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Observation and manipulation of quantum
interference in a superconducting Kerr
parametric oscillator

Daisuke Iyama1,2,7, Takahiko Kamiya1,2,7, Shiori Fujii1,2,7, Hiroto Mukai 2,3,
Yu Zhou2, Toshiaki Nagase1,2, Akiyoshi Tomonaga 2,3, Rui Wang 2,3,
Jiao-Jiao Xue2,4, Shohei Watabe 5, Sangil Kwon 3 & Jaw-Shen Tsai2,3,6

Quantum tunneling is the phenomenon that makes superconducting circuits
“quantum”. Recently, there has been a renewed interest in using quantum
tunneling in phase space of a Kerr parametric oscillator as a resource for
quantum information processing. Here, we report a direct observation of
quantum interference induced by such tunneling and its dynamics in a planar
superconducting circuit through Wigner tomography. We experimentally
elucidate all essential properties of this quantum interference, such as map-
ping from Fock states to cat states, a temporal oscillation due to the pump
detuning, as well as its characteristic Rabi oscillations and Ramsey fringes.
Finally,weperformgateoperations asmanipulationsof theobservedquantum
interference. Our findings lay the groundwork for further studies on quantum
properties of superconducting Kerr parametric oscillators and their use in
quantum information technologies.

The quantum tunneling of charge or flux degrees of freedom, once
studied for academic interest1,2, is now the basis of superconducting
quantum technology3–8. Controlling quantum tunneling in phase
space is also the key to theHamiltonian engineering of a Kerr nonlinear
resonator with a two-photon pump, commonly referred to as a Kerr
parametric oscillator (KPO)9,10. In recent years, extensive research
has been dedicated to exploring the properties of this exotic
driven quantum system due to its promising applications in quantum
computation11–17, quantum annealing18–25, and quantum error
correction26–29.

This potential usefulness relies on three fundamental properties
of a KPO: (i) Schrödinger cat states are formed by quantum tunneling
between two states confined by the Hamiltonian itself, yielding an
interference pattern in Wigner tomography within a classically for-
bidden region12,18,26,30–33. (Throughout this work, we refer to this inter-
ference pattern in phase space as quantum interference.) (ii)

Conventional Fock-state encoding and cat-state encoding exhibit one-
to-one mapping that preserves quantum coherence. (iii) Gate opera-
tions on the cat states are simple and intuitive, akin to those on a two-
level system (TLS). These properties distinguish cat states in a
KPO from other cat states generated by different methods, such as
dynamic generation34–36, interaction with a TLS37,38, and dissipation
engineering39–41.

Although there have been numerous experimental works on a
superconducting KPO42–46, which is the systemof our interest, andnow
it is being actively used for practical applications47–50, only a few
experimental works on its intrinsic quantum properties have been
reported51–54. In particular, experimental observation of the quantum
interference remains elusive. The first experimental attempt to
observe such quantum interference was reported in Ref. 51. However,
the state characterization method used in this work, transient power
spectral density33, requires the system to strongly couple to the
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environment. As a result, quantum coherence is significantly sup-
pressed, making adiabatic cat state generation difficult12,18,26,33,55,56.
Another approach, taken in Ref. 52, involves using a readout resonator
for state characterization, thus preserving the quantum coherence of
the KPO. Although this work demonstrated mapping from Fock states
to cat states and single-qubit gate operations, these demonstrations
relied on support from simulations, as the dispersive readout does not
provide full information on the quantum state of the KPO during the
activation of the pump.

In this work, we develop methods for complete quantum state
characterization of a planar superconducting KPO. We report direct
experimental observations of the quantum interference and demon-
strations of mapping from Fock states to cat states via Wigner tomo-
graphy (Lutterbach–Davidovich method57) without any supports from
simulations or prior assumptions.We also investigate dynamics of this
quantum interference by observing a temporal oscillation induced by

the pump detuning as well as Rabi oscillations and Ramsey fringes of
cat states. Finally, we implement single-qubit gate operations. We
characterize the mapping and gate operation by quantum process
tomography (QPT).

Results
System characterization
Standard techniques for the state characterization of a super-
conducting TLS and quantum harmonic oscillator (QHO) are currently
dispersive measurement and Wigner tomography, respectively. The
problem of dispersive measurement is that the dispersive shift of an
ancillaryQHO,often called a readout resonator,maybe very small for a
system of our interest, whose self-Kerr coefficient is typically less than
1% of its transition frequency6. Therefore, we utilize an ancillary non-
linear system58, a transmon (Fig. 1a), whose nonlinearity is orders of
magnitude greater than thatof the target KPO38. The coupling between

Fig. 1 | System characterization. a Rendered drawing of the chip and its circuit
diagram. A cross symbol represents a Josephson junction. The KPO (orange) is
composed of a series of 10DC superconducting quantum interference devices (DC
SQUIDs) with a shunting capacitor. This series of DC SQUIDs is indicated by two
crosses with dots. The transmon (green) is capacitively coupled to the KPO. The
readout resonator (purple) is a quarter-wavelength resonator. The system para-
meters can be found in Supplementary Table 1. b Pulse sequence for Rabi oscilla-
tions and Wigner tomography. The control parameters for the Rabi oscillation
measurements are shown in magenta. “π” and “π/2” mean the transmon π- and

π/2-pulses, respectively. For the Wigner tomography, the first pulse in the KPO
drive (empty orange pulse) is the Fock state preparation pulse. The Wigner
tomography pulse sequence is used to obtain the data in Figs. 2 and 3. The pulse
conditions are summarized in Supplementary Table 2. c, d Rabi oscillations in the
0j i state population of the KPO driven by the drive (c) and the pump (d). TLS and
QHO stand for two-level system and quantum harmonic oscillator, respectively.
e Energy level diagram of the KPO. The correspondence between the transitions
and the observed signals is indicated by diamonds and triangles.
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the KPO and the transmon induces photon number splitting in the
transmon spectrum (see Supplementary Fig. 3d). This allows us to
detect the population of the Fock basis59 and the number parity of the
KPO using the pulse sequences shown in Fig. 1b. While the Wigner
function represents the number parity as a function of phase-space
coordinate60, in a KPO, measuring the number parity with displace-
ment pulses does not guarantee a reliable measurement of theWigner
function.

The challenge in performing Wigner tomography on a KPO
arises from the distortion caused by non-commutativity between the
Kerr nonlinear term and the single-photon drive term used for the
displacement operation. (Hereafter, we refer to the single-photon
drive term as the drive.) Due to the rapid evolution of the quantum
state of a KPO during the displacement pulse, significant distortion
occurs in the tomography results. To address this issue, we apply
short and strong displacement pulses allowing for postprocessing to
correct the tomography distortion (see Sec. 5A in Supplementary
Information).

In a frame rotating with the frequency ωp/2, where ωp is the fre-
quency of a two-photon pump, the Hamiltonian of the KPO is given by
(see Sec. 1 in Supplementary Information for the derivation)

ĤðtÞ=_= ΔðtÞ âyâ� K
2
âyâyââ+

PðtÞ
2

âyây + ââ
� �

+βðtÞ âye�iðΔdt +ϕdÞ + â e+ iðΔdt +ϕdÞ
h i

:

ð1Þ

Here, â and ây are the ladder operators for the KPO; Δ( ≡ωK −ωp/2) is
the KPO-pumpdetuning, whereωK is the transition frequency between
the 0j i and 1j i states;K is the self-Kerr coefficient; P is the amplitude of
the pump; β is the amplitude of the drive; Δd( ≡ωd −ωp/2) is the drive-
pump detuning, where ωd is the frequency of the drive; and ϕd is the
phase of the drive relative to the half of the pump phase.

The validity of this model is confirmed by measuring Rabi oscil-
lations in the population of the KPO 0j i state (Fig. 1c). The dynamics of
the KPO are primarily governed by two parameters: β/K and P/K. In the
limit of β/K≪ 1 (with P/K =0 for simplicity), the dynamics of the KPO
closely resemble those of a TLS (the leftmost plot in Fig. 1c). The Rabi
oscillation denoted by the filled diamond is induced by the transition
between 0j i and 1j i states described in Fig. 1e. Theweak signal denoted
by the empty diamond is from the two-photon transition between 0j i
and 2j i states via four-wave mixing process. In this small β/K regime,
the KPO drive can be used to prepare the 0j i and 1j i states, as well as
their superpositions. On the other hand, in the opposite limit β/K≫ 1,
the oscillations are no longer sinusoidal (the rightmost plot in Fig. 1c).
Instead, the dynamics within the time scale significantly shorter than
the evolution driven by the Kerr (τRabi≪ 1/K) resembles those of a
coherent state as indicated by the Wigner tomography in the right
inset of Supplementary Fig. 3a.

The Rabi oscillation induced by the pump (Fig. 1d) can be
understood similarly as described in Fig. 1e. The signal denoted by
thefilled triangle is inducedby the transitionbetween 0j i and 2j i states
via three-wave mixing process, while the weak signal denoted by
the empty triangle is from the transition between 0j i and 4j i states
via six-wave mixing process. All data in Fig. 1c,d show excellent
agreement with the simulation results, thus validating the use of Eq. (1)
as the model for our KPO. (The simulation results can be found
in Supplementary Fig. 3. For all simulations in this work, QuTiP
was used61,62).

Quantum interference and mapping from Fock to cat
We generate cat states adiabatically using the pump pulse whose
profile is P sin2ðπt=2τrampÞ, where the ramping time τramp is 300ns and
P/2π = 3.13 MHz. At this pump amplitude, the KPO shows approxi-
mately−23MHz of AC Stark shift in 2ωK (see Supplementary Fig. 3c for
the measurement data). Thus, we change the pump frequency during

ramping, i.e., a chirped pump pulse, to compensate for the unwanted
frequency shift without any DC pulses. Since τramp is significantly less
than 1/K, where K/2π = 3.1 MHz after ramping up the pump, a coun-
terdiabatic pulse is also used for faster mapping63. The profile of the
counterdiabatic pulse is 0:3P sinðπt=τrampÞ. The default experimental
setting of pumpdetuning [Δ in Eq. (1)] is 1.0MHz, except for the data in
Figs. 2c and 4b.

Our key observation is an interference pattern in Wigner tomo-
graphy, the definite signature of quantum coherence64,65, of the even
cat state +Catj i in the KPO.We also demonstrate one-to-onemapping
from the cardinals in the Fock-basis Bloch sphere to those in the cat-
basis Bloch sphere (Fig. 2a) by applying thepump to the 1j i state aswell
as superpositions of 0j i and 1j i. These results are shown in Fig. 2b.
[Here, ± iCatj i � N ð +Catj i± i �Catj iÞwhere �Catj i is the odd cat state
and N is the normalization factor].

We find a clear coincidence between the theoretical position of
classical energy minima and the measured size of cat states with var-
ious Δ values as shown in Fig. 2c. This finding provides concrete evi-
dence that the interference pattern in Wigner tomography arises from
the tunneling between two states confined by the Hamiltonian itself.
[The classical energy can be obtained by replacing â and ây with
complex numbers α and α*, respectively, in Eq. (1) with β = 0. The sizes
of cat states are determined from the position where the measured
Wigner function reaches its maximum after quantum interference is
washed out].

To assess the fidelity of the mapping process from the Fock qubit
space to the cat qubit space, we employ the following procedure. First,
we obtain the density matrix of the KPO from the Wigner tomography
using a neural-network algorithm called quantum state tomography
with conditional generative adversarial network (QST-CGAN)66,67,
followed by the correction of unwanted Kerr evolution during the
tomography process. Then, we construct the effective Fock and cat
qubit density matrices from the full density matrix before and after the
application of the pump, respectively. Using these sets of effective
density matrices, we obtain the process fidelity by following the stan-
dard QPT procedure (see Fig. 6)68. The resulting process fidelity after
themapping is 0.757. Themain sources of error are attributed to single-
photon loss and fluctuations in the pump detuning, likely arising from
imperfections in AC Stark shift cancellation (see Methods for details).

Relaxation and dynamics of quantum interference
As can be seen in Fig. 2c, the Wigner tomographies of cat states no
longer exhibit the interference pattern after relaxation. A more sys-
tematic study on the relaxation process is presented in Fig. 3. We first
generate the target cat state, wait for a specific time (τrelax on the right
side of Fig. 1b), and then perform Wigner tomography. From the
tomography results, we calculate the populations of all six cardinals of
the cat Bloch sphere.

The disappearance of the interference pattern is attributed to the
reduction in the +Catj i population accompanied by an increase in the
�Catj i population as shown in Fig. 3a; the resulting state after
relaxation is a statistical mixture of two opposing cardinals. Since the
transition from +Catj i to �Catj i changes the number parity, our result
indicates that the primary relaxationmechanism is single-photon loss.
However, othermechanisms, such asmultiphoton loss and dephasing,
cannot be neglected as indicated by the decreasing population of the
qubit space (cross symbols in Fig. 3a,b).

Note that the populations of ±Coh
�� �

and ± iCatj i (the xy plane of
the Bloch sphere in Fig. 2a) oscillate with the frequencies δfx and δfy,
respectively. [Here, ±Coh

�� � � N ð +Catj i± �Catj iÞ]. The Wigner
tomography results shown in Fig. 3b indicate that these states are
nonstationary states, exhibiting tunneling back and forth from one
classical energy minimum to the other (see Supplementary Movie 1).
The resulting temporal oscillation in the quantum interference is a
textbook example of dynamics associated with quantum tunneling69.
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The relaxation times and the frequency of this oscillation were
extracted by fitting the population difference with expð�τrelax=TzÞ or
cosð2πδf xðyÞτrelax +ϕxðyÞÞ expð�τrelax=TxðyÞÞ (black solid lines), where
ϕx(y) is an offset phase. The fitting results are Tz = 4.2μs, Tx = 6.6 μs,
Ty = 6.2μs;δfx =0.313MHzandδfy = 0.320MHz, resulting in an average
value of 0.317MHz. To understand the main factor that limits the

relaxation times of the cat states, we solve the Lindblad master equa-
tion with single-photon loss. We find that, to reproduce the measured
relaxation times, the photon lifetime of the KPO must be approxi-
mately 10μs, which closely matches the measured value of 8 μs. Thus,
the relaxation times of the cat states are primarily constrained by the
intrinsic photon lifetime of the KPO.

Fig. 2 |Mapping fromFock to cat. aBloch sphere for the Fock state encoding (left)
and the cat state encoding (right). b Experimental demonstration of one-to-one
mapping from Fock states to cat states. The profile of the pump pulse is shown by
the colored solid line; thedotted line shows the counterdiabatic pulse. The scales of
Re(α) and Im(α) in Fock state tomography are both ±1.6. TheWigner tomographyof
the +Catj i state is intentionally rotated by adjusting the phase of the displacement
pulse for an aesthetic reason. c Position of the classical energy minima αc as a
function of pump detuning [Δ in Eq. (1)]. The red solid line in the upper plot shows

the theoretical values following the formula αc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP +ΔÞ=K

p
10; the solid circles

show the measured size of cat states. Error bars represent standard deviation; the
errors in Δ are caused mainly by the slow drift of ωK and frequent earthquakes in
Japan. Wigner tomographies with three representative pump detunings are shown
in the left part (before relaxation of quantum interference) and right part (after
relaxation) of (c). The open black circles in the tomographies after relaxation
indicate the classical energy minima.
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The extracted oscillation frequency indicates the difference in
quasienergy between the two lowest states with different number
parities, although their quasienergies appear as the highest values in
the lower plot of Fig. 3c because of the minus sign in front of K in Eq.
(1). (The quasienergies are eigenvalues of the system Hamiltonian in a
rotating frame.) In the upper plot of Fig. 3c, the quasienergy difference
decays exponentially along the P axis53. However, it oscillates sinu-
soidally with exponential decay along the Δ axis30,54. The calculated
quasienergy difference is 0.318 MHz—an excellent agreement with the
fitting result (the middle plot of Fig. 3c).

Given that the oscillation induced by the pump detuning corre-
sponds to the clockwise rotation on the cat Bloch sphere, it acts as a
backgroundZgate. This backgroundZgatemakes the faster relaxation
process dominant in the xy plane, resulting in almost identical Tx and
Ty values, contrary to the results in refs. 52,53.

Gate operation
Lastly, we manipulate the quantum interference of the cat states by
implementing gate operations. Since our computational basis is the
even/odd cat state, X gate operation changes the number parity.

Therefore, the X gate is implemented by the drive term11,12. Unlike the
typical X gate for a TLS, where the gate operation defines the reference
phase, the KPO already has the phase reference—the pump. Thus, we
need to sweep not only the X gate detuning Δd but also the phase
relative to the pump ϕd. The resulting Rabi oscillations in the parity of
the KPO, which we call the cat Rabi, are shown in Fig. 4a. The ϕd

dependence of the cat Rabi is consistent with the previous study52. The
three Wigner tomographies confirm the rotation along the x axis,
evolving from +Catj i to �iCatj i, and eventually reaching �Catj i. From
the simulation using Eq. (1), we extract β/2π =0.65MHz (see Supple-
mentary Fig. 7a).

Note that the Δd dependence of the cat Rabi is qualitatively dif-
ferent from that of a typical TLS Rabi as shown in Fig. 1c,d.We find that
a TLS with the transition frequency ωTLS can reproduce such a
Rabi pattern if we drive the TLS with two drive tones with opposite
detuning, i.e., ĤRd=_= ðΩR=4Þðe�iΔdTt + e+ iΔdTtÞðσ̂ + + σ̂�Þ in the rotating
frame, whereas the typical Rabi Hamiltonian for a TLS is
ĤRs=_= ðΩR=2Þðσ̂ + e

+ iΔdTt + σ̂�e
�iΔdTtÞ. (ΩR is the Rabi frequency,

ΔdT ≡ωd −ωTLS, and σ̂ ± � ðσ̂x ± iσ̂yÞ=2, where σ̂x and σ̂y are Pauli
operators. See Supplementary Fig. 7b for the simulations using these

Fig. 3 | Relaxation and temporal oscillation in quantum interference. a,
b Population of the cat qubit states along the z axis in Fig. 2a (a) and along the x and
y axes (b). The cross and empty circle indicate the sum and difference between the
populations of the states forming the qubit space, respectively. Black solid lines are
fittings (see the main text). c The lower plot shows the first six quasienergy levels E
calculated using Eq. (1) (β =0), where Eq

even is the energy of the even parity state in
the qubit space. The red and blue levels indicate the number of parities of the

states, even and odd, respectively. The quasienergy levels of the two lowest states
are enlarged in the middle plot, where Eq

odd is the energy of the odd parity state in
the qubit space. The open star in themiddle plot represents the average oscillation
frequency extracted from (b). The color in the upper plot represents
ðEq

odd � Eq
evenÞ=K . Our experimental condition P/K = 1.01 is denoted by the

dashed line.

Article https://doi.org/10.1038/s41467-023-44496-1

Nature Communications |           (2024) 15:86 5



two Hamiltonians.) This suggests that when we map the dynamics of
cat states in a KPO as that of a qubit, the drive detuning must be
symmetrized. In other words, the combination of the Kerr nonlinearity
and the pump not only generates an effective qubit space but also
mixes the pump and the drive, generating the ωp −ωd component
similar to a typical microwave mixer. This component and the original
drive frequencyωd become ± ωd � ωp=2

�� �� in the rotating frame. Theϕd

dependence can also be reproduced by replacing ΔdTt with ϕd in ĤRd.
A lesson from Fig. 3b is that the Z gate can be implemented by

control of the temporal oscillation in the quantum interference, spe-
cifically the pump detuning. Thus, we implement the Z gate by
increasing thepumpfrequency fromωp toω0

p anddecreasing it back to
ωp (chirp), while the pump amplitudewas kept constant. The profile of
the frequency modulation is ðω0

p � ωpÞsin2ðπt=τZÞ, where τZ is the Z
gate time. By adding two X/2 gates before and after the Z gate, we
observe Ramsey-like fringes in the parity of the KPO, which we call the
cat Ramsey (Fig. 4b). The Wigner tomographies show that increasing
ω0

p induces the counterclockwise rotation in the xy plane of the Bloch
sphere. (For the data in Fig. 4b, Δ/2π =0.5 MHz.)

Small background ripples in the cat Ramsey are an illustrative
example of coherent errors resulting from imperfect X/2 gates. This
imperfection arises due toβ not being sufficiently low compared to the
energy gap between the cat states and the higher excitation levels. In
our experimental conditions, the energy gap is approximately
1.4K(≈ 4.3MHz) (see Fig. 3c); therefore, the value of β/2π, which is 0.65
MHz, is small, albeit not negligibly smaller than the energy gap. Our
simulation demonstrates that under such circumstances, the β term in
Eq. (1) behaves partly like a displacement operation, leading to popu-
lation leakage. Subsequently, this error can be amplified under specific
conditions of the Z gate (see Supplementary Fig. 7c–e). Since the
energy gap increases roughly linearlywith the sizeof the cat states, it is
desirable to increase P or Δ for faster and higher-quality X gate
operation. In addition, careful selection of the Z gate condition is
crucial to mitigate the effects of such imperfections.

We characterize our gate operation by QPT. The process fidelities
after theX/2 andZ/2gate operations are0.844 and0.794, respectively.
The lower fidelity of the Z/2 gate is attributed to single-photon loss
because the gate time for the Z/2 gate is 500ns, whereas it is only 43 ns
for the X/2 gate. (For details, see Methods.)

Discussion
Rich physics and the potential usefulness of a KPO emerge from
Hamiltonian engineering by the unique combination of moderate
nonlinearity and the two-photon pump. However, a reliable char-
acterization of the quantum state of a KPO has remained challenging
because of its small nonlinearity for dispersive readout and simulta-
neously large nonlinearity for Wigner tomography.

In this work, we develop methods to resolve this problem by
employing an ancillary two-level system and an advanced microwave
pulse engineering technique. These enable us to directly observe the
quantum interference of a cat state stabilized in a superconducting
KPO through Wigner tomography. Moreover, we demonstrate one-to-
one mapping between the Fock and cat cardinals. We establish
the coincidence between the position of the classical energy minima
and the size of the cat state, confirming that the observed quantum
interference arises from tunneling between two bound states in
phase space.We also investigate relaxation processes and dynamics of
the quantum interference induced by the pump detuning, as well as
the cat Rabi and Ramsey. Finally, we implement cat-state gate opera-
tions, demonstrating our control over the quantum coherence of
the KPO.

This work experimentally reveals the essential quantum
properties of a KPO, providing a solid foundation for future research
on this system and also applicable to other driven quantum
systems31,70. Furthermore, ourKPO is a planar superconducting system,
making it useful for practical applications. We believe that the unique
quantum properties of a KPO bridge two leading paradigms in super-
conducting quantum information technology: TLS andQHOencoding.

Fig. 4 | Gate operation on the cat states. The colors represent the value of the
Wigner function at α =0, indicating the parity of the KPO. a Cat Rabi oscillations.
Wigner tomographies at times corresponding to the 0, X/2, and X gates are shown
above. b Cat Ramsey fringes. For theWigner tomography, the second X/2 gate was

not performed and is thus shown in parentheses. The pulse sequence for each
measurement is shown at the bottom, with the pulses for the Wigner tomography
are omitted for simplicity.
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Methods
Device
The chip for this work is shown in Fig. 5. The KPO (orange) ismade of a
series of asymmetric DC SQUIDs with a shunting capacitor. The reason
for using asymmetric DC SQUIDs is to minimize the flux bias depen-
dence of the Kerr coefficient while preserving resonance frequency
tunability. The transmon (green) is capacitively coupled to the KPO.
The readout resonator (purple) for the transmon is a quarter-
wavelength resonator, which couples to another quarter-wavelength
resonator to avoid the Purcell effect (Purcell filter). The devices on the
right side are not used for this study. Since the measured frequency of
the right KPO is about 140MHz lower than that of the left KPO and the
coupling strength is about 7MHz, the contribution from the right KPO
to the dynamics of the left KPO is negligible.

The quarter-wavelength resonators and shunting capacitors were
made of a 100nm Nb film on a high-resistivity silicon substrate of
450μm thickness. These devices were fabricated by maskless UV
lithography and reactive-ion etching. Then, Josephson junctions were
formed by the shadow evaporation technique using Dolan bridges.
The thicknesses of the lower and upper Al films are 60 nm and 40 nm,
respectively.

Quantum process tomography
In this work, the mapping from the Fock to cat qubit spaces and the
gate operations are characterized by the use of quantum process
tomography (QST). The procedure for our QST is shown in Fig. 6.
Although we closely followed the standard procedure68, there are two
differences: one is the useofQST-CGAN to obtain the densitymatrix of
the KPO, and the other is the use of the effective qubit density matrix
to treat the Fock and cat qubit spaces consistently. The effective qubit
density matrices are defined as

ρq
F =

0h jρF 0j i 0h jρF 1j i
1h jρF 0j i 1h jρF 1j i

� �
, ð2Þ

ρq
C =

+Cath jρC +Catj i +Cath jρC �Catj i
�Cath jρC +Catj i �Cath jρC �Catj i

� �
, ð3Þ

where ρF and ρC are the full-density matrices fromQST-CGAN with the
Kerr correction before and after applying the pump, respectively.
Here, the state basis ±Catj i was obtained by solving Eq. (1) with Δ/
2π = 1.0 MHz. Note that the effective qubit density matrices are not
normalized so as not to discard population leakage from the qubit
space. Then, we use the standard single-qubit operator basis:

~E0 =
1
2
Î, ~E1 =

1
2
X̂ , ~E2 = � i

2
Ŷ , ~E3 =

1
2
Ẑ : ð4Þ
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Fig. 5 | Figure of the chip. The figure on the right side shows the DC SQUIDs of
the KPO.
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For completeness, we provide the definitions of matrices λ and β in
Fig. 6. More detailed information can be found on p. 391 of ref. 68.

EðρjÞ=
X
k

λjkρk , ~Emρj
~E
y
n =

X
k

βmn
jk ρk : ð5Þ

The upper plot of Fig. 7 shows the process matrix obtained from ρq
F

(initial states) and ρq
C (final states). The resulting process fidelity is

0.757. If themapping is perfect, then ρq
F and ρq

C must be identical, i.e.,
the process must be fully described by the II component only.
However, there are significant XX and ZZ components indicated by
arrows. Since the X and Z operators represent the bit and phase flip
channels, respectively68, we conclude that the single-photon loss and
fluctuation in the pump detuning are responsible for the map-
ping error.

We find that about 5% of the population leak out of the qubit
space after the mapping (see the cross symbols in Fig. 3a, b).
We believe that the dominant mechanism is imperfect AC Stark shift
cancellation because a very rapid frequency modulation results in
population leakage (see Sec. 6B in Supplementary Information).
Thus, the AC Stark shift must be minimized at the stage of chip
design.

For the gate operation QPT, all cat states were prepared from
their counterparts in the Fock qubit space. This means that, once the
pump was turned on, no gate operation was performed for state
preparation to avoid any complications associated with gate opera-
tion on cat states such as the background ripples in Fig. 4b. Then, the
processmatrixwas obtained from two sets of ρq

C—each set represents
the states before and after the gate operation. The process fidelity
after theX/2 and Z/2 gate operations is 0.844 and0.794, respectively.
The lower fidelity of the Z/2 gate can be attributed to single-photon
loss as indicated by an arrow in the lower plot of Fig. 7. This is due to
the longer gate time of the Z/2 gate, which is approximately one

order of magnitude longer than that of the X/2 gate (see Supple-
mentary Table 2).

Data availability
All data are available in the main text or the supplementary materials.
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