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Scalable integrated two-dimensional Fourier-
transform spectrometry

Hongnan Xu 1 , Yue Qin1, Gaolei Hu 1 & Hon Ki Tsang 1

Integrated spectrometers offer the advantages of small sizes and high port-
ability, enabling new applications in industrial development and scientific
research. Integrated Fourier-transform spectrometers (FTS) have the potential
to realize a high signal-to-noise ratio but typically have a trade-off between the
resolution and bandwidth. Here, we propose and demonstrate the concept of
the two-dimensional FTS (2D-FTS) to circumvent the trade-off and improve
scalability. The core idea is to utilize 2D Fourier transform insteadof 1D Fourier
transform to rebuild spectra. By combining a tunable FTS and a spatial het-
erodyne spectrometer, the interferogram becomes a 2D pattern with varia-
tions of heating power and arm lengths. All wavelengths are mapped to a
cluster of spots in the 2D Fourier map beyond the free-spectral-range limit. At
the Rayleigh criterion, the demonstrated resolution is 250 pm over a 200-nm
bandwidth. The resolution can be enhanced to 125 pm using the computa-
tional method.

Optical spectrometers are widely used in chemical sensing1, medical
analysis2, astronomical research3, and optical coherence tomography4.
Fourier-transform spectrometers (FTS) sample an unknown spectrum
with sinusoidal responses at varying periods and reconstruct it in the
Fourier domain5. FTSs have twoprincipal advantages, compared to the
schemes based on diffraction gratings6,7 or tunable filters8,9. First, the
spectral information at all wavelengths is simultaneously captured,
resulting in a noise reduction proportional to the square root of the
number of channels (known as Fellgett’s advantage10). Second, since
light is received by a single photodetector (PD), the etendue is not
restricted by the slit size or filter linewidth (known as Jacquinot’s
advantage11). Consequently, FTSs typically exhibit a higher signal-to-
noise ratio (SNR). Moreover, unlike speckle spectrometers, which rely
on random speckle patterns12,13, the sinusoidal fringes of FTSs are
inherently orthogonal, ensuring an accurate reconstruction.

In conventional benchtop FTSs, the optical path length (OPL)
difference is tuned by moving the mirror reflector in a free-space
Michelson interferometer (MI), making them sensitive to mechanical
vibrations and unsuitable for field deployment. The chip-scale mono-
lithic integration of FTSs improves their robustness and portability.
Integrated FTSs are commonly built with planar nanophotonic circuits
on various materials, such as silicon, silicon nitride, and lithium

niobate. The reported integrated FTSs can be classified into four
approaches: spatial heterodyne spectrometers (SHS)14–24, tunable FTSs
(tFTS)25–27, digital FTSs (dFTS)28,29, and stationary-wave integrated FTSs
(SWIFTS)30–32. All these FTS schemes suffer from an inherent trade-off
between the resolution and bandwidth (BW) due to the difficulty in
achieving a large group-delay variation in a nanophotonic waveguide.
The SHS is an assembly of Mach-Zehnder interferometers (MZI) with
different arm-length asymmetries14–24. It is feasible to attain a fine
resolution in a SHS using long delay lines. However, the limited num-
ber of monolithically integrated MZIs hinders the scalability of the
channel capacity of SHSs. Moreover, SHSs employ multiple physical
channels, which reduces the etendue at each port and diminishes the
Jacquinot’s advantage. For the tFTS, the group delay is scanned by
varying the heating power applied to the tunable delay line25–27. Due to
the continuous nature of thermo-optical (TO) tuning, the number of
sweep steps can be scaled up, enabling a large capacity and a broad
BW. The primary drawback of tFTSs is the poor resolution that results
from the limited TO tuning range. Typically, a power consumption of ≈
5W is required to achieve a resolution at the nanometer scale26. The
dFTS,whichuses digitally switchable delay lines in a singleMZI, has the
potential to realize a fine resolution and a broad BW while preserving
the Fellgett’s and Jacquinot’s advantages. However, scaling to a larger
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switch capacitymakes it increasingly difficult to balance the intensities
at two arms and maintain a high extinction ratio. To date, the
demonstrated number of switch states is limited to 12729. The concept
of SWIFTSs is to retrieve a spectrum from the dispersive field of a
stationary wave30–33, according to the Lippmann’s principle. However,
it remains challenging for a SWIFT to probe the field distribution of a
guided mode even with embedded PDs33. In ref. 34, a microring reso-
nator (MRR) is utilized to enhance the resolution of the tFTS. However,
the MRR-assisted tFTS only captures few wavelengths at each sam-
pling, resulting in a low signal-to-noise ratio of SNR ≈ 10 dB due to the
absence of Fellgett’s and Jacquinot’s advantages. In ref. 35, the SHS is
combined with a speckle spectrometer to attain a picometer-scale
resolution. In this scheme, however, the speckles are produced in a
bulky substrate rather than in the thin-film waveguide, and the fine
resolution is mainly supported by speckle spectrometry. In ref. 36, a
free-space FTS is combined with a Pelin-Broca prism to disperse the
interferogram and expand the BW. However, such a scheme requires a
two-dimensional imager to capture the dispersed patterns and is dif-
ficult to implement on integrated circuits. Overall, the realization of a
monolithically integrated FTS with a fine resolution and a broad BW
remains a challenge.

Here, the concept of two-dimensional Fourier-transform spec-
trometry (2D-FTS) is proposed and demonstrated. The core idea is to
use 2D Fourier transform37 instead of 1D Fourier transform to resolve
any spectrum beyond the resolution-bandwidth limit. The structure
combines a coarse-resolution, broadband tFTS and a fine-resolution,
narrow-band SHS. The interferogram becomes a 2D pattern with
varying heating power and arm lengths. The 2D Fourier transform of
the interferogram contains a cluster of spots, each of which carries the
information at a specific wavelength. The reconstruction is imple-
mented beyond a single free spectral range while maintaining the
Fellgett’s advantage. The resolution demonstrated at the Rayleigh
criterion is 250 pm with a large capacity of 801 channels. The resolu-
tion and capacity can be improved to 125 pm and 1601, respectively,
using the computational method. These results represent, to the best
of our knowledge, the largest channel capacity ever demonstrated in
integrated FTSs. The 2D-FTS can be extended to a higher dimension
with greater scalability.

This article is structured into four sections: the concept of the 2D-
FTS, the design of crucial components, the characterization of the
device, and themeasurement of spectra. Wewill focus on the concept,
mechanism, and realization of the 2D-FTS. The computational details
are covered in Supplementary information.

Results
Design principle
The 2D-FTS is a combination of a tFTS and a SHS, as schematically
displayed in Fig. 1a. The tFTS and SHS are interfaced by a 1 × 128 power
splitter (PS). The broadband edge couplers serve as input and output
(IO). The device has two input ports (IN1~2) and 129 output ports
(OUT0~128). Light is injected at IN1 and collected at OUT1-128, while IN2

and OUT0 are utilized for monitoring the tFTS. The tFTS is formed by
two 2 × 2 adiabatic directional couplers (ADC) and two spiral tunable
delay lines. The use of a 2 × 2 coupler allows for additional channels
that are connected to IN2 andOUT0. In the SHS, 128MZIswith different
arm-length asymmetries are arranged as a 16×8 array. Each MZI com-
prises of two Y-branch splitters (YBS) and two folded delay lines. The i-
th MZI has an arm-length difference of ΔLSHS,i = i ·ΔLSHS,1 and is routed
to OUTi. The PS is a seven-layer binary tree formed by YBSs. The input
of the PS is connected to the tFTS, while its output is connected to the
MZI array.

In Fig. 1b, c, the concepts of 1D- and 2D-FTSs are compared. For
the conventional 1D-FTS, the structure is a stand-alone tFTS or SHS.
The response of a 1D-FTS can be described by a 2Dmatrix (denoted as
A). Given a spike spectrum (denoted as S) at a single wavelength (λ),

the output interferogram (denoted asO) is a 1D sinusoidal sequence as
a function of heating power (P) or ΔLSHS. The 1D fast Fourier transform
(FFT) of the interferogram contains a single spike in each quadrant
(I ~ II). Hence, by using 1D discrete cosine transform (DCT), S can be
reverted from O. Nevertheless, 1D-FTSs are limited by the trade-off
between the resolution and BW: tFTSs have a broad BW but a coarse
resolution, whereas SHSs have a fine resolution but a narrow BW, as
discussed in Introduction. For the 2D-FTS, signals are recorded at
multiple physical ports of the SHS and modulated simultaneously by
the tFTS with varying P. Thus, the response of the 2D-FTS can be
depicted by a 3D cube with variations of P and ΔLSHS. At a single
wavelength, the interferogram becomes a pattern that is sinusoidally
modulated in two dimensions. By applying 2D-FFT, a spike in the
spectrum is mapped to a spot in each quadrant (I ~ IV) of FFT(O). Fig-
ure 1d shows the reconstruction process. The cube can be sliced into a
series of fringe patterns (denoted as ai) at varying wavelengths. In the
Fourier domain, each fringe is related to a spot at distinct Fourier
frequencies (ftFTS and fSHS), as discussed in Fig. 1c. Here, ftFTS and fSHS
are normalized to ±1/2. The recorded interferogram (O) is a linear
combination of fringes (ai), with the weight on ai indicating the spec-
tral intensity at the i-th wavelength. Therefore, when a continuous
spectrum is launched, the corresponding FFT(O) will have a cluster of
spots in eachquadrant. At varyingwavelengths, the spot location shifts
“slowly” along ftFTS and “fast” along fSHS since the free spectral range is
broad for the tFTS but narrow for the SHS. The shift direction along
ftFTS depends on the initial phase of the sinusoidal responseof the tFTS
at the first sweep step. In this work, the spot on the blue end shifts
towards ftFTS = 0. The spots are divided into several segments between
fSHS = 0 and 1/2. Each folded segment contains the spectral information
within a single free spectral range (FSRSHS) of the SHS. Without the
tFTS, all spots will overlap into a single segment. The segments are
shifted to distinct ftFTS through tFTSmodulation, making it possible to
expand the bandwidth beyond a single FSRSHS. To identify adjacent
FSRSHS, the tFTS must have a resolution (δλtFTS) finer than FSRSHS,
which yields:

ΔλtFTS =
λ2

ΔngLtFTS
<FSRSHS =

NSHSΔλSHS
2

, ð1Þ

where Δng denotes the group-index variation induced by TO tuning,
LtFTS denotes the length of the tunable delay line, NSHS (=128) denotes
the number ofMZIs in the SHS, and δλSHS denotes the resolution of the
SHS. An unknown spectrum can be rebuilt from FFT(O) via computa-
tional decomposition if the critical condition is met. According to the
Rayleigh criterion38, the resolution (δλf) of the 2D-FTS is δλSHS, while its
BW is the free spectral range (FSRtFTS) of the tFTS. δλf and BW can be
thus formulated as:

δλf = δλSHS =
λ2

ngΔLSHS,max
, ð2Þ

BW=FSRtFTS =
NtFTSΔλtFTS

2
, ð3Þ

where ng denotes the group index, ΔLSHS,max (=ΔLSHS,128) denotes the
maximum arm-length difference in the SHS, and NtFTS denotes the
number of power sweep steps. The corresponding channel capacity
(Nf) is defined as Nf = BW/δλf + 1. According to Eq. 3, to obtain a point-
to-point mapping (see Fig. 1d), the required number of power sweep
steps is 2 · BW/δλtFTS. Notably, the 2D FTS has the potential to reduce
sweep steps to <2 · BW/δλtFTS using the numericalmethod since, unlike
1D-FTSs, the folding of a Fouriermaponly leads to a limited increase in
correlation between channels. This issue will be discussed later.

We compare the performance of reported FTSs, as shown in
Fig. 1e. It can be found that the proposed 2D-FTS has a record large
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capacity of Nf = 801 while retaining a fine resolution of δλf = 250pm.
In addition, by leveraging the computational method, the resolution
and capacity can be further enhanced to δλ2f = δλf/2 = 125 pm and
N2f = 2Nf = 1601, respectively, beyond the Rayleigh criterion, which will
be discussed later. A more detailed comparison can be found in
Supplementary information, Note 1. In this work, all structures were
fabricated at a commercial photonic foundry (Applied Nanotools39).
The simulation and measurement methods are described in Methods.
The abbreviations and notations used in this article are summarized in
Supplementary information, Note 2.

Design and characterization of key components
The 2D-FTS has three essential elements: the delay line, ADC, and YBS.
The design is implemented on the silicon-on-insulator (SOI) platform
with a core thickness of Hwg = 220 nm, as shown in Fig. 2a. The core
width is set as Wwg = 450nm to meet the single-mode condition. A
titanium-tungsten (TiW)heater is placedatop theSOIwaveguidewith a
spacing of dht = 1 μm. The cross-section dimension of the heater is
Wht ×Hht = 7 × 0.2 μm2. We utilized a fabricated tFTS with LtFTS = 1.5 cm
to characterize the TO tunability, as shown in Fig. 2b. Figure 2c shows
themeasured dispersion curves of transmittances (|t|2) at varying drive
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voltages. TO nonlinearity will arise at a Watt-scale heating power,
resulting in higher-order terms in Δng, which can be expressed as:

Δng =
X
i

∂ing

∂Pi � P
i: ð4Þ

Figure 2d shows the first- and second-order tuning efficiencies
(∂ng/∂P and ∂2ng/∂P2) derived at varying wavelengths. Additional

simulation and measurement results, e.g., the electric response, index
dispersions, temperature sensitivity, and propagation losses, can be
found in Supplementary information, Note 3. The ADC consists of two
cores with varying widths that gradually approach each other40 (see
Fig. 2e). Incident light will excite symmetric (S) and asymmetric (AS)
modes in the coupling region. The conversion efficiency of the Smode
will reach ≈ 1 when the adiabatic condition is fulfilled. In Fig. 2f, we
calculate the conversion efficiencies with varying coupling lengths
(LADC). From the curve, the coupling length is optimized to be

Fig. 1 | Principle of the two-dimensional Fourier-transform spectrometer (2D-
FTS). a Schematic layout of the 2D-FTS. The insets show the enlarged views of key
components. The 2D-FTS comprises of a tunable Fourier-transform spectrometer
(tFTS) and a spatial heterodyne spectrometer (SHS) that are connected via a 1×128
power splitter (PS). The edge couplers are utilized as input and output (IO) ports,
i.e., INi and OUTi. Conceptual illustrations of the b 1D and c 2D Fourier-transform
spectrometry. For a stand-alone tFTS/SHS, the period of the sinusoidal response is
tuned by changing the heating power (P) or arm-length difference (ΔLSHS). At a
single wavelength (λ), the interferogram (O) is a 1D sequence sliced from a 2D
transmittancematrix (A). The 1D fast Fourier transform (FFT) of the interferogram
contains a peak in each quadrant. For the 2D-FTS, A is a 3D cube with variations of
both P andΔLSHS. Hence, the interferogram is a 2Ddiagram that ismodulated along
two axes. By applying 2D FTT, each wavelength is mapped to a single spot in the

Fourier domain. d Reconstruction principle. The intensity information of a con-
tinuous spectrum (S) is encoded by a cluster of spots in FFT(O). At varying wave-
lengths, the spot location shifts “slowly” along ftFTS and “fast” along fSHS. Here, ftFTS
and fSHS denote the Fourier frequencies. The shift direction relies on the phases of
sinusoidal responses. Any spectrum can be retrieved via decomposition, as long as
the resolution (δλtFTS) of the tFTS isfiner than the free spectral range (FSRSHS) of the
SHS, thereby breaking the inherent limit between the resolution (δλf) and band-
width (BW). e Comparison of integrated FTSs in terms of the channel capacity (Nf)
and δλf at the Rayleigh criterion. δλf and Nf can be improved to δλ2f and N2f using
computational methods. OPL, optical path length. ADC, adiabatic directional
coupler. YBS, Y-branch splitter. PD, photodetector. MRR, microring resonator.
dFTS, digital FTS. SWIFTS, stationary-wave integrated FTS.
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LADC = 150 μm, in order to obtain sufficient adiabaticity. Other less
critical structural parameters can be found in Supplementary infor-
mation, Note 4. For testing purposes, we fabricated a MZI using two
ADCs as couplers, as shown in theupper panel of Fig. 2g. Themeasured
|t|2 dispersion is shown in the lower panel of Fig. 2g. The coupling ratios
(|κADC|

2) can be extracted from the extinction ratios of the curve, as
shown in Fig. 2h. The calculated |κADC|

2 are alsoplotted for comparison.
Both simulation and measurement results suggest that the ADC has
coupling ratios of |κADC|

2 ≈0.5 with weak variations over the target
bandwidth of BW= 200 nm (see Supplementary information, Note 4
for additional analysis). The YBS is a three-core structure41 (see Fig. 2i).
The widths of the central core and lateral cores vary in-complement
over the coupling region. Consequently, the light power in the central
core will evenly transfer to two lateral cores through
evanescent coupling. Figure 2j shows the calculated conversion effi-
ciency as a function of the coupling length (LYBS). The coupling length
is chosen as LYBS = 20 μm to ensure a complete coupling (see Supple-
mentary information, Note 5 for other parameters). A similar testing
MZIwas fabricated tomeasure the coupling ratio (|κYBS|

2) of the YBS, as
shown in Fig. 2k. The calculated andmeasured |κYBS|

2 dispersion curves
are shown in Fig. 2l. In the simulation, the central core is laterally
shifted by Δy = 10 nm. The 3-dB coupling is achieved across a broad
wavelength band from λ = 1.45 μm to 1.65 μm. Additional results,
such as the tolerance analysis, can be found in Supplementary infor-
mation, Note 5.

Characterization and analysis of the spectrometer
The maximum arm-length difference of the SHS is set as
ΔLSHS,max = 2.55mm to achieve the resolution of δλf = 250pm using
Eq. 2 and the results shown in Supplementary information, Fig. S1d.
According to Eq. 2, given a fixed ΔLSHS,max, δλf will increase at a longer
wavelength. Thus, ΔLSHS,max is derived at λ = 1.65 μm to ensure
δλf < 250 pm over the whole wavelength range. Using Eq. 1, the max-
imum heating power is set as Pmax = 2.4W to identify all free spectral
ranges of the SHS. The resolution of the tFTS reaches its minimum
(δλtFTS ≈ 12.36 nm) at λ = 1.45μm, which yields the number of power
sweep steps of NtFTS = 32. Nevertheless, due to the dislocation of spot
trajectories in a folded 2D Fourier map, the sweep steps can be further
reduced without compromisingmuch reconstruction accuracy. In this
work, the optimal number of sweep steps is set as NtFTS = 25 (see
Supplementary information, Note 6). The complete optimization flow
is discussed in Supplementary information, Fig. S5. Figure 3a–d shows
themicroscope image of the fabricated 2D-FTS. The TE-pass polarizers
were integrated at IN1-2 to support a high polarization extinction ratio
of 40 dB42. Each edge coupler is an inverse taper with an effective spot
diameter of ≈ 3μm. The spacing between output ports is chosen as
>15μm to prevent inter-channel optical crosstalk. The thermal-
isolation trenches were used to inhibit the thermal crosstalk between
tunable delay lines and the heat transfer from the tFTS to the SHS.

The measured transmittance cube is shown in Fig. 3e. The cube is
sliced into matrices with varying P, as depicted by the colored dots in
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cated a photonic chip, b tunable Fourier-transform spectrometer, c spatial het-
erodyne spectrometer, and d inverse-taper edge couplers. e Measured
transmittance (|t|2) cube. The cube is sliced into the matrices with varying heating

power (P), represented by the colors of dots in the upper right corner. Each matrix
contains transmittances with varying arm-length differences (ΔLSHS) and wave-
lengths (λ).
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the upper right corner. For clarity, the displayed cube is normalized to
its maximum. In the spectrum reconstruction, the excess losses of the
PS, polarizer, and edge couplers will not be deducted from the cube
(see Supplementary information, Fig. S1h). The simulation results can
be found in Supplementary information, Fig. S6a. The cube is first
spectrally channelized into N2f = 2Nf = 1601 columns, with a spectral
grid size of δλ2f = δλf/2 = 125 pm. δλf and Nf are defined based on the
Rayleigh criterion and are related to the fundamental frequency in
sampling offered by the FTS response. However, a sinusoidal response
must be sampled at more than twice the fundamental frequency;
otherwise, the spectral sampling will be ineffective at the highest fre-
quency (i.e., ΔLSHS =ΔLSHS,max, see Supplementary information,
Fig. S7a), as suggested by the Nyquist’s theorem.Moreover, it is viable
to retrieve the spectral information carried by all N2f grids when the
computational method is used, as will be discussed later. The similar
effect has been reported in ref. 28. Figure 4a shows the response
measured at OUT128 and P = 0W. At the Rayleigh criterion, a fine
resolution of δλf = 2δλ2f≈ 220pm is achieved at λ ≈ 1.55 μm. The mea-
sured resolution isδλf = 2δλ2f < 250pmon the red end (λ ≈ 1.65μm). To
implement further analysis, the cube is reshaped into a 2D matrix, in
which each column is a vector flattened from the fringe (ai) at a single
wavelength, as detailed in Supplementary information, Note 6. The left
panel of Fig. 4b shows the correlation matrix derived from the flat-
tened cube. Here, the element at the i-th row and j-th column is the
Pearson correlation between the i-th and j-th fringes, i.e., ρ(ai, aj).
Except for the self-correlated diagonal elements, the correlation
matrix also contains some “shades” with insufficient decorrelation.
Such a phenomenon results from the projection effect of 2D-FFT. As
discussed, at a single wavelength, FFT(ai) is mapped to a spot in each
quadrant. However, the spot has projections on two axes (fSHS = 0 and
ftFTS = 0, see Fig. 1c). As a consequence, two fringes with distinct spot
locations in the Fourier domainmay still have similarity since the spot
projections may overlap (see Supplementary information, Fig. S7c).
This issue can be addressed by omitting the zero-frequency

components of ai andO, provided that FFT is a linear transform. More
details are shown in Supplementary information, Fig. S10. The right
panel of Fig. 4b shows the correlation result of FFT(ãi). Here, ãi is the
fringe after the removal of the zero-frequency components. The cor-
relation matrix becomes quasi-diagonal, indicating the establishment
of decorrelation. Some elements in the correlation matrix still have
relatively high values, which results from the crossover of spot tra-
jectories in the folded Fourier map. Throughout the entire capacity,
there are only ≈ 5 (<NtFTS/2) pairs of less decorrelated fringes. The
residual correlation can be eliminated by increasing the power sweep
steps to > 2 · BW/δλtFTS and unfolding the Fourier map; however, this
will result in an increase in the acquisition period. By using the
numerical method, it is viable to identify these fringes without
increasing NtFTS or reconstruction errors, provided that the Fourier
map is folded only once (i.e., NtFTS > BW/δλtFTS) and their correlations
[ρ(ãi, ãj) ≈ 0.5] are still quite limited. Further discussions can be found
in Supplementary Information, Fig. S9. The effectiveness of this
operation can be verified using singular value decomposition (SVD). In
Fig. 4c, we show the singular values (σi) derived from the calculated
and measured cube with the zero-frequency components omitted.
When the cube is oversampled into > 3000 channels, a kink can be
found at i ≈ 1900 exceedingN2f (= 1601).With a lower heating power of
Pmax = 0.024W, the σi curve drops rapidly and is segmented by the
kinks located at each FSRSHS, indicating that Eq. 1 is not satisfied, and
decorrelation is insufficient. For the measurement result with
Pmax = 2.4W, the σi curve is smooth and flat at N2f = 2Nf = 1601. Thus, it
is conclusively demonstrated that the 2D-FTS has sufficient decorr-
elation over all fringes. The Fourier analysis is performed on the
measured cube. Figure 4d shows a generated testing spectrum with
three spikes. The interferogram is then derived from the cube and
testing spectrum, as shown in Fig. 4e. The intensity and phase dis-
tributions of FFT(O) are shown in Fig. 4f, g. Three distinctive spots can
be clearly observed in |FFT(O)|, validating the effectiveness of the 2D-
FTS. The simulation results show that the phase distribution of FFT(O)
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Fig. 4 | Analysis of the spectrometer. a Measured transmittance (|t|2) at OUT128
and varying wavelengths (λ). Here, zero electric powerwas applied to the heater. At
the Rayleigh criterion, the resolution is δλf = 2δλ2f≈ 220pm at λ ≈ 1.55μm.
b Correlation matrices derived from the transmittance cube. On the left panel, the
correlation [ρ(·, ·)] is performed between the fringes (ai) at different λ. The arrows
highlight the high-correlation non-diagonal elements. The right panel shows the
correlation of the fast Fourier transform (FFT) of fringes (ãi) with zero-frequency

components removed. The arrow highlights the remnant non-diagonal elements
with relatively high correlations. c Singular values (σi) derived from the calculated
and measured cube with the heating power of 2.4W and 0.024W. The arrow
highlights the kink. The capacity of N2f = 2Nf = 1601 is verified. d Testing spectrum
(S) with three spikes. e Interferogram (O) derived from the measured cube and
testing spectrum. f Intensity and g phase maps of FFT(O). The arrows highlight the
three spots that are associated with the three spikes.
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has an abrupt discontinuity at the spot location (see Supplementary
information, Fig. S10b and d, for instance), indicating that the phase
mapalso carries information. Such a phasehopping is less visible in the
experimental results (see Fig. 4g) since the environmental perturba-
tion during measurement imposes a chaotic background on the phase
map. Nevertheless, the impact of noise components can be mitigated
using the iterative optimizationmethod. Both intensities andphases of
FFT(O) are necessary in the spectrum reconstruction to support the
full capacity of 2Nf, as discussed in Supplementary Information,
Fig. S8f.

Spectrum reconstruction
The measured A and recorded O both contain noises. In our design,
temperature fluctuations dominate as the major source of noises due
to the high TO coefficient of silicon and long OPL. The temperature
sensitivity is analyzed in Supplementary information, Note 7. More-
over, the fringe patterns are not ideally sinusoidal since ng and cou-
pling ratios are dispersive. Therefore, the spectrum recovered directly
with DCT has large errors (see Supplementary Information, Fig. S12).
The pseudo-inverse method also suffers from a poor reconstruction
accuracy (see Supplementary Information, Fig. S13). Instead, we use
the computational decomposition to rebuild a spectrum:

S= argmin
S

k~AFFTS� FFTð~OÞk22 +Ω
� �

, ð5Þ

where ÃFFT denotes the matrix formed by the column vectors of
FFT(ãi), Õ denotes the output interferogram with zero-frequency
components removed, Ω denotes the regularization term, argmin(·)
denotes the globalminimum, and ||·||2 denote the ‘2-norm. Using Eq. 5,
FFT(Õ) is decomposed into a linear combination of FFT(ãi). The
optimal weight on FFT(ãi) is the intensity at the i-th wavelength of the
retrieved spectrum. The decomposition must be operated in the
Fourier domain due to the necessity of component removal. Ω
provides both Tikhonov43 and total variation (TV44) regularization,
which covers most spectral features. The hyperparameters in Ω are
automatically optimized through cross validation (CV45) without
manual selection. Remarkably, Ω only sets a general range of features
that may occur in a spectrum, and no specific knowledge of spectral
contents are required. We also use the Picard plot46 to evaluate the
solvability of Eq. 5 (see Supplementary information, Fig. S14). The
feasibility of reconstructing a spectrum of arbitrary shape is further
discussed in Supplementary Information, Fig. S16. In Supplementary
Information, Fig. S18, the reconstruction accuracies based on DCT,
pseudo inverse, and regularized iterative optimization are compared.
The reconstruction method is described in greater detail in Supple-
mentary information, Note 8.

Figure 5 shows the experimental results of spectrum reconstruc-
tion. The reference and reconstructed spectra are displayed in red and
blue, respectively. The reference spectra were measured using a
commercial optical spectrum analyzer (OSA). The reconstruction
accuracy is quantified by the relative error47 (ε) and coefficient of
determination24 (r2). In Fig. 5a, we show the reconstruction of a single
spectral line tuned from λ = 1.45 μm to 1.65 μm. Here, the spectral line
was produced using a tunable laser (TL). A high accuracy of r2 > 0.99 is
realized at varying λ, demonstrating the working bandwidth of BW=
200 nm. A second TL was utilized to produce dual spectral lines with
varying spacings, as shown in Fig. 5b. Only a small part of the spectrum
is displayed for clarity, but the reconstruction is performed over the
entire bandwidth. Even when spaced by only one or two grids, two
peaks can still be distinguished. An enhanced resolution of δλ2f = δλf/
2 < 125 pm is thus demonstrated, with the corresponding capacity of
N2f = 2Nf = 1601. In Fig. 5c, we give an example of weak-signal recon-
struction. Two peaks with a contrast of 25 dB can be clearly identified
from the noise floor at <–35 dB (see the arrow). The response of a fiber

Bragg grating (FBG) is then reconstructed, as shown in Fig. 5d. At the
rejection band, the retrieved spectrum has a high extinction ratio of ≈
25 dB. Thus, the peak SNR of the fabricated 2D-FTS is characterized as
PSNR > 25 dB. The reconstruction results of the responses of an
arrayed waveguide grating (AWG) are shown in Fig. 5e and f. All
spectral details are properly rebuilt, even for a subtle dip (see the
arrow). An amplified spontaneous emission (ASE) source was used to
produce a broadband spectrum, as shown in Fig. 5g. Furthermore, we
also produced a hybrid spectrum by double injecting ASE and TL
emissions (see Fig. 5h). The reconstruction results exhibit small errors
(ε <0.02). The recorded interferograms are shown in Supplementary
information, Figs. S19 and S20. More numerical examples and experi-
mental data can be found in Supplementary information, Notes 8 and
9, respectively.

Discussion
We have proposed and demonstrated an integrated FTS beyond the
resolution-bandwidth limit. In this work, the most significant advance
is the transition of the working principle from 1D to 2D Fourier trans-
form. For the 2D-FTS, the output interferogram is not a 1D sequence
but rather a 2D pattern, which canbe realized by combining a tFTS and
a SHS. In the Fourier domain, the interferogram is transformed into the
spots scattered in two dimensions, which can be decomposed into the
linear combination of the FFT of independent fringes, enabling accu-
rate spectrum reconstruction. If δλtFTS is finer than FSRSHS, the band-
width can exceed a single FSRSHS whilemaintaining a fine resolution of
δλSHS. At the Rayleigh criterion, the demonstrated resolution and
capacity are δλf = 250 pm and Nf = 801, respectively. Based on the
computational method, the resolution is enhanced to δλ2f = 125 pm
with a record large capacity of N2f = 1601. The demonstrated band-
width is BW= 200nm. The 2D-FTS requires amaximumheating power
of Pmax = 2.4W and 128 MZIs. By comparison, a conventional 1D-FTS
requires Pmax > 100W or > 2000 MZIs to achieve the same δλf and Nf.
The experimental results indicate a signal-to-noise ratio of PSNR> 25
dB, exhibiting an improvement of ≈ 15 dB compared to the result
reported in ref. 34. The rise-fall time of a single TO tuning step is
<100μs48, therefore it is feasible to drive the heater at a high speed (>
1 kHz). Given a small number of sweep steps (NtFTS = 25), the theore-
tical sampling period is <0.025 s. In the measurement of a single
spectrum, the corresponding energy budget for heating is thus esti-
mated to be 60mJ. As a proof of concept, we utilize the tFTS and SHS
to build the 2D-FTS. Such a scheme has two drawbacks, but they are
readily rectifiable. First, the required electric power exceeds oneWatt.
The TO tuning efficiency can be doubled using aMI instead of aMZI in
the tFTS, taking advantage of its folded light path in the reflective
interference arm27. In addition, by etching thermal-isolation trenches
alongside tunable delay lines, it is possible to further reduce the
heating power in the tFTS. Second, the SHS is multi-apertured, which
retains the Fellgett’s advantage but partially diminishes the Jacquinot’s
advantage. To solve this, we propose to replace the SHS with a dFTS
that uses switchable delay lines to change the OPL difference. Thus,
launched light will go through a single MZI and be received by a single
photodetector (PD). The use of the dFTS also ensures a smaller foot-
print. A detailed design example of the modified scheme be found in
Supplementary information, Note 10, Section A. Moreover, it is viable
to extend the concept of 2D-FTS to a higher dimension. In Supple-
mentary information,Note 10, SectionB, it is demonstrated that, based
on a three-dimensional FTS (3D-FTS), an finer resolution of
δλ2f < 31.25 pm and a larger capacity of N2f > 6401 are attainable. The
concept and fabric of the higher-dimensional FTS (HD-FTS) are dis-
cussed in Supplementary information, Note 10, Section C. It should be
noted that other schemes, such as filters and speckle spectrometers,
can achieve comparable resolutions and bandwidths, but FTSs have
the potential for a higher SNR and lower noises (see Supplementary
information, Note 11 for further discussions). Overall, the
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demonstrated 2D-FTS has high performance and great scalability. It is
anticipated that the 2D-FTS will find applications in future spectro-
scopic systems.

Methods
Device simulation
The dispersion of the waveguide is simulated using the finite-
difference frequency-domain (FDFD) method. The finite-difference
time-domain (FDTD) method is utilized to calculate the transmission
responses of the ADC and YBS. All these components are modeled as

transferring matrices and imported into the Lumerical INTER-
CONNECT module to obtain the transmittance cube of the 2D-FTS.
Due to the difficulty in simulating TO nonlinearity, the TO tuning
efficiencies used in the calculation are derived from the measured
data. The entire simulation flow is performedwith the Ansys Lumerical
simulation suite.

Measurement details
The transmission responses of the testing structures and 2D-FTS
were measured using a narrow-linewidth TL (Keysight 8164B) and a
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reconstructed spectra are derived from the measured interferograms (see Sup-
plementary information, Note 9, Figs. S19 and S20). The relative errors (ε) and
coefficients of determination (r2) are also labeled. In Fig. 5c, d, the dashed lines
show the intensity levels of ≈ –35dB and ≈ –25dB, respectively. The peak signal-to-
noise ratio is characterized to be PSNR > 25dB. The demonstrated resolution and
bandwidth are δλ2f = δλf/2 < 125 nm and BW> 200nm, respectively.
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low-noise PD (Agilent 81532 A). The heating power was supplied by a
voltage source (Keithley 2400), which was programmed to sweep over
a series of sampling points. The structures shown in Fig. 2 were
interconnected with single-mode fibers via grating couplers (GC). Due
to the limited bandwidth of GCs, the full wavelength band was divided
into two 100-nm bands andmeasured bymodifying the incident angle
of fiber probes. Light was injected into and coupled out of the 2D-FTS
using lensed fibers and broadband edge couplers. The polarization
state of incident light was aligned to TE with a polarization controller.
In themeasurement of the 2D-FTS, IN1 and OUT1-128 were used as input
and output, respectively, while IN2 and OUT0 were dummy ports for
the in-situ monitoring of the tFTS. The input fiber was aligned to IN1,
and the transmission responses at OUT1-128 were individually mea-
sured. At the i-th measurement step, we aligned the output fiber to
OUTi. The i-th row of interferograms (O) from all testing spectra and
the i-th row of the transmittance cube (A) were successively recorded
with varying heating power. The input/output fibers were not relo-
cated during the measurement of each port, ensuring an accurate
mapping between A and O. This proof-of-concept method has been
used in prior works on SHSs23 and speckle spectrometers49. Practical
multiport acquisition canbe realized by integrating silicon-germanium
PDs to each output channel and reading their signals under a syn-
chronized clock50. Themonolithic integration of PDs canbe supported
by most commercial silicon photonic foundries51. Integrated PDs
typically have an electric bandwidth of >20GHz51, so it is feasible to
capture signals at all ports within the theoretical time span of a tuning
step (<1ms). With 25 tuning steps, the theoretical sampling period per
spectrum is <0.025 s. The TLwas also used to produce a single spectral
line at varying wavelengths. We utilized a second TL (Keysight 8163B)
and a fiber 3-dB coupler to produce dual spectral lines with varying
spacings. The peak intensities were modified with variable optical
attenuators. Various continuous spectra were produced with an ASE
source (Fiberlake) and extra optical filters, such as the FBG and AWG.
The emissions from the TL andASEwere simultaneously launched into
the chip to produce the hybrid spectrum. All testing spectra were
monitored by a commercial OSA (Yokogawa AQ6370D). The raw data
from the OSA has a resolution of 20 pm, which is reorganized and
fitted into the same grid as the 2D-FTS. During the measurement, the
chip was mounted on a thermo-electric cooler (TEC) to stabilize the
ambient temperature.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are included in the
paper and its supplementary document. Other data are available from
the corresponding authors upon reasonable request.
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