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Active machine learning model for the
dynamic simulation andgrowthmechanisms
of carbon on metal surface

Di Zhang 1,2 , Peiyun Yi1,3, Xinmin Lai1,3, Linfa Peng1,3 & Hao Li 2

Substrate-catalyzed growth offers a highly promising approach for the con-
trolled synthesis of carbon nanostructures. However, the growth mechanisms
on dynamic catalytic surfaces and the development of more general design
strategies remain ongoing challenges. Here we show how an active machine-
learning model effectively reveals the microscopic processes involved in
substrate-catalyzed growth. Utilizing a synergistic approach of molecular
dynamics and time-stamped force-biased Monte Carlo methods, augmented
by the Gaussian Approximation Potential, we perform fully dynamic simula-
tions of graphene growth on Cu(111). Our findings accurately replicate essen-
tial subprocesses–from the preferred diffusion of carbon monomer/dimer,
chain or ring formations to edge-passivated Cu-aided graphene growth and
bond breaks by ion impacts. Extending our simulations to carbon deposition
on metal surfaces like Cu(111), Cr(110), Ti(001), and oxygen-contaminated
Cu(111), our results align closely with experimental observations, providing a
practical and efficient approach for designing metallic or alloy substrates to
achieve desired carbon nanostructures and explore further reaction
possibilities.

Controllable synthesis of carbon nanomaterials, such as single-crys-
talline, large-area graphene, specifically chiral carbon nanotubes, or
carbon films with certain sp2 or sp3 content, is a crucial challenge for
realizing their potential applications in future electronics or energy
devices1–3. The substrate-catalyzed deposition has been considered to
be one of the most promising ways to achieve the controllable growth
of two or three-dimensional covalently bonded network of carbon
atoms4,5, because the surface composition and facet identity of the
underlying substrate greatly affect their crystallinity6,7, orientation8,
edge geometry9, and compressive strain10. Apart from the well-
explored metallic catalysts like Cu and Ni, there have been reports
on the efficient production of wafer-scale single-crystalline graphene
on less common substrates such as high-index Cu facets7, Cu-Ni
alloys11, Cu2O surface12, hydrogen-terminated Ge13, and hexagonal

boron nitride14. While the growth mechanisms on common surfaces
have been extensively studied, there is limited knowledge regarding
the dynamic and atomic-level factors that govern the quality of gra-
phene on high-index or composite surfaces, including nucleation and
growth kinetics. This research gap significantly hinders the develop-
ment of theory-guided design approaches for novel catalyzed metal
substrates in the growth of carbon nanostructures.

Searching for metallic or alloy catalysts experimentally poses a
considerable challenge, primarily due to the extensive range of
potential substrates and the sensitivity of the carbon nanomaterial
growth process to various experimental parameters. Thus, there is
plenty of room for theoretical simulations, wheremany atomic details
are readily available. As a standard approach to study a variety of
chemical processes, ab initio density functional theory (DFT)
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calculations can compute the step-by-step energy levels of a sequence
of states from carbon feedstock, carbonmonomer15, dimers16, or small
clusters17 to final graphene or carbon films on metal18,19 or alloy
surfaces11, atomic steps20–22, dislocations4, grain boundaries9,23, and
subsurface24. Theoretical simulations, such as kinetic Monte Carlo
(KMC) and ab initio molecular dynamics (AIMD), have significantly
enhanced the understanding of graphene growth on certain metal
surfaces. However, it is still challenging to go beyond these atomic
details to obtain the fully dynamic and overall picture of carbon
growth on an arbitrary metal or alloy substrate. For instance, a DFT-
based KMC model25 was employed to study the diffusion-limited
growth of carbon dimers on Cu(111) and Cu(100). Nevertheless, KMC
simulations have limitations in capturing the complete dynamics of
carbon growth on a dynamically evolving substrate due to the diffi-
culty in constructing event tables for the off-lattice simulations26. On
the other hand, AIMD suffers from limited time and length scales
despite advancements in computational power. Conventional meth-
ods such as MD/MC simulations with empirical interatomic potentials
face difficulties in accurately calculating interactions between graphi-
tic layers27, experimentally observed sp2/sp3 fractions3, and the inter-
actions between carbon species and metal surfaces28 due to the
limitations of their fixed functional form. Therefore, there is an
ongoing and urgent demand for a robust design model capable of
accurately depicting the growth mechanisms of carbon on metallic
surfaces.

Machine-learning potentials (MLPs) based on artificial neural
networks29–31 or kernel-basedmethods32–34 have been suggested to be a
powerfulmethod to address the limited accuracy and transferability of
classic force fields and maintain a DFT-level accuracy. This is well
demonstrated in the studies on understanding the growth mechan-
isms of high sp3 content in tetrahedral amorphous carbon3,35, the
pressure-induced phase transition in silicon36, and complex aqueous
systems37. Despite these significant achievements in data-driven MD
simulations, the construction of an accurate MLP remains a difficult
task because it can take years to sample in broad regions of phase
space, especially for deposition simulations, in which high-energy
incidents can lead to locally strongly disordered structures and the
potential shouldbehighlyflexible35. One solution to this issue is theon-
the-fly learning techniques37,38, which allow one to sample a small
region of configuration space under specific thermodynamic and
boundary conditions. In the production of the on-the-fly training set,
the selectionof themost diverse structures is crucial for achievinghigh
efficiency and accuracy39. So far, several selective principles have been
proposed to construct a training set with predictive uncertainties,
including the Bayesian inference38,40, spilling factor41, Maxvol
method42, andCURdecomposition43. Notably, the CURdecomposition
method stands out because it does not rely on a prior assumption of a
Gaussian distribution for potential energy, as is often the case in
Bayesian inference. Additionally, with its foundation in a configuration-
averaged metric, the CUR decomposition method has consistently
shown impressive accuracy and robustness, especially when applied to
carbon-based and metal materials43. However, relying only on the
configuration-averaged metric for selecting new structures during
deposition simulation could omit structures that exhibit significant
variations only in the local areas surrounding the deposited atom. To
enhance the efficiency and effectiveness in the on-the-fly training of
deposition processes, a well-defined selection protocol is required. On
the other hand, the dynamics of carbon growth on a metal substrate
can be governed by important rare events44, such as surface diffusion
and graphene nucleation. Therefore, how to enhance the training
efficiency of MLPs by coupling enhanced sampling methods to clas-
sical dynamics needs further study.

This work presents an approach to generate MLPs with minimum
human effort through a data-driven automatic learning framework
suited for carbon growth on metal or alloy surfaces. To achieve this

task, we make use of (1) the Gaussian Approximation Potential (GAP)
machining learningmodel, which has been widely validated to capture
the deposition process correctly when benchmarked against experi-
ments, including the phonon dispersion relations, thermal expansion,
and Raman spectra at different temperatures, and carbon
depositions3,33–35; (2) an enhanced sampling method named time-
stamped force-biased Monte Carlo (tfMC) method27,45,46 to accelerate
the relaxation process after carbon depositions, thus including the
important rare events in the training database; (3) an effective strategy
for the selection of representative training data based on the
descriptor of smooth overlap of atomic positions (SOAP)47; (4) a well-
developed carbon training set34; (5) an automated screening, fitting,
and validation procedure. The resulting potential is then applied to
study thedeposition growthof carbon atomson aCu (111) surface. This
approach cancorrectly capture the critical processes of carbongrowth
on Cu (111), such as the formation andmigration of subsurface carbon
monomer and surface dimer5, the appearance of 1-dimensional carbon
nanoarches18, graphene nucleation involved with edge-passivated Cu
atoms and carbon chains, and the precipitated growth process4. Our
simulations of the initial nucleation on different metallic surfaces,
specifically carbon deposition on Cu(111), Cr(110), Ti(001), and
O-contaminated Cu(111), exhibit consistency with experimental
observations and DFT calculations. This study provides a practical and
efficient methodology for designing metallic or alloy substrates to
achieve desired carbon nanostructures and explore further
opportunities.

Results
Figure 1 illustrates the schematic of an active-learning algorithm by
which anMLP is generatedon theflyduring theMD/tfMC simulationof
graphene growth on a Cu (111) surface. The carbon-growth-on-metal
machine-learning potential is henceforth dubbed CGM-MLP. The
construction of CGM-MLP begins with a well-developed database for
carbon potential functions generated by Rowe et al.34, namely GAP-20,
and several equilibrium configurations of carbon clusters on Cu (111)
surface (i.e., C1–C18 in Fig. 1a). By including all of these structures, the
initial training dataset provides a good starting point for generating an
MLP capable of accurately describing Cu-C interactions. The potential
energy and forces of the structures in the initial training set are cal-
culated using DFT to obtain the initial iteration of the MLP using the
GAP methodology32. Subsequently, the generated MLP is employed in
a hybrid MD/tfMC simulation to simulate carbon deposition on the
Cu(111) surface.

During the MD/tfMC simulations, four carbon atoms are depos-
ited in each round of training. From these simulations, a subset of
structures is generated with a sampling rate of Nf frame per carbon
atom. A screening process is then employed, using SOAP-based simi-
larity metrics (see Methods for the definitions) to refine the dataset
further. The similarity measure is the heart of the active-learning
algorithm, determining whether a new structure should be added to
the training set and ensuring a balanced representation of different
regions of the phase space. Notably, this work introduces an additional
measure, Dmax, which, though resembling Dave in form, plays a pivotal
role in refining the on-the-fly training set. These measures specifically
capture the maximum and average SOAP-based distances between
atoms in newly observed and previously chosen structures,
respectively.

By considering both maximum and average SOAP distances, we
can effectively capture variations in local environments around the
deposited atoms, which may be overlooked if only the average
distance43 is considered (see Supplementary Fig. 4). Hence if a new
structure’sDave orDmax exceeds the specified screening parameter (Smax

or Save), it will be included the new structure in the training set. To
evaluate the effectiveness of the screening parameters, we selected a
subset of structures from the MD/tfMC simulations using different
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values of Nf, Smax, and Save. Meanwhile, approximately 500 structures
were randomly selected from the held-out structures to serve as the
testing sets. By increasing Nf and lowering Smax, as shown in Fig. 1c, the
CGM-MLP exhibits improved force accuracies and a significant
improvement compared to classical empirical potentials, such as
COMB348 and ReaxFF49. In Supplementary Fig. 3, we also provide an
energy correlation plot and additional tests of the parameter Smax

(Supplementary Fig. 4) for various structure types (Supplementary
Table 1). The results demonstrate that a predictive energy mean
absolute error (EMAE, with the detailed formula provided in Supple-
mentary Method 3) of below 0.05 eV atom−¹ and a force MAE of less
than 0.5 eVÅ−¹ are attainable for all relevant structures in a Cu-C sys-
tem when Smax is set to less than 0.08 (Supplementary Method 4).
Specifically, the energy and force MAE of the CGM-MLP trained with
Nf = 20 and Save, Smax = 0.08 converge to approximately 0.013 eV atom−¹
and 0.43 eVÅ−¹, respectively. Given the intrinsic challenges associated
with complex hybridizations in carbon and the long-range interactions
beyond the MLPs’ cutoff, the energy and force errors we observed are
believed to approach the peak accuracy achieved byMLPs for systems
containing amorphous or defective carbon34,50. A more detailed test of
long-range interactions for metal-carbon systems can be found in
Supplementary Discussion. 1 and Supplementary Fig. 5. As a practical
and efficient means to explore a wide range of reaction pathways
during carbongrowth, it is believed that the achieved energy and force
MAE are appropriate for the research goals. Given the distinct effects
of long-range interactions across different metal-carbon systems,
strategies such as adopting varying force or energy thresholds for
distinct deposition stages, or setting system-dependent total-energy
training convergence thresholds, can be considered to further
enhance accuracy. Yet, addressing the challenges posed by long-range
interactions remains crucial for refining the precision and adaptability
of simulations, especially those centered on metal-catalyzed low-
density carbon structures.

During the error estimation step (Fig. 1d), we use an energy MAE
of <0.05 eV atom−¹ and a force MAE of <0.5 eVÅ−¹ to determine the
inclusion of newly generated structures in the training set or if carbon
atom deposition can proceed without further training. Additional
details in the training process can be found in Supplementary Fig. 6.

The decision to end the iterations depends on the desired number of
carbon atoms to be deposited on the metal surface. In this study, the
number of carbon atoms to be deposited is predetermined as 100
carbon atoms. Additionally, if further growth processes or the simu-
lation of carbon-basedfilms areof interest, the predetermined number
of carbon atoms can be increased accordingly.

By leveraging the high accuracy of the CGM-MPL and incorpor-
ating rare atomistic events in the MD/tfMC method51, we successfully
replicate essential subprocesses associated with graphene nucleation
and carbon growth on metallic surfaces, as exemplified in Fig. 2.

Carbon monomer and dimer
In the first stage, impinging gas phase carbon atoms readily adsorb on
the Cu(111) surface and subsequently diffuse to the sublayer of the
Cu(111) surface spontaneously (Fig. 2a, C7). This process is consistent
with previous static DFT calculations, which suggested that C mono-
mers prefer to remain at an octahedral site in the subsurface layer of
Cu(111). The adsorption energy of the sublayer Cu atoms increases by
about 0.5 eV15. In all deposition simulations with different impinging
energies, no carbon atom enters the bulk of the Cu substrate in the
initial stage. This is consistent with previous findings that carbon
exhibits very low solubility in copper1. During the ongoing deposition
process, subsurface carbon atoms have the potential to intermittently
form bonds. Once carbon dimers are formed in the subsurface, they
can subsequently migrate back to the surface regions (Fig. 2a, C14 or
Fig. 2b, C11). Notably, our simulations indicate that carbon monomers
do not always migrate to the subsurface layer. Instead, if the surface
copper atoms can absorb the kinetic energy of the incident carbon
atoms and transform them into adsorbed copper atoms, vacancies
may be created on the Cu(111) surface. In cases where the deposited
carbon atoms are near the adsorbed copper atoms, they tend to
remain on the surface rather than migrate to the subsurface.

Carbon-chain formation
Owing to the continued addition of carbon, the extrusive carbon
dimers start to connect to the carbon atoms stabilized by adsorbed Cu
or off-surface Cu atoms. The short carbon chains appear on Cu(111)
surface (Fig. 2a, C43). When the incident energy of carbon is as low as
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Fig. 1 | Schematic illustrations of carbon-growth-on-metal machine-learning
potential (CGM-MLP) generated by active learning on-the-fly during hybrid
molecular dynamics and time-stamped force-biased Monte Carlo (MD/tfMC)
simulations. a The initial training dataset includes representative carbon struc-
tures from Gaussian Approximation Potential (GAP-20)34 and C1-C18 carbon clus-
ters on Cu(111) surfaces. b The CGM-MLP trained from this dataset is then used in a
deposition simulation employing a hybridMD/tfMCmethod27. c A smooth overlap
of atomic positions (SOAP-based) algorithm is used to select the most

representative structures from theMD/tfMC simulations. The inset figure presents
the force correlation plots by using different quality control parameters, namelyNf

(the number of structures sampled for each deposited carbon atom), Smax, and Save

(i.e., the thresholds for the maximum and average SOAP distances, Dave and Dmax).
The definitions of the similarity matrix Dave and Dmax are available in the “Methods”
section. Source data and code are provided. d DFT benchmarks energy and force,
and if the error is below a threshold, MD/tfMC continues. Otherwise, the training
dataset is updated with newly selected structures.
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2.5 eV, it ismore probable for carbon chains to grow longer and detach
from the Cu(111) surface, rather than forming carbon rings on Cu(111)
(Fig. 2a, C100). An explanation for the preferred form of carbon chains
has been furnished by a previous DFT study18, which compared the
stability of carbon nanoarches and compact carbon nanoislands of
equal sizes. Their calculations revealed that the formation of carbon
chains was energetically favorable if there were fewer nucleation sites,
such as adsorbed Cu atoms and Cu steps. The fully dynamic simula-
tions have reproduced the formation of carbon chains (Fig. 2d) and
shown that different carbon chains could share one binding site, as
shown in Fig. 2d, C81.

Carbon ring and graphene island formation
For amoderate irradiation energy, i.e., 5 eVor 7.5 eV, hexagonal carbon
rings can be observed at the initial stage of the deposition simulations,
as shown in Fig. 2b, C38 and Fig. 2c, C39. Due to the more vigorous
bombardment of carbon atoms, the number of off-surface Cu atoms
may increase. Thepresence of adsorbed copper atoms or Cu-C bridges
surrounding the initial hexagonal carbon rings has been previously
observed in STM images52. This observation aligns well with experi-
mental findings53 that the initial carbon rings tend to nucleate at sur-
face steps or impurities on Cu(111). Furthermore, it is consistent with
experiments showing that well-ordered graphene structures only form
above 790 °C, attributed to the motion of Cu steps induced by sub-
limation during growth22. Our research has also demonstrated,
through dynamic simulations (the animation is available in Supple-
mentary Movie 1), the significance of surface Cu steps in graphene
growth. We also show that the critical incident energy of creating a
graphene nucleation site on a flat Cu(111) surface may be
within 5–7.5 eV.

Our simulations also reveal that the thermodynamics and kinetics
analyses of surface growth of graphene on Cu(111) should take into
account the involvement of adsorbed Cu atoms, such as C-Cu
bridges15, Cu atoms passivating graphene edges, and edged carbon
chains (Fig. 2b, C65). In addition, the preferred growth orientation of
graphene growth was also reproduced by our simulation model. As
shown in Fig. 2b, C65, we measured the growth orientation of the final
graphene island by using the same benchmark angle proposed byDing
and co-workers19, and the angle was measured as about 10°, at which
the potential energy of graphene rotating on the Cu(111) surface
reached a minimum19. As highlighted by researchers25,54, traditional
KMC simulations on static metal surfaces may overlook crucial reac-
tion processes, and AIMD simulations often have limited timescales to
capture the complete reaction pathway involving Cu atoms. Previous
COMB3 and ReaxFF potentials were unable to correctly simulate the
growth of graphene on Cu(111) (see Supplementary Discussion. 3,
Supplementary Fig. 9, and Supplementary Fig. 10). This is precisely
why the CGM-MLP-based MD/tfMC method emerges as the most
promising and efficient approach to elucidate the growth mechanism
of carbon on metallic surfaces.

Carbon ring breaking
To gain atomistic insight into the observed suppression of graphene
island formation at an incident energy of 10 eV in Fig. 2d, we per-
formed further analyses including the evolution of hexagonal carbon
rings and hybridization analysis on the carbon atoms deposited on
Cu(111) surfaces, as shown in Fig. 3a. At an incident energy of 2.5 eV,
the deposited carbon atoms primarily form carbon chains, resulting
in a higher proportion of sp-hybridized carbon compared to sp2- or
sp3-carbon. With increasing incident energy, the content of sp2-
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d 10 eV. Carbon atoms are colored black, and copper atoms are color-coded
according to their height coordination. For the labels CX, X denotes the number of
deposited carbon atoms. Different graphitization degrees can be observed when
the carbon incident energy varies during the simulations. The fully dynamical

simulations have correctly reproduced many subprocesses, such as the sponta-
neous diffusion of carbon monomers and dimers15, the stabilization effect of
adsorbed Cu atoms for carbon rings, the energetically favorable property of car-
bon chains18, and the carbon ring breaking process18, achieving excellent agree-
ments with previous DFT studies19. To ensure reproducibility, a repeated run is
available in Supplementary Fig. 12.
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carbon initially increases and then decreases, indicating that high-
energy bombardments can induce more nucleation sites for stabling
carbon rings. Previous DFT studies18 also indicated that without the
adsorbed copper atoms to stabilize the hexagonal carbon rings, they
would change to linear chains easily. To provide direct evidence of
the process, Fig. 3b presents the transformation from carbon ring
fragmentation into carbon chains when subjected to high-energy
bombardments. This transformation begins with a carbon ring on a
Cu(111) surface being subjected to a 10 eV carbon atom bombard-
ment (timestep 0). Subsequent images illustrate the gradual dis-
sociation of carbon rings and the formation of carbon chains
resulting from the impact of high-energy carbon atoms. This obser-
vation aligns with the findings in Fig. 3a, suggesting that high-energy
bombardment impedes the formation of carbon rings and, conse-
quently, the nucleation of graphene. Additionally, we have included
an animated demonstration in Supplementary Movie 2, showcasing
the powerful capability of the MLP-based MD/tfMC method in cap-
turing dynamic atomistic processes.

TheCGM-MPL enables us to performa fully dynamic simulationof
graphene growth on the metal surface and then allows us to compre-
hensively understand possible growth mechanisms on a dynamical
catalytic surface instead of a stagnant catalytic surface. Based on the
growth animations obtained from our simulations, some new insights
on how the copper atoms get involved in the growth of graphene on

Cu(111) surfaces can be provided, offering possible reaction paths for
the following energetic analysis.

In Fig. 4, we proposed a growth model involving the passivation
of Cu atoms to the graphene edge and employed the DFT-based, or
CGM-MPL-based climbing-image nudged elastic band (CI-NEB)
method to demonstrate the accuracy of the machine-learning
potentials in thermodynamically or kinetically. As shown in Fig. 4a,
the C monomer prefers to remain at an octahedral site in the sub-
surface layer. Compared to C adatom on the surface, the DFT and
CGM-MPL predict an increase in the binding energy of about 0.5 eV15.
Then, combining two monomers, i.e., forming a carbon dimer (C2-
a –C2-c), overcomes a small energy barrier of only 0.06 eV atom-¹
(0.12 eV in total) and releases 1.15 eV atom−¹. These energies obtained
from the CGM-MPL are in excellent agreement with those from DFT
calculations15. Next, in Fig. 4b, we studied the two possible reaction
paths from four carbon dimers to a C8 chain or a C8 ring. There is less
than 0.1 eV atom-¹ energy barrier (0.7 eV in total) during the carbon-
chain reaction process, which releases an energy of 0.5 eV atom−¹
obtained from the DFT calculation. In the ring-reaction path, there is
a larger energy barrier compared with the carbon-chain path, i.e.,
approximately 0.2 eV atom−¹ (1.5 eV in total), and this ring-forming
reaction releases 0.25 eV atom−¹ obtained from DFT. From a kinetic
standpoint, carbon-chain formation is more favorable than carbon-
ring formation, as the energy barrier for carbon-ring formation is
approximately twice as high. Froma thermodynamic perspective, the
carbon-chain reaction process releases an energy of 0.5 eV atom−¹
while the ring-forming reaction releases 0.25 eV atom−¹. The higher
energy release in the carbon-chain reaction suggests greater stability
and a lower energy state of the chain configuration. Therefore, the
spontaneous formation of carbon rings on a flat Cu(111) surface is
rarely observed due to the unfavorable thermodynamics and kinetics
of graphitic ring formation.

To stabilize the hexagonal carbon ring, transforming surface
copper atoms to adsorbed copper atoms is suggested to be necessary
during the growth of graphene on the Cu(111) surface. At high
deposition temperatures or under energetic carbon bombardments,
the surface Cu atoms can quickly move to an adatom site, offering the
initial nucleation site for hexagonal carbon rings. Furthermore, it is
observed that the binding energy of initial graphene clusters increases
with the addition of passivated Cu atoms (Supplementary Discussion 2
and Supplementary Fig. 7). Therefore, the growth of graphene on a flat
Cu(111) is supposed to start from the simple structure shown in Fig. 4c,
I. Firstly, the deposited carbon atoms migrate to the other side of
adsorbed Cu atoms, which offer a nucleation site for graphene and
form the metal bridge52. Then, the following snapshots from Fig. 4c, II
to IV, show a repeatable cycle of incorporating three carbon atoms
onto pristine graphene edges. It can be seen in Fig. 4c that the whole
process only has a small energy barrier of less than 0.95 eV atom−¹
(2.82 eV in total), which is much less than the energy barrier without
the incorporation of the Cu atoms (2.47 eV atom−¹)20. In Supplemen-
tary Fig. 8, to ensure a transparent and comprehensive error assess-
ment, we also provided a comparison of energy barriers as calculated
by DFT and CGM-MLP.

The differences between the potential energies along the reaction
coordinates calculated by CGM-MLP (solid lines) and DFT (dashed
lines) are generally below 0.2 eV atom−¹. This level of accuracy repre-
sents a significant improvement compared to classical empirical
potentials. Although there are inherent limitations of CGM-MLP, such
as energy errors due to cutoff radius and the complexity of carbon
interactions, the potential reaction pathways can be further identified
and refined by the subsequent DFT-NEB calculations. In addition,
Fig. 4c demonstrates the effect of enhancing the sampling rate Nf on
the inclusion of more transition states in the training set, resulting in
energy barriers that approach DFT calculations.
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To demonstrate the transferability of our CGM-MLP training
framework, we extended our study by training additional MLPs,
namely Cr-C and Ti-C MLPs, as well as considering the C-Cu system
with surface oxygen contamination. Using these CGM-MLPs, we
conducted simulations of carbon deposition on metallic surfaces, as
depicted in Fig. 5. Our simulation results reveal that compared to
carbon growth on Cu(111), fewer carbon rings are observed on the
Cr(110) surfaces, and almost no carbon rings are observed onTi(001).
To validate our simulations, we employed a magnetron sputtering
system to deposit approximately 30 nm of carbon film on Cu, Cr, and
Ti surfaces. High-resolution transmission electron microscopy
(HRTEM) images and selected area electron diffraction (SAED) pat-
terns in Fig. 5 show that the carbon film deposited on Cu(111) exhibits
the highest crystalline degree, followed by the Cr(110) surface, while
the catalytic effect on the Ti(001) surface is the weakest, matching
well with the simulations. It should be noted that the diffraction rings
observed in the HRTEM and SAED images may arise from both the
metal substrate and the carbon films. However, the metallic layers
used in this study are quite thin, with an approximate thickness of
10 nm. Moreover, based on the surface morphologies, it is believed

that the catalytic effect on the formation of nanocrystalline carbon
follows the order of Cu, Cr, and Ti. Generally, under the same
deposition temperature and energy, the crystalline degree of carbon
films mainly depends on the initial nucleation rate and the metal-
carbon interface. Our simulation results demonstrate that the initial
nucleation rate (Fig. 5d) of these threemetals follows the order of Cu,
Cr, and Ti, which is consistent with experimental observations and
previous DFT calculations6.

Using the Cu-C-O MLP-based MD/tfMC method, we performed
deposition simulations of carbon on O-contaminated Cu(111). Detailed
growth processes and discussions are available in Supplementary
Fig. 11. After depositing 100 carbon atoms, the absence of oxygen
contamination led to the formation of small graphene islands on
Cu(111) (Fig. 5a). However, in the presence of oxygen, the final struc-
ture consisted of cross-linked carbon chains (Fig. 5e inset). Therefore,
the observed C-Cu-O bridges and terminated oxygen atoms (Supple-
mentary Fig. 11) significantly reduced the initial nucleation rate of
graphene on Cu(111), which is in agreement with previous experi-
mental observations55. More discussions can be found in Supplemen-
tary Discussion 4.

C1-a

C2-a

C1-b
C1-c

C2-b

C2-c

a

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

mota
Ve(

ygrenelaitnetoP
1 )

Reaction Coordinate

DFT, C1
CGM-MLP, C1
DFT, C2
CGM-MLP, C2

Cu-involved growth

C1-a C1-b C1-c

Carbon monomer (C1)

C2-c C2-b C2-a

Carbon dimer (C2) formation

C8-chain

Carbon chain formation

C8-ring

Carbon ring formation

no Cu-involved-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

mota
Ve(

ygre nela itnet oP
1 )

Reaction coordinate

Cu-involved growth:
DFT
CGM-MLP, Nf=5
CGM-MLP, Nf=20

no Cu-involved

-1.0

-0.5

0.0

0.5

DFT, C8-ring
CGM-MLP, C8-ring
DFT, C8-chain
CGM-MLP, C8-chain

mota
Ve(

ygrene lait ne toP
1 )

Reaction coordinate

Reaction coordinate

Reaction coordinateReaction coordinate

Reaction coordinate

c

b

Fig. 4 | Minimum energy paths of carbon diffusion and graphene nucleation
obtained using carbon-growth-on-metal machine-learning potential (CGM-
MLP) and DFT-based climbing-image nudged elastic band (CI-NEB) calcula-
tions. a C monomer and dimer diffusion. CX-a/b/c indicates the correspondence
between the energy points on the left side and the structures on the right side.
b Conversion from dimers to carbon chains or rings, and c Graphene growth with

passivated edges by Cu atoms. Carbon atoms (black), Cu atoms (orange), and
adsorbed Cu atoms (wheat). Incorporating edge-passivated Cu atoms reduces the
energy barrier for graphene growth (0.95 eV atom−¹) compared to pristine edges
(2.47 eV atom−¹, the dashed line)20.Nf is the number of structures sampled for each
deposited carbon atom. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-44525-z

Nature Communications |          (2024) 15:344 6



Discussion
In summary, this study represents a pioneering advancement in inte-
grating MLPs and MD/tfMC, offering a transferable and efficient
strategy for designing metallic or alloy substrates to achieve desired
carbon nanostructures. The CGM-MLPs effectively combine the accu-
racy of first-principles methods with the efficiency of classical force
fields. Moreover, the tfMC method overcomes the timescale limita-
tions of traditionalAIMDor classicMDapproaches. Among variousMC
methods, tfMC stands out as a trajectory-quasi approach for extending
the timescale in simulating off-lattice structures. In addition, the
automatic training framework of CGM-MLPs incorporates a specia-
lized query strategy for constructing an on-the-fly training set in
deposition simulations, emphasizing the significance of considering
the local environment surrounding the deposited atoms.

Thesedevelopments have enabled the straightforward theoretical
study of carbon growth mechanisms on complex metal surfaces. We
demonstrate the efficacy of our model through its application to the
well-established system of graphene growth on a Cu(111) surface,
showcasing high accuracy compared to previous static DFT predic-
tions and experimental observations. Our simulations reproduce the
microscopic physical processes correctly and efficiently providing a
wide range of possible reaction pathways. Several critical processes
and physical insights into how Cu adatoms stabilize graphene
nucleation and how graphene grows with its edge passivated by Cu
atoms or carbon chains are revealed. DFT-based CI-NEB calculations
validate the model’s high accuracy in thermodynamics and kinetics,
presenting low-energy-barrier processes for graphene growth on
Cu(111). Additionally, to demonstrate transferability, we expand our
investigation by training additional carbon-metalMLPs, specifically Cr-
C and Ti-C MLPs, while also considering the C-Cu system with surface
oxygen contamination. HRTEM and SEAD observations confirm the
simulated catalytic effect on nucleation and the formation of nano-
crystalline carbon on Cu, Cr, and Ti. The machine-learning-driven
deposition models presented in this studymay open up opportunities
for investigating multi-element metallic or alloy substrates in the

growth of diverse carbon nanostructures, such as graphene, CNTs,
graphite- or diamond-like carbon films.

Methods
Hybrid molecular dynamics and time-stamped force-biased
Monte Carlo methods
The hybrid MD/tfMC simulations were implemented in the large-
scale atomic/molecular massively parallel simulator (LAMMPS)56

with a plugin of the QuantumMechanics and Interatomic Potentials
(QUIP) software package, which can be found at https://github.com/
libAtoms/QUIP. Carbon atoms were deposited along the -Z direc-
tion on the metal substrate. Periodic boundary conditions were
applied to the X- and Y- directions. To avoid energy recycling
through the periodic boundaries, a 2 Å thick velocity rescaling wall
with a lateral displacement greater than 6 Å from the initial position
of each incident atom was applied to the substrate51 (see Supple-
mentary Fig. 1 for more details). The deposition simulations con-
sisted of a cycle of MD and tfMC methods. Carbon atoms with
varying kinetic energies were deposited during the MD simulations,
followed by a 2 ps NVT MD simulation with a timestep of 0.5 fs. The
2 ps duration was sufficient to reach equilibrium, as evidenced by
the temperature and total energy of the system remaining constant
over an observable time.

During tfMC simulations, in each step, all atoms in the selected
group are displaced using the stochastic tfMC algorithm46. However,
the tfMC method differs from MD algorithms by employing a force-
bias probabilistic description of atomic motion (see Supplementary
Method 1). Two critical parameters in tfMC are the temperature T and
themaximum allowed displacement Δ. The parameterΔ is determined
through a series of simulation tests at different deposition tempera-
tures, following the criterion proposed by Timonova et al.46. This cri-
terion ensures that a perfect crystal remains perfect after tfMC
simulation and a short MD equilibration. The parameter values
Δ =0.18 Å and T = 573 K were carefully determined and utilized in our
previous work27 and were also employed in this study.
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Active machine-learning-driven modeling of carbon growth on
the metal surface
TheMLP training starts from a training set including numerous carbon
allotropes from an accurate and transferable machine-learning
potential for carbon34 and simple carbon clusters (C1-C18) on Cu(111)
surface. The GAP fitting in this work also uses a 2-body (2b), 3-body
(3b) SOAP descriptor to describe the nature of bonding interactions
for carbon and copper atoms. AGAP-fitted 2b componentwith a cutoff
of 3.7 Å is used as the 2-bodypart of ourmodel. A 3bdescriptor and the
SOAP descriptor represent the many-body contributions to the
potential energy. The 3b term is a symmetrized transformation of the
Cartesian coordinates of triplets of atoms with a cutoff of 2.5 Å. In the
construction of the SOAP descriptor, an expansion of the neighbor
density up to lmax = 4, nmax = 12, a cutoff of 3.7 Å, σforce = 0.01 eVÅ−1,
σenergy = 0.001 eV, and ζ = 4, which are systematically tested for the
optimization of the GAP model previously34 and full details of hyper-
parameters can also be found in Supplementary Method 3 and Sup-
plementary Fig. 2.

Throughout the training procedure, we introduce two SOAP-
based screening parameters, Dmax and Dave, specifically designed to
optimize the training set. Their respective equations are presented
below:

Dave = ave
i<N1

 
minðj A!ðaiÞ, A

!ðajÞjÞ
!

j<N0

ð1Þ

Dmax = max
i<N1

 
minðj A!ðaiÞ, A

!ðajÞjÞ
!

j<N0

ð2Þ

where A(ai) and A(aj) represent the SOAP vectors of the atom i and j
position (ai and aj), respectively. The || || denotes the Euclidean dis-
tance between the two SOAP vectors. The source code for computing
Dmax and Dave is available at https://github.com/sjtudizhang/CGM-MLP/
Calculate_similarity.py57. First, the environment fingerprint of each
particle is encoded using the SOAP descriptor. The Euler distance
between SOAP vectors is calculated as a similarity measure between
atoms fromdifferent structures. TheminimumEuler distance between
the particles in one structure and all particles in the other structure is
determined to define the similarity measure between the two struc-
tures. Average (Dave) andmaximum (Dmax) values of thisminimumEuler
distance are calculated for different atoms. Configurations are selec-
ted based on the condition that both Dave and Dmax with previously
selected configurations exceed the screen parameters (Save and Smax).
Detailed tests of the screenparameters canbe found in Supplementary
Fig. 3 and Supplementary Fig. 4.

DFT and CI-NEB calculations
All the energies and forces of the structures in the trainingdatabase are
calculated by the QUICKSTEP scheme in CP2K58,59. Electronic wave
functions were described at the Gamma point using a mixed-basis
scheme with Goedecker–Teter–Hutter (GTH) pseudopotentials60 and
a cutoff and the relative cutoff energy of 300Ry and 60Ry. Shorter
range Double-ζ quality basis sets optimized for GTH
Perdew–Burke–Ernzerhof (PBE)61 pseudopotential were used. Disper-
sion corrections are included by the well-established Grimme’s D3
method62. For CI-NEB calculations, we used a total of 4 or 8 replica
geometries along the path with a spring constant of 0.001 to restrain
the replicas. Other details can be found in Supplementary Method 2.

Carbon film preparation and characterizations
Carbon films were prepared using a Miba-Teer UDP850 closed-field
unbalanced magnetron sputtering system. Metallic seed layers and

carbon films were directly deposited onto TEM Cu grids for TEM
analysis. The vacuum chamber was evacuated to less than 4.0×1 0-3

Pa. Cu, Cr, or Ti seed layers were deposited on Cu grids using a
power density of approximately 2.2 W cm-2 for 2min. Carbon films
were then deposited on the metallic seed layers using a power
density of 3.6 W cm-2 on two graphite targets for 5min. The carbon
films had a thickness of approximately 30 nm. The deposition
temperature was maintained at 300 °C, and substrate bias voltages
were disabled to avoid ion bombardments. HRTEM images were
obtained using a JEOL 2100 F device at an acceleration voltage
of 200 kV.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All of the final training datasets are available at https://github.com/
sjtudizhang/CGM-MLP57. Source data and molecular dynamics trajec-
tories generated in this study have been deposited in the figshare
database63 under accession code: https://doi.org/10.6084/m9.figshare.
24591774.v2.

Code availability
The training code for CGM-MLP is available from the website https://
libatoms.github.io/GAP/. The GAP fitting Shell script, Python code for
calculating the structural similarity, and C++ code for carbon ring
analyses are available at https://github.com/sjtudizhang/CGM-MLP57.
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