. et al. Hemi-fused structure
mediates and controls fusion and fission in live cells. Nature 534, 548–552 (2016).
https://doi.org/10.1038/nature18598. c Fusion pore expansion. I STED XZ plane
images of PHG and A532 showing fusion pore opening (Middle, A532-permeable)
and expansion (right, visible). Data taken from Cell, 173, W. Shin, L. Ge, G. Arpino,
et al. Visualization of Membrane Pore in Live Cells Reveals a Dynamic-Pore Theory
Governing Fusion and Endocytosis, 934-945, Copyright Elsevier (2018). II Cell-
attached recordings of the amperometric current (Amp) and fusion pore con-
ductance (GP). Reproduced from Albillos, A., Dernick, G., Horstmann, H. et al. The
exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389,
509–512 (1997). https://doi.org/10.1038/39081. d Fusion pore closure (kiss-and-

run). I STED XZ plane images of PHG and A532 showing fusion pore opening and
closure. Pore closure prevents bleachedA532 from exchangewith fluorescent A532
in the bath, leading to A532fluorescencedimming. Datawerepublished inCell, 173,
W. Shin, L. Ge, G. Arpino, et al. Visualization ofMembrane Pore in Live Cells Reveals
a Dynamic-Pore Theory Governing Fusion and Endocytosis, 934-945, Copyright
Elsevier (2018). II Capacitance (Im) flickers with pore conductance (Re) beyond
detection limit from cell-attached recordings at the calyx of Held release face
Adapted from He, L., Wu, XS., Mohan, R. et al. Two modes of fusion pore opening
revealed by cell-attached recordings at a synapse. Nature 444, 102–105 (2006).
https://doi.org/10.1038/nature05250. III Cell-attached recordings of a capacitance
flicker with a fast amperometric spike at a chromaffin cell. Reproduced from Alés,
E., Tabares, L., Poyato, J. et al. High calcium concentrations shift the mode of
exocytosis to the kiss-and-runmechanism. NatCell Biol 1, 40–44 (1999). https://doi.
org/10.1038/9012. e Schematics of fusion pore dynamics and underlying mechan-
isms. Fusion undergoes hemi-fusion, hemi-to-full fusion, pore expansion, con-
striction andclosure. Thedynamics of eachof these transitions are the net outcome
of competition between fusion machinery (MFus), plasma membrane tension and
dynamin. Calcium influx triggers vesicle fusion, fusion pore constriction and clo-
sure. Hemi-fusion generates no release; small and large fusion pore generates slow
and fast release, respectively. Delayed hemi-to-full fusion causes asynchronized
release.
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Redefining kiss-and-run. Fusion pores up to ~490nm may remain
open or constrict and then close (Fig. 2cI, dI) while Ω-profile size may
change (Fig. 3a, c)40,41,54. The traditionally definedkiss-and-run, “closure
of narrow (<~5 nm) pores to limit content release, but form vesicles
identical to original ones” (Fig. 1d)2,7, shouldbe redefined as “closureof
fusion pores of any size that may limit or promote content release
(Fig. 2e), and may form vesicles of different sizes (Fig. 3c). Supporting
this redefinition, capacitance flickers are often accompanied by a
too-large-to-detect conductance at synapses (Fig. 2dII)15 and fast
amperometric spikes in endocrine cells (Fig. 2dIII);13,14 unequal capa-
citance up- and down-steps consistent with shrink-close or enlarge-
close fusion were reported15,57,58.

Debate between shrink and full-collapse fusion. Shrink fusion was
observed down to ~60 nm41, suggesting that ~30–80nm synaptic
vesicles might undergo shrink fusion. Imaging and modeling showed
that at the final stage of shrinking, Ω-shape is converted to Λ-profile

(Fig. 3aII, dI). Accordingly, a shrink-collapse mode, in which Ω-profile
shrinking is followed byΩ-to-Λ-to-flat shape transition, is suggested to
reconcile the conflict (Fig. 3c): shrinking is dominant when the fusing
Ω-profile size is large, ~60–80 nm,whereas full-collapse (Ω-to-Λ-to-flat)
may become dominant as the shrinking Ω-profile size reaches
~30–10 nm41.

Sequential compound fusion and kiss-and-run. Fusion at a pre-
viously fused vesicle, termed sequential compound fusion, was pro-
posed for large (~1–10μm) exocrine vesicles that release contents very
slowly (Fig. 4a)60–62. STED microscopy of smaller endocrine vesicles
observed and thus proved the proposed membrane transformation
and revealed its pore dynamics (Fig. 4b, c)42. Sequential compound
fusion forms an 8-shape structure with a pore that may (1) dilate to
form a larger and elongated Ω-profile (Fig. 4bI-II; Supplementary
Movies 6 and 7), (2) close to recycle vesicles, termed sequential com-
pound kiss-and-run, or (3) remain unchanged (Fig. 4c)42.
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Compound fusion. Compound fusion, the vesicle-vesicle fusion that
forms larger vesicles for subsequent exocytosis (Fig. 4c)2, is supported
by (1) EM observation ofmultivesicular-shaped vesicles, vesicles much
larger than regular ones, and large vesicular-shape structures at
secretory cell PM, (2) capacitance up-steps and miniature excitatory
postsynaptic currents reflecting single synaptic vesicle fusion larger
than regular ones, and (3) capacitance up-steps equivalent to several
vesicles’ membrane capacitances accompanied by the release of mul-
tiple fluorescently labeled vesicles in eosinophils2,23,60,62–65. Compound
fusion’s membrane transformation has not been real-time visualized.

Endocytic membrane transformation
Three modular transformations: flat→Λ, Λ→Ω, and Ω→Ο. Shallow
and deep pits are considered intermediates of endocytic flat-to-round
transition (Fig. 1cI)4,21, but difficult to prove with EM. STED imaging
observed three modular transitions that formed ~200–1500nm vesi-
cles after depolarization-induced exocytosis: flat→Λ-shape, Λ→Ω-shape
and Ω→Ο-shape, each of which takes 0.05-51 s (Fig. 5a–e; Supplemen-
taryMovies 8–11)66. Owing to low transition probabilities (~0.12–0.24),
flat→Λ and Λ→Ωmay not necessarily continue their transition towards
Ο-shape (Fig. 5b)66, leaving many Λ- (or dome-shape) and Ω-profiles at
PM. Upon subsequent depolarization, these preformed Λ- and Ω-
profiles may continue their endocytic journey (Fig. 5e).

Preformed-Ω→Ο as themain driving force. Low probability Λ→Ω and
Ω→Ο transition make flat→Ο transition much less frequent than pre-
formed-Ω→Ο transition66. Furthermore, flat→Ο takes more steps and
time than preformed-Ω→Ο66. Endocytic vesicle formation is thus pri-
marily from preformed-Ω→Ο, but not the generally assumed flat→Ο
(Fig. 5e)66. This ‘genius’ design fulfils physiological demands by offer-
ing much faster and more endocytosis from an apparently ‘clumsy’
machinery that drives flat→Λ→Ω→Ο slowly at low probabilities.

Endocytic zones are separated from fusion sites. The general belief
that endocytosis occurs at endocytic zones different from release
sites4,21 has only been visualized recently in chromaffin cells, where
flat→Λ→Ω→Ο transitions occur at sites separated from fusion sites40,66.
Mechanisms that separate release from endocytosis and generate
endocytic zones remain poorly understood.

Membrane transformation mechanics
Fusion mechanics
Potential molecular mechanics underlying fusion pore opening have
been reviewed repeatedly1,8,16. Here, we focus on fusion pore dynamics
microscopically observed in real time.

Pore opening and expansion. Calcium binding with synaptotagmin
induces SNARE proteins to mediate fusion in excitable cells1,67. Pore
conductance and current measurements in secretory cells and SNARE-
reconstituted nano-discs suggest that fusion machinery, including
SNARE proteins, are pivotal in opening and expanding fusion pores at
nanometer ranges1,67–72. STED imaging showed that cortical F-actin-
supported membrane tension may expand fusion pores up to hun-
dreds of nanometers (Fig. 2e)40,73.

Fusion pore constriction and closure. Early studies of vesicular spots
implied dynamin in expanding26,74,75 or stabilizing fusion pores75–77.
Recent studies showed that dynamin inhibition enhances quantal
release, implying dynamin in controlling fusion pore78. STED imaging
showed that dynamin inhibition blocks fusion pore constriction/clo-
sure, that dynamin is localized at fusion sites before fusion, and that
dynamin scaffold surrounds and constrictsΩ-profile’s pore in real time
(Figs. 2e, 5cII)40,79.

How does dynamin know when to work? Calcium reduction or
replacement with strontium blocked fusion pore constriction/closure,
suggesting that calcium influx triggers fusion pore constriction/clo-
sure by activating dynamin (Fig. 2e)39,40,54. Since calcium-binding pro-
tein calmodulin, calcineurin, and protein kinase C may mediate
calcium-triggered endocytosis80–83, they might activate dynamin by
dephosphorylating and/or phosphorylating dynamin80, a proposal for
future examination.

Fusion and fission machinery compete to decide pore dynamics.
Since calcium influx may activate dynamin to mediate pore constric-
tion and closure, a block of calcium influx or dynamin inhibits fusion
pore constriction/closure and thus increases the initial pore size39,40.
These effects can be antagonized by blocking F-actin- and tension-
mediated fusion pore-expansion mechanisms, suggesting that
dynamin-dependent pore constriction and SNARE/F-actin-dependent
pore expansion compete to decide fusion pore and thus content
release dynamics39,40. Unexpectedly, block of calcium influx or dyna-
min facilitates hemi-to-full fusion, suggesting that dynamin acts at the
hemi-fusion stage before pore opening to compete with SNARE- and
F-actin-dependent pore opening/expansion mechanisms39,40. In sum-
mary, dynamin-dependent pore constriction and SNARE/F-actin-
dependent pore expansion compete to decide fusion dynamics,
including hemi-to-full fusion, pore opening, expansion, constriction
and closure (Fig. 2e). We suggest this competition scheme as a general
principle governing fusion pore dynamics, where undiscussed
(apology here) or future-learned mechanisms can be added to build a
more complete model. Further supporting this principle, dynamic

Fig. 3 | Seven fusion modes differed in pore status and vesicle size. a Shrink
fusion. I–II STED XZ plane images of PHG (green) and A532 (red) showing shrink
fusion: fusion-generated Ω-profiles may shrink until undetectable (I), or until
becoming a Λ-shape at the very end of the shrinking process (II). Images taken at
times labeled. Data were published in Cell Report, 30, W. Shin, G. Arpino, S.
Thiyagarajan, et al. Vesicle Shrinking and Enlargement Play Opposing Roles in the
Release of Exocytotic Contents, 421–431, Copyright Elsevier (2020). III. Confocal
XZ plane images showing a huge GFP-filled salivary gland vesicle undergoing
shrinking at times labeled. Scale bar: 5 µm.Reproduced fromRousso, T., Schejter, E.
& Shilo, BZ. Orchestrated content release from Drosophila glue-protein vesicles by
a contractile actomyosin network. Nat Cell Biol 18, 181–190 (2016). https://doi.org/
10.1038/ncb3288.bEnlarge fusion. I STEDXZplane images of PHG (green) andA532
(red) showing enlarge fusion: the fusion-generatedΩ-profile enlarged over time as
labeled. Data were published in Cell Report, 30, W. Shin, G. Arpino, S. Thiyagarajan,
et al. Vesicle Shrinking and Enlargement Play Opposing Roles in the Release of
Exocytotic Contents, 421-431, Copyright Elsevier (2020). II Capacitance flickers
with the down-step equal to (left) or larger than (middle and right) the up-step.
Reproduced from J.R. Monck, T.G. Alvarez de, J.M. Fernandez, Tension in secretory
granule membranes causes extensive membrane transfer through the exocytotic
fusionpore. Proc. Natl. Acad. Sci. USA87, 7804–7808 (1990).Middle and right panel

are consistent with enlarge-close fusion. c Schematic diagram describing seven
fusionmodes: stay, close, enlarge-stay, enlarge-close, shrink-stay, shrink-close, and
shrink fusion. Shrink-related fusion events are associated with a larger pore to
generate fast release; enlarge-related fusion events are associated with a smaller
pore to generate slow release. Release traces are taken from the article published in
Cell Report, 30, W. Shin, G. Arpino, S. Thiyagarajan, et al. Vesicle shrinking and
enlargement play opposing roles in the release of exocytotic contents, 421-431,
Copyright Elsevier (2020). d I Predicted shrink fusion sequence. Computed vesicle
shapes and free energies for squeezing pressure ΔP = 100Pa and the indicated
effective vesicle diameter (D). A transition from Ω- to Λ-shape occurs at D = 56nm.
Data were published in Cell Report, 30, W. Shin, G. Arpino, S. Thiyagarajan, et al.
Vesicle Shrinking and Enlargement Play Opposing Roles in the Release of Exocy-
totic Contents, 421-431, Copyright Elsevier (2020). II Schematic diagram showing
the osmotic pressure difference between the intracellular and the extracellular
solution (ΔP) squeezes and thus deflates the vesicle, abolishing the vesicular
membrane tension and allowing for the vesicular membrane to be reeled into the
plasma membrane by the high plasma membrane tension and the actin cortex.
Drawing taken from the article published in Cell Report, 30, W. Shin, G. Arpino, S.
Thiyagarajan, et al. Vesicle Shrinking and Enlargement Play Opposing Roles in the
Release of Exocytotic Contents, 421–431, Copyright Elsevier (2020).
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fusion pore expansion and constriction controlled by F-actin,myosin II
and Bin-Amphiphysin-Rvs domain proteins were reported during
micron-sized exocrine vesicle fusion84, and compared with smaller
vesicles85.

Why shrink but not full-collapse fusion?. Experiments and realistic
modeling suggest that a swelling osmotic pressure, the positive intra-
to extracellular osmotic pressure difference, squeezes and thus

abolishes membrane tension of the fusion-generated Ω-profile, pro-
ducing a positive PM-to-Ω-profile tension gradient to reel theΩ-profile
membrane into PM (Fig. 3dII)41. With squeezing and membrane-
reeling-in force, Ω-profile shrinking is free energetically favored over
full-collapse (Fig. 3d)41, explaining why full-collapse does not occur2,7.
The PM-to-Ω-profile tension gradient depends on cortical F-actin,
explaining why F-actin is crucial in mediating shrink fusion41,73. Since
the swelling osmotic pressure and membrane-actin cortex adhesion

a

b III

c

2 µmSu
lp

ho
rh

od
am

in
e-

B
0 5 16 27 28 s

1 µm

PH
G
/A

53
2

0 3 5 s

PH
G
/F

FN

1 µm

Fig. 4 | Sequential compound fusion. a Three sulphorhodamine-B-filled spots
(red) occurred sequentially at the indicated time that may reflect sequential com-
pound fusion of zymogen granules in a pancreatic acinus cell bathed with
sulphorhodamine-B. Reproduced from Nemoto, T., Kimura, R., Ito, K. et al.
Sequential-replenishment mechanism of exocytosis in pancreatic acini. Nat Cell
Biol 3, 253–258 (2001). https://doi.org/10.1038/35060042. b Sequential compound
fusion and release visualized in chromaffin cells. I STED XZ plane images of PHG

(green) and A532 (red) showing sequential compound fusion at times indicated
froma chromaffin cell (see also cartoonexplanations). Adapted fromL.Ge,W. Shin,
G. Arpino, L.Wei, C. Y. Chan, C. K. E. Bleck,W. Zhao, L. G.Wu, Sequential compound
fusion and kiss-and-run mediate exo- and endocytosis in excitable cells. Sci. Adv. 8,
eabm6049 (2022). © The Authors, some rights reserved; exclusive licensee AAAS.
Distributed under a Creative Commons Attribution NonCommercial License 4.0

(CC BY-NC) http://creativecommons.org/licenses/by-nc/4.0/. II. STED XZ plane
images of PHG (green) andFFN511 (magenta) showing sequential compound release
(two circles) at times indicated from a chromaffin cell (see also cartoon explana-
tions). Adapted from L. Ge, W. Shin, G. Arpino, L. Wei, C. Y. Chan, C. K. E. Bleck, W.
Zhao, L. G. Wu, Sequential compound fusion and kiss-and-run mediate exo- and
endocytosis in excitable cells. Sci. Adv. 8, eabm6049 (2022). © The Authors, some
rights reserved; exclusive licensee AAAS. Distributed under a Creative Commons
Attribution NonCommercial License 4.0 (CC BY-NC) http://creativecommons.org/
licenses/by-nc/4.0/. c Schematic diagram depicting membrane transformations of
sequential compound fusion, sequential compound kiss-and-run, and compound
fusion. New release site formation at the 1st fused vesicle enables sequential
compound fusion; 2nd fusion generates asynchronized release; sequential com-
pound fusion or compound fusion may generate large Ω-profiles and vesicles.
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required for shrink-fusion41,73 are general properties of the cell73,86–89,
shrink-fusion may be of broad application.

The swelling osmotic pressure might contribute to shrinking
micron-sized exocrine vesicles, which are compressed in minutes by a
surrounding actomyosin network (Fig. 3aIII)56,84. This compression
mechanism is too slow for rapid shrinking of much smaller endocrine

vesicles73, butmayworkwith the swelling osmotic pressure to underlie
slower vesicle shrinking.

Rapid release site assembly at fused vesicles. Sequential compound
fusion with a ~0.2-85 s interval suggests rapid assembly of release
sites at the 1st fusing vesicle42. This finding suggests modifying the
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half-a-century concept—exocytosis occurs at preestablished release
sites in excitable cells, such as active zones1,2—to include rapid release
site assembly at fused vesicular Ω-profiles (Fig. 4c).

Endocytosis mechanics
Tens of proteins and lipids have been implicated in mediating endo-
cytosis using various curvature generation mechanisms, such as
hydrophobic insertion, scaffolding, crowding, and liquid-liquid phase
separation3,90–94. Here we focus on mechanisms underlying the fla-
t→Λ→Ω→Ο transition observed in real-time.

Pulling and constriction underlie flat-to-round transition. During
flat→Λ transition, Λ’s height increases with a spike-like membrane
protrusion attached at Λ’s tip while Λ’s base remains constant and is
surrounded by F-actin and dynamin scaffold (Fig. 5b, c; Supplementary
Movies 8, 12, 13)66,79. Λ’s tip and its spike-like protrusion are associated
with growing actin filaments and dynamin puncta (Fig. 5b, c; Supple-
mentary Movies 8, 12, 13)66,79. Block of F-actin or dynamin inhibits
flat→Λ transition66,79. These results suggest that F-actin and dynamin
pull at the endocytic zone’s center and Λ’s tip while constraining the
boundary from growing, leading to flat→Λ transition (Fig. 5d).

DuringΛ→Ω→Ο transition, theΛ-shape is converted into aΩ-shape
asΛ’s basewidth decreases; dynamin puncta surroundΛ’s base andΩ’s
pore, and constrict in parallel with the constriction of Λ’s base andΩ’s
pore (Fig. 5b–d; Supplementary Movie 13)66,79. Furthermore, block of
dynamin inhibits Λ→Ω→Ο transition66,79. These results suggest that
dynamin surrounds and constrictsΛ-profile’s base as large ashundreds
of nanometers, transforming Λ- to Ω-profile, and then constricts Ω-
profile’s pore from up to hundreds of nanometers to zero, converting
Ω-profiles to vesicles (Fig. 5d).

Mathematical modeling show that two forces, a pulling force at
the center and a periphery-to-centre constriction force, are sufficient
tomediate flat→Λ→Ω→Ο transition (Fig. 5d, SupplementaryMovie 14)79.
It is concluded that F-actin and dynamin mediate flat→Λ→Ω→Ο transi-
tion by pulling at the center and constriction at the base/pore region79.

F-actin pulls membrane inward. Imaging revealed that F-actin fila-
ment attached at the growing Λ-profile’s tip may pull Λ-profile inward
(Fig. 5cI, Supplementary Movie 12)79. Modeling suggests that a ~3 pN
point-pulling force is sufficient to pull membrane inward (Supple-
mentary Movie 14)79. Such a small force might involve a bundle of
contractile complexes of actin andmyosin filaments with an anchored
in the cytoplasmic actin network95,96. It differs from the proposal for
yeast and mammalian clathrin-mediated endocytosis, where actin
polymerization from PM to cytosol along the clathrin cage’s surface
may generate pushing forces to elongate the bud91,97–99. Since STED
imaging also visualized F-actin recruitment to growing Λ’s base and

side (Fig. 5cI)79, both tip pulling and side pushing may contribute to Λ
formation. These mechanisms may explain why F-actin inhibition by
latrunculin A or actin β-isoform knockout reduces endocytosis and
membrane pits at nerve terminals and inhibits clathrin-mediated
endocytosis79,86,100–102.

Dynamin: master player of flat→Λ, Λ→Ω and Ω→Ο. While dynamin-
mediated narrow (~5–20nm) pore fission is well known94,103, imaging
revealed surprisingly that dynamin is involved in pulling membrane
inward with F-actin, and in mediating Λ→Ω→Ο by constricting Λ’s base
and Ω’s pore as large as hundreds of nanometers (Fig. 5cII, d; Sup-
plementary Movie 13)79. Supporting this finding, dynamin interacts
with F-actin at actin comets, podosomes, filopodia, and F-actin
bundles103–106. How dynamin interacts with F-actin to generate pulling
forces remains to be studied.

Dynamin alonemay surround and constrict large Λ’s base andΩ’s
pore because dynamin forms helices surrounding and constricting
liposomes from hundreds of nanometers down to the nanometer
range79. Current models where dynamin helix conformational changes
may constrict ~5-10 nm pore94,103 seem difficult to explain constriction
of hundreds of nanometers. Other molecules might also be involved.
Endophilin or synaptojanin 1 knockout increases membrane pits’ base
at synapses, implying their involvement in neck formation107.

Endocytosis principle: two forces make one vesicle. Dynamin and
actin are involved in most endocytic modes reported2,100–102,108–111.
Accordingly, F-actin- and dynamin-dependent pulling and constriction
that mediate flat→Λ→Ω→Ο transition may mediate many clathrin-
independent but dynamin/actin-dependent modes of endocytosis,
such as clathrin-dispensable but vesicle recycling-essential ultrafast,
fast, slow, bulk, and overshoot endocytosis at synapses2,9,100–102,108–114,
and clathrin-independent endocytosis of extracellular ligands, recep-
tors, viruses, bacteria, prions, and bacterial toxins90,115. Even for
clathrin-mediated endocytosis, dynamin and actin may exert their
pulling and constriction forces to generate clathrin-coated pits. Sup-
porting this possibility, initiation and maturation of fluorescent cla-
thrin spots, which presumably involve pit formation, depend on
dynamin and actin91,92; dynamin can be pre-recruited to endocytic
zones via interaction with syndapin 1116; dynamin is located at the
periphery of flat or shallow clathrin patches117, consistent with dyna-
min’s ability to constrict Λ-profile’s base79. We propose a general
principle that F-actin- and dynamin-dependent pulling and constric-
tion underlie flat-to-round transformation, regardless of the involve-
ment of coat proteins like clathrin (Fig. 5d).

Calcium: unified trigger of flat→Λ, Λ→Ω and Ω→Ο. Calcium influx
triggers diverse endocytic modes, including fast, slow, overshoot, and

Fig. 5 | Endocytic membrane transformation, underlying mechanical forces,
and function in generating diverse endocytic modes. a Schematic diagram
showing how to visualize endocytic membrane transformation using two probes:
PHG (green) for labeling the PM inner leaflet and A532 (red) for labeling bath
solution (bath dye). b STED XZ plane images of PHG (green) and A532 (red)
showing Flat→Λ (I), Λ→Ω (II), Ω→O (III) and Flat→Λ→Ω→O transition (IV). Images
taken at times labeled. Data in panel I were adapted from Shin, W., Zucker, B.,
Kundu, N. et al. Molecular mechanics underlying flat-to-round membrane bud-
ding in live secretory cells. Nat Commun 13, 3697 (2022). https://doi.org/10.1038/
s41467-022-31286-4. Data in panels II-IV were from the article published in Neu-
ron, 109, W. Shin, L. Wei, G. Arpino, et al. Preformed Omega-profile closure and
kiss-and-run mediate endocytosis and diverse endocytic modes in neuroendo-
crine chromaffin cells, 3119–3134, Copyright Elsevier (2021). c I STED XZ plane
images of PHG (green) and Lifeact-mTFP1 (red, labeling F-actin) showing spike-like
PHG-labeled membrane protrusion attached to growing F-actin filaments while
the Λ-profile is growing. Adapted from Shin, W., Zucker, B., Kundu, N. et al.
Molecular mechanics underlying flat-to-round membrane budding in live

secretory cells. Nat Commun 13, 3697 (2022). https://doi.org/10.1038/s41467-
022-31286-4. II STED XZ plane images of PHG (green) and dynamin-mTFP1 (red)
showing dynamin puncta flanked and moved with constricting Λ’s base and
constricting Ω’s pore—dynamin constricts Λ’s base and Ω’s pore. Adapted from
Shin, W., Zucker, B., Kundu, N. et al. Molecular mechanics underlying flat-to-
round membrane budding in live secretory cells. Nat Commun 13, 3697 (2022).
https://doi.org/10.1038/s41467-022-31286-4. d Schematic diagram showing the
Flat→Λ→Ω→O transition mediated by two forces, the F-actin- and dynamin-
dependent pulling force and dynamin-dependent constriction force. Calcium is
the trigger for each transition, including Flat→Λ, Λ→Ω andΩ→O. The probability of
each transition is low as labeled (0.12–0.24). e Pore closure of preformed Ω-
profiles and fusion pores, but not flat-to-round transformation, is the main driv-
ing force underlying diverse modes of endocytosis, such as ultrafast, fast, slow,
compensatory, and overshoot endocytosis that follow depolarization-induced
exocytosis. Depol: depolarization; Cm: membrane capacitance, Exo: exocytosis
(Cm increase); endo: endocytosis (Cm decay); blue dots: vesicular contents
before fusion.
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bulk endocytosis in secretory cells2,81,83,118,119 (but see Ref. 120). Calcium
reduction or replacementwith strontiumblocksflat→Λ,Λ→Ω andΩ→Ο,
suggesting calcium triggers each of these modular transitions39,40,54,66.
By triggering flat→Λ, Λ→Ω and Ω→Ο, calcium influx initiates diverse
endocytic modes, including slow, fast, ultrafast, overshoot, and bulk
endocytosis66. Calmodulin, calcineurin and protein kinase C have been
suggested as calcium sensors underlying calcium-triggered endocy-
tosis by dephosphorylation and/or phosphorylation of endocytic
proteins80–83. Synaptotagmin 1, an exocytosis calcium sensor, may also
be involved in exo-endocytosis coupling121–124. These calcium sensors
are candidates for underlying calcium-triggered flat→Λ, Λ→Ω andΩ→Ο
transition.

Dynamin- and/or actin-independent endocytosis. Studies attempt-
ing to abolish dynamin or actin functions suggest the existence of
dynamin- and/or actin-independent endocytosis. For example, apply-
ing the non-hydrolyzable GTP analog, GTP-γS, which abolishes the
GTPase dynamin-mediated endocytosis, reveals dynamin-independent
synaptic vesicle endocytosis125. Knockout of all three dynamin iso-
forms in fibroblasts uncovers a dynamin-independent fluid-phase
endocytosis126. Results from the use of F-actin inhibitors (e.g., latrun-
culin A) are not all consistent86,112,127–135. A study suggests that actin is
only needed at high-tension PM86, which may explain conflicting
results from different but not the same preparations. Another study
offers an alternative explanation that latrunculin A may not access
certain actin pools134. Consistent with this explanation, synaptic vesicle

endocytosis is inhibited by actin β or γ isoform knockout but not by
latrunculin A101,135.

Actin’s role is minimized by the reduction of PM tension during
clathrin-mediated endocytosis in yeast ormammalian cells, suggesting
mechanisms other than F-actin in generating membrane
invagination86,136–138. In brief, dynamin- or actin-independent mechan-
isms might contribute to underlying endocytic curvature
transitions3,93.

Liquid-liquid phase separation. Liquid-liquid phase separation might
contribute to endocytic curvature generation93,138–143. Eps15 and Fcho1/
2 rely on weak, liquid-like interactions to promote the assembly of
protein droplets in vitro, which may support clathrin-mediated endo-
cytosis in vivo139. Similarly, Ede1, the yeast Eps15 homolog, may gen-
erate a separate liquid phase to nucleate endocytic patches140.
Endophilin may undergo a phase transition into liquid-like con-
densates to facilitate endocytic protein assembly during fast
endophilin-mediated endocytosis141. Dynamin 1 interacts with synda-
pin 1 to form molecular condensates for mediating ultrafast endocy-
tosis at synapses116. Endocytic coat proteins with prion-like domains in
yeasts may form hemispherical puncta with the hallmarks of biomo-
lecular condensates138. Modeling suggests that cohesive interactions
within condensates and interfacial tensions among condensates,
membranes, and the cytosol might contribute to membrane invagi-
nation during actin-dependent and -independent endocytosis138.
Testing these effects on real-time observed flat→Λ→Ω→Ο transition
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Fig. 6 | A new exo-endocytosis membrane transformation model synthesized
from live-cell observations. A schematic diagram showing a new exo-endocytosis
membrane transformation model and molecular mechanical mechanisms under-
lying each membrane transition (MFus: fusion machinery). Hemi-fusion generates
no release (blue dots: vesicular contents); enlarge-related fusion generates slow
release; shrink-related fusion generates fast release. Delayed hemi-to-full fusion or

sequential compound fusion generates asynchronized release. Compound fusion
generates a large quantal size. Narrow fusion pore may cause partial vesicular
content release. Redefined kiss-and-run (including close, enlarge-close and shrink-
close fusion, left dash square) and preformed Ω-profile pore closure (right dash
square) are major mechanisms underlying diverse endocytic modes, including
ultrafast, fast, slow, compensatory, overshoot, and bulk endocytosis.
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may pinpoint the exact curvature transition controlled by liquid-liquid
phase separation.

Functions
Exocytosis strength depends on many parameters, such as the vesicle
release probability, release synchronization, single vesicle content
release rate and amount, and availability of release sites2,7,144. Endocy-
tosis efficiency depends on individual vesicle endocytosis’s speed,
number and size. These key parameters are controlled by the exo-
endocytosis membrane transformations. To give a bird’s view on this
regulation, we synthesize a live-cell exo-endocytosis membrane
transformation model (Fig. 6) based on recent real-time microscopic
observations39–42,54,66,73,79. The transformation includes hemi-fusion,
hemi-to-full fusion, fusion pore expansion, constriction, hemi-fission,
hemi-to-full fission, fusing vesicular Ω-profile size enlargement or
shrinking, sequential compound fusion and kiss-and-run, compound
fusion (not being visualized), and endocytic flat→Λ→Ω→Ο transition
(Fig. 6). These transformations offer many previously unrecognized or
underappreciated mechanisms to control exo-endocytosis.

Exocytotic functions
Hemi-fusion pathway defines vesicle release probability. Since a
significant fraction of hemi-fusion structures fail to reach full fusion39,
we suggest redefining release probability as hemi-fusion probability
times hemi-to-full fusion probability (Fig. 6). Regulation of the hemi-
fusion pathway may thus regulate release probability, underlying var-
ious forms of synaptic plasticity145,146.

A dynamic pore theory governing vesicular content release.
Visualization of membrane dynamics established a dynamic pore
theory: fusion pore may expand up to the vesicle width and then
constrict and close while the fused vesicularΩ-profile size may remain
unchanged, enlarge, shrink partially, or shrink completely (Fig. 6)40,41,54.
This newmodel (Fig. 6) differs from the classical framework (Fig. 1d) in
three aspects: (1) full-collapse fusion is replaced with shrink fusion or
shrink-collapse fusion (Fig. 3c), (2) kiss-and-run is redefined to include
any pore size that may limit or promote release and formation of
different vesicle sizes due to enlarge-close or shrink-close fusion, and
(3) shrink and enlarge fusion, rather than classical full-collapse and
kiss-and-run, employ large and small pore to promote and limit con-
tent release, respectively40,41,54.

Decades of studies interpreted rapid/complete release, pore
conductance increase beyond detection limit, or release of ~20 nm
quantum dots as full-collapse fusion, and otherwise as kiss-and-run
using the classical framework (Fig. 1d)2,7,13,15–19,147 may be subject to
significant errors. We suggest replacing the classical framework with
the new dynamic pore theory (Figs. 2e, 3c, 6) to account for content
release. Shrink (or shrink-collapse) and enlarged fusion (Fig. 6) may
mediate fast and slow content release previously attributed to full-
collapse and kiss-and-run, respectively. Regulation of shrink and
enlarge fusion might explain how modulators regulate content
release148–151.

Redefined kiss-and-runmay open a large or small pore topromote
or limit release, respectively (Fig. 6). Partial content release has been
implicated by measurements of catecholamine-mediated slow/small
amperometric currents13,152–154, estimation of transmitter released
fractions per vesicle78,155, and assessment of vesicular dopamine via
correlative imagingwith transmission EMandnanoscale secondary ion
mass spectrometry156. These studies implied partial catecholamine
release as the overwhelming majority13,78,152–156. In contrast, imaging
neuropeptide Y release and fusion pore dynamics in chromaffin cells
showedmuch infrequent partial release40. The reason for this apparent
conflict is unclear.

Kiss-and-run is not the only mechanism underlying partial release
because stay fusion may occasionally keep neuropeptide Y from

release, likely via a pore narrower than neuropeptide Y’s molecular
size40. Thus, partial release is due to pore constriction until it is nar-
rower than the released content’s molecular size.

Compound fusion enhances quantal size and synaptic plasticity.
Compound fusion releases vesicular contents equivalent to multiple
regular vesicles, leading to an increase in the quantal size (Figs. 4c, 6).
This increase contributes to underlying a common short-term
synaptic plasticity induced by repetitive firings, the post-tetanic
potentiation23,157.

Asynchronized release via hemi-fusion and sequential
compound fusion. Vesicle release is mostly synchronized to relay fast
presynaptic firings to postsynaptic neurons158. However, release can be
asynchronized with various delays, which may enhance the dynamic
range of neuronal impulse relay, synaptic plasticity, and
neuromodulation158. Mechanisms underlying asynchronized release
remain poorly understood144. Imaging revealed a delay of milliseconds
to tens of seconds between hemi and full fusion and between 1st and
2nd fusion of a sequential compound fusion (Figs. 2b, 4b, 6)39,42. Slow
hemi-to-full fusion or sequential compound fusion may thus generate
asynchronized release. Their regulation may modulate synchronized
versus asynchronized release.

Sequential compound fusion enhances exocytosis capacity. Repe-
titive stimulation induces many fused vesicular Ω-profiles that may
occupy and thus block release sites. Likely to overcome this problem,
sequential compound fusion takes place at theseΩ-profiles to enhance
exocytosis capacity, and to save vesicles from traveling one-vesicle-
length distance for docking at original release sites (Fig. 6)42.

Endocytic functions
Preformed Ω-profile closure and kiss-&-run underlie diverse
endocytic modes. In excitable cells of the nervous or endocrine
system, where exocytosis may deplete vesicles during repetitive
firing, endocytosis must recycle fused vesicles rapidly to sustain
exocytosis2,9. To meet this demand, cells employ various endocytic
modes, including speed-specific slow (>~6 s), fast (<~6 s) or ultrafast
(<~0.6 s) endocytosis, amount-specific compensatory (endocytosis =
exocytosis) or overshoot (endocytosis > exocytosis) endocytosis,
and size-specific bulk endocytosis (forming large endosome-like
structures) or clathrin-mediated endocytosis (forming small
vesicles)2,4,9,22,81,100,159–165. Many of thesemodes are also observed in non-
excitable cells91,115,166,167.

These endocytic modes are thought to undergo flat-to-round
transformation using different yet largely unclear molecular mechan-
isms to achieve their specificity2,24,166,168. Historically, fast endocytosis
was considered too fast to be mediated by slow clathrin-mediated
endocytosis2. Kiss-and-run was thus hypothesized, although not at
consensus, to underlie fast endocytosis2,24. Ultrafast endocytosis is
thought to undergo a flat-to-round transformation using endocytic
machinery containing dynamin, actin, endophilin, and syndapin, but
not clathrin100,107,112, and with dynamin primed at the endocytic site116.
Pre-enrichment of endophilin might also contribute to generating fast
endophilin-mediated endocytosis166,169.

The known differences in the molecular machinery seem difficult
to explain different endocytic modes satisfactorily. Studies of real-
time-observed membrane transformations offer a sound explanation
for generating endocytic modes differing in speeds, amounts, and
vesicle sizes with the same molecular machinery. In chromaffin cells,
brief depolarization may induce ultrafast, fast, slow, compensatory,
overshoot, and/or bulk endocytosis, as recorded with whole-cell
capacitance measurements (Figs. 2a, 5e)54,66. The depolarization also
induces exo-endocytic membrane transformation detected with ima-
ging, including fusion pore opening and closure, flat→Λ→Ω→Ο,
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preformed-Λ→Ω→Ο and preformed-Ω→Ο transition54,66. Summing
these membrane transitions yielded a reconstructed exo-endocytosis
trace matching the capacitance-recorded exo-endocytic mode from
the same cell54,66. Quantification revealed surprisingly that preformed-
Ω→Ο and fusion pore closure (kiss-and-run), but not flat→Λ→Ω→Ο, are
the primary mechanism underlying each endocytic mode, including
ultrafast, fast, slow, compensatory, overshoot, and bulk endocytosis
(Figs. 5e, 6)66. Preformed-Ω→Ο and kiss-and-run each contributes
about half to each endocytic mode, except overshoot caused mainly
by preformed-Ω→Ο66.

The only difference among these modes is the calcium current66,
the trigger of each endocytic membrane transformation39,40,54,66, and
each endocyticmode2,81,118,170. The calcium current increases in order as
the capacitance-recorded endocytic mode changes from no-
endocytosis to slow, fast, ultrafast, and overshoot endocytosis54,66.
By controlling preformed-Ω and fusion pore closure’s speed, number,
and vesicle size, low to high calcium influxes generate in order (1) slow,
fast, and ultrafast endocytosis; (2) no-endocytosis, compensatory, and
overshoot endocytosis; and (3) regular- and large-sized (bulk) vesicle
endocytosis (Fig. 5e)54,66. Thus, with the same endocytic machinery,
different amounts of the trigger signal, calcium influx, may generate
endocytic modes differing in speeds, quantities, and vesicle sizes66.

These findings may explain the long-held mystery of how a ‘slow’
flat-to-round machinery produces fast/ultrafast endocytosis—by clos-
ingpreformedor fusion-generatedΩ-profiles that arefission-ready66. It
explains the longstanding conundrum that secretory vesicle endocy-
tosis measured after depolarization is much faster than receptor-
mediated endocytosis measured from the entire flat-to-round transi-
tion. Preformed Ω-profile closure explains long-held mysteries at
synapses that ‘readily retrievable’ vesicular proteins, but not newly
exocytosed ones, are retrieved first171–173, and that a readily retrievable
membrane pool is retrieved upon depolarization174. Preformed Ω-
profile may constitute the readily retrievable membrane pool. Given
that kiss-and-run2,13,15,17,18, preformed Ω-profiles, and endocytosis
overshoot that reflects preformed Ω-profile closure are widely
observed in endocrine cells, neurons, and beyond4,73,81,100,101,160,164,175,176,
the new concept that preformed Ω-profile closure and kiss-and-run
underlie diverse endocytic modes may have broad application. While
emphasizing this new concept, the contribution of flat-to-round tran-
sition can be more significant if the low probability flat→Λ→Ω→O
transition is enhanced in specific conditions or cell types yet to be
visualized.

Controlling vesicle sizes. Vesicle size and transmitter concentration
determine the quantal size in secretory cells23,177–180. Vesicular contents
may regulate vesicle size via unknown mechanisms178,179. Imaging
revealed five mannersmembrane transformations control vesicle size:
(1) shrink-close fusion generates smaller vesicles, (2) enlarge-close
fusion forms larger vesicles41,54, (3) sequential compound fusion fol-
lowed by 1st fusing vesicle pore closure produces large vesicles42, (4)
compound fusion generates large vesicles23,63,64,181, and (5) Λ- and Ω-
profile may grow to different extents during flat→Λ→Ω→Ο transition,
resulting in different vesicle sizes66 (Fig. 6). Shrink-close41,54 and
sequential compound fusion42 may create elongated vesicles due to
compression by the swelling osmotic pressure41, explaining elongated
vesicles observed with EM2,4,165,182. These mechanisms may explain
vesicle size changes caused by protein manipulations. For example,
dynamin’s role in flat→Λ→Ω→Ο79 may explain why dynamin 1 controls
synaptic vesicle size183. Regulating these mechanisms might underlie
synaptic plasticity, as compound fusion contributes tomediating post-
tetanic potentiation23.

Exo-endocytosis coupling
Exocytosis is followed by endocytosis often with a similar amount2.
Two mechanisms may mediate such an exo-endocytosis coupling: (1)

calcium influx that triggers both exo- and endocytosis2,81,83,118 (but see
ref. 120), and (2) SNARE proteins that mediate exocytosis are also
required for mediating endocytosis184–186. Membrane tension, which
regulates endocytosis187, could be another potential coupling factor if
exocytosis can change membrane tension188.

Imaging revealed that calcium influx triggers each membrane
transformation, including fusion, fusion pore closure, flat→Λ, Λ→Ω
and Ω→O transition40,54,66. Varying calcium influxes from low to high
levels increase (1) the speed of preformed Ω-profile closure and
fusion pore closure, generating speed-specific slow, fast and ultrafast
endocytosis; (2) the probability of preformed Ω-profile closure and
fusion pore closure, generating amount-specific no-endocytosis,
compensatory and overshoot endocytosis, and (3) vesicle size, gen-
erating size-specific endocytic modes like bulk endocytosis66. Thus,
while triggering more intense exocytosis, larger calcium influx trig-
gers faster and more endocytosis by inducing preformed Ω-profile
closure and fusion pore closure at higher speeds and quantities,
explaining how calcium influx couples exo- to endocytosis with a
matched intensity (Fig. 5e).

Concluding remarks, future challenges and
opportunities
Based on real-time observed membrane transformations, we synthe-
size a new model (Fig. 6) replacing the classical framework of fusion
and budding (Fig. 1d). In this new model, fusion involves hemi-fusion,
hemi-to-full fusion, fusion pore expansion, constriction, hemi-fission,
and hemi-to-full fission, while the fusing vesicular Ω-profiles may
maintain its size, enlarge, shrink partially or completely, or become a
new release site for sequential compound fusion; endocytosis involves
modular Flat→Λ, Λ→Ω and Ω→O transition, each with a low transition
probability (Fig. 6). Compound fusion may also occur. Kiss-and-run is
redefined as rapid or slow closure of any size of fusion pores, which
may generate different sizes of vesicles; full-collapse fusion is replaced
with shrink fusion; a shrink-collapse fusion is proposed to reconcile the
debate between shrink and full-collapse fusion.

Many mechanistic principles underlying fusion and budding have
been suggested. First, competition between fusion and fission
machinery determines fusion membrane dynamics, vesicle release
probability, synchronized versus asynchronized release, vesicular
content release rates/amounts, and quantal size. Furthermore, com-
pound fusion also regulates quantal size, underlying synaptic post-
tetanic potentiation. Second, cells’ swelling osmotic pressure and
cytoskeleton-dependent membrane tension underlie fusing vesicle
size changes, particularly shrink fusion. Third, rapid-release site
assembly at fused Ω-profiles enables sequential compound fusion to
enhance exocytosis capacity. Fourth, F-actin/dynamin-dependent
pulling at the endocytic zone center and a dynamin-mediated con-
striction from the periphery are sufficient to mediate Flat→Λ→Ω→O
transition. Fifth, preformed and fusion-generated Ω-profile pore clo-
sure, but not flat-to-round transition, primarily underlie all kinetically
distinguishable endocytic modes, including ultrafast, fast, slow, bulk,
compensatory, and overshoot endocytosis. Sixth, with the same
endocytic machinery, low to high levels of the endocytosis trigger
signal, the calcium influx, generates in order (1) speed-specific slow,
fast, and ultrafast endocytosis, (2) amount-specific no-endocytosis,
compensatory, and overshoot endocytosis, and (3) vesicle size-specific
regular- and large-sized (bulk) vesicle endocytosis by controlling per-
formed and fusion-generated Ω-profile pore closure’s speed, number,
and vesicle size. Seventh, calcium influx couples exo- to endocytosis by
triggering each exo-endocytosis membrane transition—larger calcium
influx induces more intense exocytosis and a matched intensity of
endocytosis. These principles may be conserved for fusion and bud-
ding in various cells and organelles.

The techniques developed for real-time visualization of mem-
brane transformations40,66 open the door to examine fusion, budding,
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and, more generally, the curvature generation in live cells. However,
time-lapseSTED imagingwas fromsingleXZ-planes (Box 1)40,66,making
data collection especially time-consuming189,190. A STED volume scan
couldhelp solve this problem, but it is practically too slow to catch fast
events and may strongly bleach fluorophores189,190. Techniques with
faster scanning, less bleaching, brighter labeling, and higher detection
sensitivity are needed to make super-resolution volume scanning
practical191–194. To resolve membrane transformation of small vesicles
like synaptic vesicles and clathrin-coated vesicles, it requires a spatial-
temporal resolution of ~10 nm or smaller at sub-second or even milli-
second resolution. Developing such a microscopic technique seems
extremely challenging, but is ultimately necessary for real-time visua-
lization of small vesicles.

Themodel in Fig. 6 is in its early stage with many open questions,
as dynamic protein structural changes at a nanometer-millisecond
scale that underlie eachmembrane transformation are largely unclear.
For example, it remains unclear how dynamin competes with SNARE
proteins for the limited nanodomain to antagonize hemi-to-full fusion
and pore expansion, how release sites are rapidly assembled at fused
Ω-profiles to support sequential compound fusion, how F-actin works
together with dynamin to pull membrane inward, how dynamin con-
stricts large Λ-profiles’ base and Ω-profiles’ pore, how SNARE proteins
open the fusion pore, how dynaminmediates hemi- and then hemi-to-
full fission, how clathrin and othermembrane coat proteins contribute
toΩ-profile formation, how calcium influx triggers each exo-endocytic
membrane transformation, how tens of exo-endocytosis proteins and
lipids not discussed here contribute to each exo-endocytic membrane
transformation, and how the principles summarized here apply to
different cell types or organelles. Addressing these questions in the
future will provide a molecular understanding of membrane fusion

and budding. With the synthesizedmodel as the backbone (Fig. 6), we
suggest adding future-learned knowledge to this backbone to under-
stand fusion and budding comprehensively.
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