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Photonic Stochastic Emergent Storage for
deep classification by scattering-intrinsic
patterns

Marco Leonetti 1,2,3 , Giorgio Gosti 1,2,4 & Giancarlo Ruocco2,5

Disorder is a pervasive characteristic of natural systems, offering a wealth of
non-repeating patterns. In this study, we present a novel storage method that
harnesses naturally-occurring random structures to store an arbitrary pattern
in a memory device. This method, the Stochastic Emergent Storage (SES),
builds upon the concept of emergent archetypes, where a training set of
imperfect examples (prototypes) is employed to instantiate an archetype in a
Hopfield-like network through emergent processes. We demonstrate this non-
Hebbian paradigm in the photonic domain by utilizing random transmission
matrices, which govern light scattering in a white-paint turbid medium, as
prototypes. Through the implementation of programmable hardware, we
successfully realize and experimentally validate the capability to store an
arbitrary archetype and perform classification at the speed of light. Leveraging
the vast number of modes excited by mesoscopic diffusion, our approach
enables the simultaneous storage of thousands ofmemories without requiring
any additional fabrication efforts. Similar to a content addressablememory, all
stored memories can be collectively assessed against a given pattern to
identify thematching element. Furthermore, by organizingmemories spatially
into distinct classes, they become features within a higher-level categorical
(deeper) optical classification layer.

Neural networks have made significant contributions to the field of
Artificial Intelligence, serving asboth a tool formathematicalmodeling
and a means to understand brain function. The Hopfield paradigm1,2

has played a crucial role in this domain, utilizing a synaptic matrix
to represent the interconnections between neurons. This matrix
possesses the remarkable ability to store and recognize patterns, and
serve as a fundamental framework for the realization of future content-
addressable memory (CAM)3,4.

To store a memory consisting of N elements, the widely adopted
approach is to employ Hebb’s rule5. This rule entails constructing a
synaptic matrix, denoted as T, by taking the tensorial product of the
vector ϕ* (representing the pattern to be stored) and its conjugate

transpose (ϕ*†):

T =ϕ* �ϕ*y ð1Þ

However, there is a fundamental limit to the number of memories that
can be reliably stored using Hebbian-based approaches. As the
network becomes more densely populated, the interactions between
different memory elements can lead to the emergence of unintended
and uncontrolled memory states2. To address this limitation, recent
research has explored various methods to enhance the capacity of
neural networks: dilution6–9, autapses10,11, and convex probability
flow12,13.
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Recently, it was proposed to leverage the interaction among
stored patterns in a constructive way: an emergent archetype may
be stored by proposing to the network multiple prototypes that
closely resemble the target pattern but are intentionally corrupted
or filled with errors. The interaction between these prototypes serves
to strengthen the emergence of the desired memory14. This
paradigm is connected to the prototype concept developed in hier-
archical clustering, in which prototypes are elements of the dataset
representative of each cluster15.

In this study, we introduce a novel learning strategy called
Stochastic Emergent Storage (SES). SES taps into the abundance of
natural randomness to construct an emergent representation of the
desiredmemory. Capitalizing a vast database of fully random patterns
freely produced by a disordered, self-assembled structure, we select a
set of prototypes that bear resemblance to the targetmemory through
a similarity-based criterion. Subsequently, by performing a weighted
sum of the synaptic matrices corresponding to these selected proto-
types, we are able to effectively generate the desired pattern in an
emergent fashion.

Given the inherent advantages of photonic computation, such
as ultra-fast wavefront transformation and parallel operation, it
results that optics is the ideal domain to explore the SES paradigm.
The convergence of photonics, artificial intelligence, and machine
learning represents a highly active and promising area of research3,16,
leading to novel interdisciplinary paradigms such as Diffractive
Deep neural networks17,18 photonic Ising machines19 and photonic
Boltzmann computing Machines20. However, these approaches typi-
cally rely on direct control over optical properties of millions of
scattering elements, which can be challenging and costly both with
microfabrication or adaptive optical elements.

In a departure from traditional approaches, disordered scattering
structures have been proposed as a radically different avenue for
optical computation in various applications: classification21, vector-
matrix multiplication22, computation of statistical mechanics ensem-
bles dynamics23, and others24.

Here, we propose to employ the scattering intrinsic patterns,
the optical transmission matrices, to realize a SES-based optical
hardware, the disordered classifier. This device is capable of
efficiently performing pattern storage, and subsequent pattern
retrieval. It is able to simultaneously compare an input pattern with
thousands of stored elements, and it enables a two-layer architecture,
providing categorical (deep) classification, which allows for more
complex tasks.

Results
The idea stems from the fact that intensity scattered by a disordered
medium into a mode ν resulting from an input pattern ϕ) may be
written as:

IνðϕÞ=ϕ � Vν �ϕy ð2Þ

with the scattering process driven by the matrix Vν 2 CN ×N :

Vν ∼ ξ ν � ξ νy ð3Þ

generated from the tensorial product of the transmission matrix row
(transmission vector) ξν (2 CN)with its conjugate transpose ξν†.

Indeed Iν(ϕ) is maximized if ϕ∥ξν: this paradigm is at the basis of
the wavefront shaping techniques25,26, in which the input pattern is
adapted to the transmission matrix elements. Thus, scattering into a
mode (corresponding to one of our camera pixels, see methods) is
described by the samemathematics of the Hopfield Hamiltonian and a
pattern is “recognized” (produces maximal intensity) if it matches the
ξν vector. Given this mapping, Vν may be named an optical synaptic
matrix relative to the ξν memory.

In naturally occurring scattering, one has no control over the
pattern ξν and the relative optical synaptic matrix Vν because it results
from a multitude of subsequent scattering events with micro-nano
particles of unknown shape, optical properties, and location. Here, we
propose to store an arbitrary, user-defined, memory (or pattern) in
naturally occurring scattering media, by exploiting the fact that a
scattering process generated billions of output modes, each with a
unique and random embedded memory pattern ξν and the relative Vν.
Thus we propose a new method to realize a photonic linear combi-
nation of Vν to generate an artificial, (user-designed) optical synaptic
matrix. This method is based on the realization of a sensor collecting
the transformed intensity

IMðϕÞ=
XM
ν

λν IνðϕÞ ð4Þ

resulting from the incoherent sum of M intensities realized from that
many transmitted optical modes from M which is a subset of all the
modesmonitoredML. Coefficient λν (∈ {0− 1} and identified by a 4 bit
positive real number) represent attenuation coefficients realized by
mode-specific neutral density filters. Then employing the Eq. (2) in Eq.
(4) we obtain

IM,λðϕÞ=ϕ �
XM
ν

λνVν

 !
�ϕy =ϕ � JM,λ �ϕy: ð5Þ

Then, we propose two techniques to design the optical operator JM,λ:
1) the Stochastic Hebb’s Storage (SHS) which enables to realize an
arbitrary optical operator, 2) the Stochastic Emergent Storage (SES)
which instead aimed to the realization of optical memories.

Stochastic Hebb’s storage
First, we will employ this to realize an optical equivalent of the Hebbs
rule: the stochastic Hebbs storage (SHS). Then we will show how the
storage and recognition performance is greatly improved if SES is
exploited.

With the SHS we want to generate a synaptic optical matrix JM,λ
T

equivalent to an Hebb’s matrix T with the aim to store the pattern ϕ*.
To do this, we rely on a linear combination of a set M= fV1,V2 . . .VMg
of random optical synaptic matrices resulting from uncontrolled
scattering:

JM,λ
T =

XM
ν

λνVν ð6Þ

Thus given Eq. (5), the transformed intensityIM,λ
T ðϕÞ with the optical

operator JM,λ
T emulates the Hamiltonian function associated to Hebb’s

synaptic matrix T. Indeed the matrix JM,λ
T is connected to the inten-

sities of the modes pertaining to the set M with the following equa-
tion:

ϕ � JM,λ
T �ϕy =

XM
ν

λν IνðϕÞ= IM,λ
T ðϕÞ: ð7Þ

The values for coefficients λν are obtained by aMonte Carlo algorithm,
(see methods) minimizing the difference between the target matrix
and JM,λ

T . Each coefficient may be then realized in hardware (mode-
specific neutral density filters) or software fashion.

Employing SHS we can design any arbitrary optical operator if the
two following ingredients are available: i) the access to the intensity
Iν(ϕ) produced by a sufficiently large number of modes and ii) the
correspondent optical synaptic matrix Vν for each mode. This is now
possible with the Complete Couplings Mapping Method (CCMM, see
methods), which enables the measurement of the intrinsic (no inter-
ference with a reference) Vν with a Digital Micromirror Device (DMD).
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With the CCMM, and the experimental apparatus shown in Fig. 1
see methods we are able to gather a repository ML of tens of thou-
sands (ML = 65536) of optical synaptic matrices in minutes from which
we sample a randomsubsetM (withM random samples) which we use
as bases to construct our target artificial synaptic matrix.

The performance of this optical learning approach is shown in
Fig. 2, in which we realized an Hebb’s dyadic-like optical synaptic
matrix (see insets of Fig. 2) from a ZnO scattering layer.

The memory pattern stored in our system is ξΣ =SEIGðJM,λ
T Þ, with

SEIG(H) the operator that finds the eigenvector correspondent to the
largest eigenvalue of H and then produces a binary vector with its
elements’ sign. Performance in storage and recognition for SHS are
reported respectively in Fig. 2a, b (see methods). There we report
the Storage Error Probability (the lower the better, indicates the average
numberofpixelsdifferingbetween the storedand the targetpattern, full
definition in the, methods) and Recognition Error (the lower the better,
the percentage of wrongly recognized memory elements out of a
repository of 5000 presented patterns, full definition in the, methods).

SHS is basis hungry, requiring a large number of random optical
synapticmatrices (whichmeansmodes/sensors/pixels) to successfully
construct a memory element. his is connected to the fact that the
target matrix T is constructed on N ×N/2 parameters (is symmetrical)
acting as constraints, while we haveM free parameters to emulate it. A
full emulation of T is expected thus to be successful for M >N ×N/2
which is consistent with what we retrieve in Fig. 2 (Data for M = 4096
are out of scale as storage and recognition error is negligible).

Stochastic emergent storage
For the remainder of the paper, we will discuss how the performance
drastically improves with SES. We recognize that each optical synaptic

matrix contains the strongest of two memories ξν = SEIG(Vν) then
(instead of randomly extracting modes) we perform a similarity
selection (see Fig. 1a and Supplementary Figs. 1 and 2 in the supple-
mentary information file) in which we extract a set M* whose intrinsic
memories are the closest possible to the target patternϕ* (see insets of
Fig. 1). The fact that in amesoscopic laser scattering process, billions of
independent modes can be produced and millions of them can be
measured at once with modern cameras, is strategically employed in
SES to boost the performance.

To perform the similarity selection with the optical modes the
target patternϕ* is comparedwith the eigenvectors of all themodes in
the repository of characterized modes ML. The comparison is driven
by the parameter Sν

Sν = ϕ̂
* � ξ̂ν ð8Þ

that quantifies the degree of similarity between the first eigenvector of
mode ν, ξν, and ϕ*.

The modes ν providing the higher Sν are selected to feed a
restricted repository of modes M*. The correspondent eigenvectors
ξν can be seen as prototypes of the target archetype, i.e.
imperfect representations of the pattern to be stored (such as the one
in Fig. 1c).

In SES, these prototypes interact constructively, generating a
representation of the memory ϕ* in an emergent fashion14. The inter-
action is obtained by the incoherent sum of the intensity of several
pixels/modes with proper attenuation coefficients/weights λ.

The attenuation coefficients λ are found by minimizing the
distance between the archetype pattern to be stored ϕ* and the
matrix first eigenvector SEIG ðJM* ,λ

ϕ* Þ= ξΣ (see methods). Thus

Fig. 1 | Emergent memory storage scheme. The sketch describes both the input
query ϕ presentation and the measurement of the optical synaptic matrix Vν

(details in theMethods section). Thefirst set of lenses (A-B) demagnifies (by a factor
of 0.3) the DMD image, accommodating the scrambled input pattern of the scat-
teringmediumwithin Lens1’s field of view. The second set of lenses (1-2) images the
opaquemedium’s backplane onto the camera plane, with amagnification (factor of
11) that ensures the 1 speckle grain/mode per pixel imaging regime. a–c Illustrate
the process of instantiating a memory in our architecture. a Represents the

similarity selection stage, wherein optical synaptic matrix (Vν) are chosen based on
their similarity with the target memory (ϕ*). b Illustrates the construction of an
emergent memory through the summation of relative optical synaptic matrices
(
PMVν = JM

* ,λ
ϕ* ), resulting in the memory element ξΣ, obtained getting the largest

eigenvector and computing the sign function (SEIG function). c Shows the pattern
to be instantiated in memoryϕ*, its vectorization, and the corresponding coupling
matrix constructed using Hebb’s Rule (as employed in SHS).
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substituting in Eq. (5) JM
* ,λ

ϕ* the transformed intensity in SES
reads :

IM
* ,λ

ϕ* ðϕÞ=ϕ � JM* ,λ
ϕ* �ϕy =

XM*

ν

λν IνðϕÞ: ð9Þ

The potential of SES is clarified in Fig. 3: the panels on the top left
represent the stored pattern (target pattern is reported in Fig. 1c) for
various sizes M* of the restricted repository. Note that SES greatly
outperforms the random selection approach where emergent storage
is absent (panel on the right).

Figure 3a shows the storage capability of the system. Blue trian-
gles are relative to patterns with N = 81 elements, while for golden
diamonds N = 256. The Storage Error Probability (Fig. 3c) improves
more than an order of magnitude with respect to random selection
(red circles). Recognition Error Probability (Fig. 3b) is three to four
orders of magnitude better with respect to the randomly selected
database. Note that the SES enormously outperforms SHS, indeed it is
possible to perform recognition in the M < <N configuration, i.e.
employing a number of camera pixels(M) much smaller than the
elements composing the pattern N.

Thus, in summary, SHS enables to create an optical operator of
arbitrary nature, which can effectively execute diverse tasks. This
versatility arises from its capability to construct an artificial optical
synaptic matrix designed by the user, effectively emulating a matricial
operator T. Conversely, SES focuses its functionality on generating an
operator designed primarily for memory storage, excelling in this
singular aspect. Consequently, it demands significantly less computa-
tional power and a smaller optical hardware setup (with a smaller M*,
see below), and enables lossy data compression (see supplementary
information file and Supplementary Fig. 3).

This distinction influences the optimization procedure: SHS
optimization relies on distances between matrices (measuring such
distance computational cost scales asN ×N), while SES optimization is
driven by distances between vectors (measuring such distance com-
putational cost scales as N). Secondly, SES leverages preliminary
similarity selection to identify the most relevant pixels/modes, a fea-
ture absent in SHS. As a result, the modes chosen for SES provide
higher contrast in the classification task, especially in theM <N regime.
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In contrast, in the M >N regime (more degrees of freedom than con-
straints), both approaches achieve essentially the same level of
efficiency.

Figure 3c, d shows a recognition process example. The emergent
learning process has been employed to store the patternϕwith index
j = 241 from a repository of 5000 patterns. Figure 3c reports trans-
formed intensity for the first 600 repository elements: a clear peak is
distinguishable at j = 241 this implies that the pattern is recognized).
The same graph is shown for the case of the random basis case
(no similarity selection), in which recognition is more noisy.

Photonic disordered classifier
Our disordered classifier can work in parallel, simultaneously compar-
ing an input with all memories stored, effectively working as a content
addressable memory4.

The experimentally retrieved transformed intensity for 4096 dif-
ferent memory elements ϕ* is reported in Fig. 4a (organized in a
camera-like 64 × 64 pixels diagram) for the proposed pattern ϕ. Each
value of IM

* ,λ
ϕ* ðϕÞ represent the degree of similitude of ϕ to ϕ*. The

patterns to the right side of the panel report the proposed pattern ϕ
and the stored patterns relative to each arrow-indicated pixel. The
pixel indicated with a red circle contains the pattern most similar toϕ
thus as expected produces the highest intensity. The system effec-
tively works as a CAM in which an input query ϕ is tested in parallel
against a list of stored patterns (the ϕ*) identifying the matching
memory as the most intense transformed intensity pixel.

The interplay between Hopfield networks and Deep learning has
been recently proposed and investigated27,28. In this framework here we
demonstrate a new approach to perform higher rank categorical clas-
sification employing the cashedmemories as features29,30: the deep-SES.
We tested it on a 4500 randomly tilted digits images repositorywhich is
organized into 9 categories (digits from 1 to 9). We stored 3969 pat-
terns/features in the disordered classifier (m =441 per each digit),
leaving 59 patterns per category for validation. In the camera-like dia-
grams (Fig. 4b, d) each category is found in the correspondent quadrant
of the image. The two panels show the response of the disordered
classifier to the inputs on the left for which the correspondent quad-
rants show a high number of intense pixels. Figure 4c shows integrated
intensity after threshold. Figure 4e reports the confusion matrix for all
labels, demonstrating categorical recognition efficiency above 90%
which eventually may be enhanced employing error correction
algorithms31. This result demonstrates the possibility to generate dee-
per optical machine learning achitectures and perform training by
simply grouping memories. The potential of Deep-SES is further
demonstrated by Fig. 4f, where we report a figure of merit comparing
the efficiency of Deep-SES with Ridge Regression with Speckles (RRS)21

(simulated). Note, while Deep-SES reaches an efficiency 90% forM* = 40,
the RRS suprasses this threshold for M* = 1600. As M* represent the
number of physical camera pixel employed in the classification, SES is
capable of delivering a classifier with a much smaller hardware and
computational complexity. The origin of this advantage, emerges form
the fact that our memory writing process, selects pixels/modes which
are the most correlated with the pattern to be recognized thus out-
perform with respect to randomly chosen ones. Moreover deep-SES
enables thus to reorganize memories into new classes (reshuffling of
classes) with almost no computational cost, a task which typically
requires a new training in standard digital or optical architectures (see
methods and supplementary information file, “Comparison with other
platforms” section and Supplemenatary Table 1).

Discussion
In summary, the Stochastic Emergent Storage (SES) paradigm
enables classification with a significantly smaller number of sensor-
s/pixels/modes compared to the elements composing thepattern. This
opens up the possibility of fabricating complex pattern classifiers with

only a few detecting elements, eliminating the fabrication processes.
Deep-SES offers a new paradigm for network training, enabling to
generate classes just by grouping memories, and it opens the way to a
computation-free rearrangement of classes.

The paradigms presented here can be potentially exported to
other disordered systems, such as biological neural networks or neu-
romorphic computer architectures while exploring the emergent
learning process in these systems can also provide valuable insights
into the memory formation process in the brain.

The results presented in this study contributes to the ongoing
challenge of understanding the biological memory formation process.
There are currently two major hypotheses that are the subject of
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debate, the connectionist hypothesis5, which suggests that neural
networks form new links or adjust existing ones when storing new
patterns, and the innate hypothesis32, which posits that patterns are
stored using pre-existing neural assemblies with fixed connectivity.
One central aspect in this ongoing debate pertains to the ’efficiency’ of
the network, a facet that, in both artificial and natural networks,
immediately invokes considerations related to energy consumption.
On one side, it has long been established that in Hebbian networks, the
number of memories (W) scales linearly with the number of nodes (N),
expressed as W = αN. For this reason, many research efforts are dedi-
cated to optimizing the proportionality constant α, which however
appears to be upper bounded to two. On the other side, it has been
recently demonstrated, both numerically7,9 and theoretically33,34, that
in the stochastic innate approach, the number of memory increases
exponentially with the number of nodes: W∝ eaN. In other words, for
larger system sizes, the innate approach predicts a significantly greater
number of memories compared to the connectionist perspective. The
“complexity”of the system (artificial neural network orbrain), denoted
as S= limN!1 logðW Þ=N, tends to zero for the connectionists, whereas
it remains non-zero for the innatists.

SES introduces a fresh perspective to the problem by leveraging
the Hebbian structure of the synaptic matrix, with a foundation of the
connectionist hypothesis. However, SES goes beyond by exploring the
potential of a stochastic innate network in which, pre-existent random
synaptic structures are combined to generate memory elements in an
emergent manner. Whether the SES could bring a new point of view,
lumping together the innatism and connectivism, is a fascinating
hypothesis, that must be explored in the future.

Methods
Background
In our experiment (similarly to a typical wavefront shaping experi-
ment), light from a coherent source is controlled by a spatial light
modulator and transmitted after propagation through a disordered
medium into the mode ν. The field transmitted at ν is described as

Eν =
XN

n= 1

Eν
nϕn ð10Þ

where the index n runs on the controlled segments at the input of the
disordered medium, Eν

n is the field resulting from laser field from the
nth segment transformed by the transmission matrix element on the
sensor ν and ϕν

n is the phase value from the wavefront modulator. In
our experiment, we consider the simplified configuration in
which ϕν

n 2 f�1, + 1g.
The field at ν can be separated in its two components: the field-at-

the-segment An and transmission matrix elment tνn

Eν
n =Ant

ν
n ð11Þ

Indeed the Eν
n are Gaussianly distributed complex numbers:

Eν
n = ξ

ν
n + iη

ν
n: ð12Þ

In the case in which just two segments n andm are active and in the + 1
configuration, we can ignore the ϕn:

Eν = Eν
n + E

ν
m = ξνn + iη

ν
n + ξ

ν
m + iην

m: ð13Þ

In absence of modulation, intensity is written as the modulus square
of Eν

Iν = jEν
n + E

ν
mjjEνy

n + Eνy
m j

= jEν
nj2 + jEν

mj2 + jEν
njjEνy

m j+ jEνy
n jjEν

mj:
ð14Þ

we recognize that

jEν
njjEνy

m j= ξνnξνm � iξνnη
ν
m + iην

nξ
ν
m +ην

nη
ν
m ð15Þ

jEνy
n jjEν

mj= ξνnξνm + iξνnη
ν
m � iην

nξ
ν
m +ην

nη
ν
m ð16Þ

jEν
njjEνy

m j+ jEνy
n jjEν

mj=2ξνnξνm +2ην
nη

ν
m: ð17Þ

thus

Iν = ξν2n +ην2
n + ξν2m +ην2

m + 2ξνnξ
ν
m +2ην

nη
ν
m: ð18Þ

or

Iν = Eν2
n + Eν2

m +2ξνnξ
ν
m +2ην

nη
ν
m: ð19Þ

In general for N segments in an arbitrary configuration of the mod-
ulator

Iν =
XN
n,m

Eν2
n + Eν2

m +2ðξνnξνm +ην
nη

ν
mÞϕnϕm: ð20Þ

the argument of the sum can be written in matrix form defining the
matrix Vν also named optical coupling matrix:

V ν
nn = E

ν2
n = ξν2n +ην2

n ð21Þ

V ν
nm = ξνnξ

ν
m + ην

nη
ν
m ð22Þ

Matrix Vν is a bi-dyadic matrix and it can be rewritten in matricial
notation:

Vν = ξ ν � ξ νy +ην � ηνy ð23Þ

where the notation indicates a vector on lowercase Greek letters and a
matrix on uppercase, while † is the conjugate transpose operator.
Being bi-dyadic the matrix possesses the eigenvectors ξν and ην by
construction. Note that ξν ,ην 2 CN , Vν 2 CN ×N and is Hermitian.

When modulation is present with an input modulation pattern ϕ

IνðϕÞ=
XN
n,m

V ν
nmϕnϕm =ϕ � Vν �ϕy ð24Þ

Note that even if Vν is a complex matrix, being Hermitian, the double
scalar product produces a real scalar because inverted sign imaginary
contributions from above and below the diagonal result eliminated
reciprocally thus producing a positive real intensity. The optical
operatorVν, associates thus the pattern/arrayϕ to the scalar Iνwhich is
ameasure of the degree of similitude ofϕ to the first eigenvector ofVν,
EIG(Vν) = ξν.

Note that to simplify the realization of the experiment, we operate
in the configuration in which each mode ν corresponds to a
single sensor. As we employ a camera to measure Iν, e the one-mode-
per-pixel configuration is obtained by properly tuning the optical
magnification.

Stochastic Hebb’s storage protocols details
By summing intensity measured at two modes ν1 and ν2, and con-
sidering linearity of the process:

Iν1 + Iν2 = ϕ � Vν1 �ϕy +ϕ � Vν2 �ϕy =

= ϕ � Jν1 ,ν2 �ϕy:
ð25Þ
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Generalizing, i.e. summing intensity at an arbitrary numberMofmodes
pertaining to the set M= fν1,ν2,:::νMg, we retrieve

IM =
XM
ν

ϕ � Vν �ϕy =ϕ � JM �ϕy ð26Þ

with

JMnm =
XM
ν

V ν
nm ð27Þ

Thus, the optical operator textbfJM associates a pattern/arrayϕ to the
scalar IM, the transformed intensity, which is a proxy of the degree of
similitude of ϕ to the first eigenvector of JM: EIG(JM)= ξM. To deliver
an user-designed arbitrary optical operator, we introduce the tailored
attenuation coefficients λν∈ [0, 1]. These can be both obtained in
“software version” (multiplying each Iν by an attenuation coefficient λν)
or by realizing a mode-specific hardware optical attenuator (such as
proposed in the sketch in Fig. 1, fuchsia windows, see below).

Transformed intensity with the addition of the attenuation coef-
ficients reads as:

IM,λ =
XM
ν

ϕ � λνVν �ϕy =ϕ � JM,λ �ϕy ð28Þ

In SHS, the absorption coefficients λ are the free parameters which
enable to design the arbitrary optical operator JM,λ. For example, to
replicate the dyadic matrix constructed with he Hebb’s rule T and
capable to store the patternϕ (see Fig 1c of themain paper) one has to
select λ so that the function

F ðM,λÞ= P
N

n,m

PM
ν

λνV ν
nm � Tnm

����
����
2

=

=DIST JM,λ,T
� � ð29Þ

is minimized. We name JM,λ
T the artificial optical synaptic matrix in

which λ have been optimized to deliver the optical operator T, and

IM,λ
T =

XM
ν

λν Iν ð30Þ

the relative transformed intensity.
This approach employs the random, naturally-occurring optical

synaptic matrices from the setM as a random basis on which to build
the target optical operator. Its effectiveness is thus dependent on the
number of free parameters with respect to the constraints. The con-
straints are the number of independent elements that have to be
tailored on T. These are Π= ðNðN � 1Þ=2 as T is symmetric. Indeed as
shown in Fig. 2 of themain paper (inset of panel b) for theN = 81 case, it
is possible to replicate almost identically T when M >Π, that is when
the number of free parameters (the λ) is comparable with the
constraints.

Storage error probability
In our storage paradigm, the stored pattern corresponds to the
eigenvector of the T. As we are employing binary patterns, the sign
operation is needed. The stored pattern is thus SEIG(JM

* ,λ
ϕ* )= ξΣ, where

the SEIG() operator retrieves thefirst eigenvalueof amatrix and applies
the sign operation to it. The Storage Error Probability reported in Figs. 3
and 2 the storage process effectiveness. First, we calculate the number
of elements of ξΣ which differ from the target memory ϕ*, S_ERR. The
value of S_ERR can be seen as the number of error pixels in the stored
pattern image.

Then we compute

Storage Error Probability= S ERR=N: ð31Þ

For storage purposes, obviously the lower, the Storage Error Prob-
ability the better.

Recognition error probability
The optical operator JM,λ

T associates the transformed intensity scalar to
each input pattern ϕ:

IM,λ
T =ϕ � JMT ,λ �ϕy: ð32Þ

we can thus employ the experimentally measured transformed inten-
sity to recognize patterns. We employed a repository of P = 5000
patterns containing digits with random orientation (https://it.
mathworks.com/help/deeplearning/ug/data-sets-for-deep-learning.
html), labeling as recognized patterns, the ones producing a trans-
formed intensity above 10 standard deviations from the values
obtained probing randomly generated binary patterns. The value
R_ERR is the number of wrongly identified patterns experimentally.

Indeed, the transformed intensity is obtained experimentally
optically presenting the pattern to our disordered classifier. The step-
by-step presentation procedure is the following: i) the probe patternϕ
is printed onto a propagating laser beam employing a DMD in binary
phase modulation mode (see experimental section), ii) light scattered
by the disordered medium is retrieved for the relevant mode/pixel set
M, iii) the transformed intensity measured by the selected sensors/
camera pixels is obtained with Eq. (30), iv) a pattern is defined as
recognized if the trained transformed intensity results higher than the
threshold. The Recognition Error Probability is then obtained as

Recognition Error Probability =R ERR=P: ð33Þ

The Supplementary Fig. 4 visualizes for the classification/recognition
process.

Note that Storage Error Probability (S_ERR) and Recognition error
probability (R_ERR) provide insights on two very different aspects of
our storage platform performance. S_ERR is essentially a storage fide-
lity observable, counting the ratio of wrong/correct pixels in the pat-
tern to be stored which differ from the target memory to be storedϕ*,
and accounts for the efficiency of our approach (the emergent storage)
to instantiate a targetmemory in amemory repository.R_ERR retrieves
recognition efficiency, thus reports on the ratio of memory retrieval
tests providing wrong memory addresses, when different input
patterns from a repository are proposed as stimuli. The S_ERR influ-
ences R_ERR: i.e. if many error are present in the pattern injected in a
repository the recognition fails. However R_ERR is also affected by
other features such as for example the order of nolinearity (we use
intensity do appreciate differences in the field thus we employ a sec-
ond order nonlinearity) which influences the capability to differentiate
similar patterns and also the structure of the repository (if the repo-
sitory contains very similar patterns then the recognition task is more
difficult). Thus the relation is not a simple proportionality, while the
two observable look at two very different aspects of the memory
process i.e. storage fidelity and recognition efficiency.

In Deep-SES instead, a single probe pattern is compared with
many memories. We performed this task with digital data analysis but
all the processes can be realized analogically, by performing pixel
selection andweighting with DMDs. In such a case the probe pattern is
directly tested against many memories: all the ones composing the
training set. For the 9 class digit classification reported in the Fig, 3969
individual memories (441 per class) have been used. Employing a DMD
with 33 kHz frame rate would mean essentially performing optical
classification in 0.1 seconds.
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Stochastic emergent storage protocol details
In SES (see code and data at35) we exploit the fact that any optical
couplingmatrixVν is a bi-dyadic thus hosting two intrinsic but random
patterns:

Vν = ξ ν � ξ νy +ην � ηνy ð34Þ

thus the optical couplingmatrix at location ν,Vν, hosts the two random
memory vectors ξν and ην.

To employ these disorder-embedded structures as memories we
resorted to the following multi step strategy.

i. We start measuring the transmission matrices from a large set of
modes employing the Complete Couplings Mapping Method
(CCMM, see below). We monitor ML = 65536 modes employing a
region of interest for the camera of 256 × 256 pixels in the one-
mode-per-pixel configuration. The retrieved transmission
matrices are saved into a computer memory and compose our
starting random structures repository ML.

ii. We computationally find the first eigenvector ξν for each mea-
sured matrix Vν

iii. The user, designs a target memory pattern to be stored ϕ* and a
number M* of modes to be employed.

iv. The target patternϕ* is compared with all the eigenvectors inML

by computing the similitude degree S:

Sν = ϕ̂
* � ξ̂ν ð35Þ

with the symbol î indicating vector normalization: î � î= 1.
v. The set of modesML is similarity-decimated to the setM*, i.e. we

select the M* modes with the higher Sν values to be part of the
new, reduced repository M*.

Once M* is realized, we need to “train” the attenuation coeffi-
cients λ. The attenuation values are selectedbetween 16 valuesdegrees
of absorption in the∈ [0, 1] range, so that they are identified with a 4
bits number.

After initializing the lambda and computing the initial configura-
tion optical operator

JM
* ,λ =

XM*

ν

λνJν ð36Þ

the λ are optimized with a Monte Carlo algorithm. At each optimiza-
tion step a single λν is modified and the change is accepted if the
eigenvector similarity function

F *ðλ,ϕ*,M*Þ= ξ̂Σ � ϕ̂
* ð37Þ

decreases. Note that in Eq. (37), ξΣ is the first eigenvector of JM
* ,λ.

After a sufficiently large number of steps F *ðλ,ϕ*,M*Þ is mini-
mized and form the final configuration of λwe obtain the final version
of the optical operator: JM

* ,λ
ϕ* .

Note that the previous procedure can be cast in a computationally
lighter version replacing some digital operations with optical mea-
surements. The similarity selection can be substituted with intensity
measurement. Indeed intensity itself is a direct measure (see Eq. (24))
of the degree of similarity of the probe patternwith the correspondent
tν vector, thus similarity selection can be substituted by an optical
operation with cost ML.

Experimental setup and CCMM
The same experimental setup is employed for two tasks. The first is
the measurement of the optical synaptic matrices Vν, the second is
to perform classification, presenting to the disordered classifier a

test pattern ϕ and retrieving the transformed intensities for each
trained memory. A sketch of the experimental setup is provided in
Supplementary Fig. 1 in supplementary information file.

We employ a single mode laser (AzurLight 532, 0,5W) with beam
to about 1 cm. Then it is fragmented into N individually modulated
light rays controlled by a Digital Micromirror Device (DMD)36 com-
posed by 1024 × 768 (Vialux, V-7000, pixel Pitch 13.68μm, 22 kHzmax
frame rate) flipping mirrors which can be tuned into two configura-
tions (on or off). Phase modulation is obtained employing the super-
pixelmethod (see refs. 23,37) which require a spatialfiltering to isolate
the selected diffraction orders. DMD pixels are organized into N
4-elements super-pixels (segments) capable to produce a 0 or π phase
pre-factors equivalent to field multiplication by ϕn =∈ { − 1, 1}. The
bundle of light rays is then scrambled by a diffusive, multiple scat-
tering medium (60μ layer of ZnO obtained from ZnO powder from
SigmaAldrich item 544906-50g, transportmean free path 8μm38). The
N super-pixels are organized on the DMD in a square array, which is
illuminated by an expanded laser Gaussian beam (diameter of about 1
cm). Indeed, the DMD surface is imaged onto the Diffusive medium
(0.3 × de-magnification). This de-magnification is required to ensure
the diffused image to fit into the selected detection camera ROI. Then,
the back layer of the disordered structure is imaged on the detection
camera (11 ×magnification). This magnification has been chosen to
minimize the speckle grain size in order to work in the one-mode-per-
pixel configuration (one-pixel-per-speckle-grain). The optical collec-
tion apparatus, does not require a particular performance, indeed we
employed a commercial, low-cost 25.45mm focal bi-convex lens for
the light collection from the far side of the sample. Several constraints
have to be considered in the experimental design. When light from a
DMD super-pixel emerges from the disordered medium, it is diffused
into a larger disk-shaped area. For this reason, we have to ensure that
each these light disks are interfering with all the disks generated by
other super-ixels in the detection camera ROI, and this introduces a
constraint on the maximum ROI size (ML). The size of these diffusion
disks is regulated by the thickness of the disordered scattering med-
ium. Nevertheless, note that increasing the scattered thickness also
decreases the light intensity on the camera and the stability of the
speckle pattern thus a trade-off between thickness and signal-stability
should be found at the experimental design step.

Superpixel method is obtained thanks to 2.66mm aperture iris in
front of the DMD. As shown in Eq. (19) when two DMD mirrors are
activated:

Iνn,m = Eν2
n + Eν2

m +2ξνnξ
ν
m +2ην

nη
ν
m: ð38Þ

while if a single segment is activated

Iνn = E
ν2
n : ð39Þ

Thus putting together Eq. (38) and Eq. (39) one obtains

V ν
nm = ξνnξ

ν
m +ην

nη
ν
m =

Iνnm � Iνn � Iνm
2

: ð40Þ

Thus to determine one single element of the optical synaptic
matrix, one has to perform three intensity measurements. The total
number of measurement to reconstruct the full synaptic matrix is
Π =N(N − 1)/2 (as V ν

nm =V ν
mn i.e. the optical synaptic matrix is sym-

metric then just the above-the-diagonal elements need to be mea-
sured). For N = 256 this means that 32896measurements are required,
which can be obtained in maximum 5 minutes employing our DMD-
Camera experimental setup (speed bottleneck from the camera sensor
whichworks at ~ 150 frames per second). At eachmeasurementwe take
a image from a Region Of Interest (ROI) of 256× 256 pixels, thus col-
lecting info for ML = 65536 modes. This measurement realizes modes,
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random memories and optical synaptic matrix for the database ML.
Experimental data are organized into a 32896 × 256× 256 matrix. In
our case increasing the size of N or ML is limited by the size of the
Random Access Memory size of the computing workstation.

Satistics and reproducibility
In error bars in Figs. 2–4 represent standard error, obtained realizing
10 different target matrices T for each M/N value, and measuring
standard deviation σ for each dataset and calculating standard error as
ERR= σ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10� 1Þ

p
. T matrices where blindly and randomly extracted

at each measure from a 5000 elements pattern repository. No statis-
tical method was used to predetermine sample size. No data were
excluded from the analyses.

Data availability
Experimental and generated data related to the generated in this study
are deposited in the GitHub repository at the address https://doi.org/
10.5281/zenodo.1022234435.

Code availability
Code realized in this study are deposited in the GitHub repository at
the address https://doi.org/10.5281/zenodo.1022234435.
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