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Vibronic effects on the quantum tunnelling
ofmagnetisation in Kramers single-molecule
magnets

Andrea Mattioni 1 , Jakob K. Staab1, William J. A. Blackmore 1,
Daniel Reta 1,2,3,4, Jake Iles-Smith5, Ahsan Nazir 5 & Nicholas F. Chilton 1

Single-molecule magnets are among the most promising platforms for
achieving molecular-scale data storage and processing. Their magnetisation
dynamics are determined by the interplay between electronic and vibrational
degrees of freedom,which can couple coherently, leading to complex vibronic
dynamics. Building on an ab initio description of the electronic and vibrational
Hamiltonians, we formulate a non-perturbative vibronic model of the low-
energy magnetic degrees of freedom in monometallic single-molecule mag-
nets. Describing their low-temperature magnetism in terms of magnetic
polarons, we are able to quantify the vibronic contribution to the quantum
tunnelling of the magnetisation, a process that is commonly assumed to be
independent of spin-phonon coupling.We find that the formation ofmagnetic
polarons lowers the tunnelling probability in both amorphous and crystalline
systems by stabilising the low-lying spin states. This work, thus, shows that
spin-phonon coupling subtly influences magnetic relaxation in single-
molecule magnets even at extremely low temperatures where no vibrational
excitations are present.

Single-moleculemagnets (SMMs) hold the potential for realising high-
density data storage and quantum information processing1–4. These
molecules exhibit a ground state comprising two states characterised
by a large magnetic moment with opposite orientations, which
represents an ideal platform for storing digital data. Slow reorientation
of this magnetic moment results in magnetic hysteresis at the single-
molecule level at sufficiently low temperatures5. The main obstacle to
extending this behaviour to room temperature is the coupling of the
magnetic degrees of freedom tomolecular and lattice vibrations, often
referred to as spin–phonon coupling6. Thermal excitation of the
molecular vibrations causes transitions between different magnetic
states, ultimately leading to a complete loss of magnetisation.
Advances in the design, synthesis and characterisation of SMMs have
shed light on the microscopic mechanisms underlying their desirable

magnetic properties, and have allowed extending the nanomagnet
behaviour to increasingly higher temperatures7–9.

The mechanism responsible for magnetic relaxation in SMMs
strongly depends on temperature. At higher temperatures, relaxation
is driven by one (Orbach) and two (Raman) phonon transitions
between magnetic sublevels10. When temperatures approach absolute
zero, all vibrations are predominantly found in their ground state.
Thus, both Orbach and Raman transitions become negligible and the
dominant mechanism is quantum tunnelling of the magnetisation
(QTM)11,12. This mechanism originates from a coherent coupling
between the two magnetic ground states, which leads to the opening
of a tunnelling gap. The tunnel coupling allows the population to
redistribute between states of opposite magnetisation and thus facil-
itates magnetic reorientation.
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While the role of vibrations in high-temperature magnetic
relaxation is well understood in terms of weak coupling rate equations
for the electronic populations13–16, the connection between QTM and
spin–phonon coupling is still largely unexplored. Some analyses have
looked at the influence of vibrations on QTM in integer-spin SMMs,
where a model spin system was used to show that spin–phonon cou-
pling could open a tunnelling gap17,18. However, QTM remains more
elusive to grasp in half-integer spin systems, such as monometallic
Dy(III) SMMs. In this case, amagnetic field is needed to break the time-
reversal symmetry of the molecular Hamiltonian and lift the degen-
eracy of the ground doublet, as a consequence of Kramers theorem19.
This magnetic field can be provided by hyperfine interaction with
nuclear spins or by dipolar coupling to other SMMs; both these effects
have been shown to affect tunnelling behaviour20–27. Once the tun-
nelling gap is opened by a magnetic field, molecular vibrations can in
principle affect its magnitude in a nontrivial way (Fig. 1a). In a recent
work, Ortu et al. analysed the magnetic hysteresis of a series of Dy(III)
SMMs, suggesting that QTM efficiency correlates with molecular
flexibility23. In anotherwork, hyperfine couplingwasproposed to assist
QTM by facilitating the interaction between molecular vibrations and
spin sublevels28. However, a clear and unambiguous demonstration of
the influence of spin–phonon coupling on QTM beyond toy-model
approaches is still lacking to this date. A reason for this shortfall is
found in the common wisdom that vibrations only cause transitions
between electronic states when thermally excited, and therefore are
unable to influencemagnetic relaxation when thermal energy is much
lower than their frequency.

In this work, we present a theoretical analysis of the effect of
molecular vibrations on the tunnelling dynamics in two prototypical
Dy(III) SMMs, ½DyðCptttÞ2�

+ 7 and [Dy(bbpen)Br]29 (Fig. 1b). Our
approach is based on a fully ab initio description of the SMM vibra-
tional environment and accounts for the spin–phonon coupling in a
non-perturbative way. In this aspect, this work represents a step for-
ward compared to previous theoretical analyses, which relied on a

simplified description of phonons as small rotational displacements of
the magnetic anisotropy axis and on a standard weak-coupling master
equation approach30. After deriving an effective low-energy model for
the relevant vibronic degrees of freedom based on a Polaron
approach31, we demonstrate that vibrations can either enhance or
reduce the quantum tunnelling gap, depending on the orientation of
the magnetic field relative to the main anisotropy axis of the SMM.
Lastly, we show that different vibrational modes can have competing
effects onQTM;dependingonhowvibrations impact the axiality of the
lowest energy magnetic doublet, they can lead to either a decrease or
an increase of the tunnelling probability. While identifying vibrations
that selectively tune QTM through the chemical design of new SMMs
goes beyond the scope of this work, our improved description of
vibronicQTMprovides a useful framework to articulate further studies
in that direction.

Results
Ab initio simulations
In this work, we investigate two representative examples of Dy(III)
SMMs and explore both amorphous and crystalline phonon environ-
ments. The first compound is ½DyðCptttÞ2�

+
, shown in Fig. 1b, top7. It

consists of a dysprosium ion Dy(III) enclosed between two negatively
charged cyclopentadienyl rings with tert-butyl groups at positions 1, 2
and 4 (Cpttt). The crystal field generated by the axial ligands makes the
states with larger angular momentum be energetically favourable,
resulting in the energy level diagram sketched in Fig. 1a. The energy
barrier separating the two degenerate ground states results in mag-
netic hysteresis, which was observed up to T = 60K7.

To single out the contribution of molecular vibrations, we focus
on a magnetically diluted sample in a frozen solution of dichlor-
omethane (DCM). Thus, our computational model consists of a sol-
vated ½DyðCptttÞ2�

+
cation (Fig. 1b, top), which provides a realistic

description of the low-frequency vibrational environment, comprised
of pseudo-acoustic vibrational modes (Supplementary Note 1). These

Fig. 1 | Quantum tunnelling in Dy(III) single-moleculemagnets. a Typical energy
level diagram of the lowest-energy Jmultiplet with angular momentum J = 15/2 in a
Dy(III) single-molecule magnet (SMM), with degenerate doublets at energies E1, E2,
etc. States are organised according to the expectation value of the total angular
momentum along the magnetic anisotropy axis Ĵz

D E
. Dipolar and hyperfine mag-

netic fields (Bint) can lift the degeneracy of the ground doublet and cause quantum
tunnelling of the magnetisation (QTM), which results in avoided crossings when
sweeping an external magnetic field Bext. Molecular vibrations can influence the
magnitude of the energy splitting Δ1. b Top: Molecular structure of ½DyðCptttÞ2�

+

surrounded by a dichloromethane (DCM) bath. Bottom: Structure of a [Dy(bbpen)
Br]molecular crystal. Only the two SMMs in the primitive unit cell are shown; violet

spheres represent Dy atoms at other lattice positions. Atoms are colour-coded as
follows: Dy (violet), Br (brown), Cl (green), O (red), N (cyan), C (grey), H (white). In
both cases, z indicates the direction of the easy axis. c Idea behind the polaron
transformation Ŝ of Eq. (6). Each spin state 10±

�� �
is accompanied by a vibrational

distortion (greatly exaggerated for visualisation), thus forming amagnetic polaron.
Vibrational states νj i are now described in terms of harmonic displacements
around the deformed structure, which depends on the state of the spin. Polarons
provide an accurate physical picturewhen the spin–phonon coupling is strong and
mostly modulates the energy of different spin states but not the coupling
between them.
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constitute the basis to consider further contributions of dipolar and
hyperfine interactions to QTM. Once the equilibrium geometry and
vibrational modes of the solvated SMM (which are in general combi-
nations of molecular and solvent vibrations) are obtained at the
density-functional level of theory, we proceed to determine the equi-
librium electronic structure via complete active space self-consistent
field spin–orbit (CASSCF-SO) calculations. The electronic structure is
projected onto an effective crystal-field Hamiltonian. The
spin–phonon couplings are obtained from a single CASSCF calculation
by computing the analytic derivatives of the molecular Hamiltonian
with respect to the nuclear coordinates15. Further details can be found
in the “Methods” section.

The second compound considered in this work is the highly stable
[Dy(bbpen)Br] (H2bbpen=N,N

0-bis(2-hydroxybenzyl)-N,N0-bis(2-
methylpyridyl)ethylenediamine), shown in Fig. 1b, bottom29. It consists
of a Dy(III) ion with pentagonal bipyramidal local geometry, with four
N and one Br atom coordinating equatorially. Two axially coordinating
O atoms give rise to strong easy-axis magnetic anisotropy. The effec-
tive barrier for magnetic reversal is around 1000K and magnetic
hysteresis was observed up to 14 K29. The small size of the unit cell and
the relatively high-symmetry space group (C2221) make this system
amenable for spin–phonon coupling calculations in a crystalline
environment. The primitive unit cell, consisting of two symmetry-
related replicas of [Dy(bbpen)Br], was optimised at the density func-
tional level of theory, and phonons were calculated using a 2 × 2 × 1
supercell expansion. The electronic structure of the Dy(III) centres was
obtained with state-average CASSCF-SO and parametrised with a
crystal field Hamiltonian. Spin–phonon couplings were obtained via
the linear vibronic coupling model15. A full account of these methods
can be found in ref. 32.

Polaron model
The lowest-energy angular momentum multiplet of a Dy(III) SMM
(J = 15/2) can be described by the ab initio vibronic Hamiltonian

Ĥ =
X
m

Em mj i mh j+
X
j

V̂ j � ðb̂j + b̂
y
j Þ+

X
j

ωj b̂
y
j b̂j , ð1Þ

where Em denotes the energy of the mth eigenstate mj i of the crystal
field Hamiltonian and V̂ j � ðb̂j + b̂

y
j Þ represent the spin–phonon cou-

pling operators. The harmonic vibrational modes are described in
terms of their bosonic annihilation (creation) operators b̂j (b̂

y
j ) and

frequencies ωj.
In the absence of magnetic fields, the Hamiltonian (1) is sym-

metric under time reversal. This symmetry results in a two-fold
degeneracy of the energy levels Em, whose corresponding eigen-
states mj i and �mj i form a time-reversal conjugate Kramers doublet.
The degeneracy is lifted by introducing a magnetic field B, which
couples to the electronic degrees of freedom via the Zeeman inter-
action ĤZee =μBgJB � Ĵ, where gJ is the Landé g-factor and Ĵ is the total
angular momentum operator. To linear order in the magnetic field,
each Kramers doublet splits into two energy levels Em ±Δm/2 corre-
sponding to the states

m+

�� �
= cos

θm
2

mj i+ eiϕm sin
θm

2
�mj i ð2Þ

m�
�� �

= � sin
θm

2
mj i+ eiϕm cos

θm
2

�mj i ð3Þ

where the energy splitting Δm and the mixing angles θm and ϕm are
determined by the matrix elements of the ZeemanHamiltonian on the
subspace f mj i, �mj ig. In addition to the intra-doublet mixing described
by Eqs. (2) and (3), the Zeeman interaction also mixes Kramers
doublets at different energies. The ground doublet acquires

contributions from higher-lying states

10±
�� �

= 1±
�� �

+
X
m≠ 1,�1

mj i mh jĤZee 1 ±
�� �

E1 � Em
+OðB2Þ: ð4Þ

These states no longer form a time-reversal conjugate doublet,
meaning that the spin-phonon coupling can now contribute to
transitions between them.

Since QTM is typically observed atmuch lower temperatures than
the energy gap between the lowest and first excited doublets (which
here is≳600K7,29) we focus on the perturbed ground doublet 10±

�� �
.

Within this subspace, the Hamiltonian Ĥ + ĤZee takes the form

Ĥeff = E1 +
Δ1

2
σ0
z +
X
j

ωj b̂
y
j b̂j

+
X
j

1h jV̂ j 1j i �wz
j σ

0
z

� �
b̂j + b̂

y
j

� �

�
X
j

wx
j σ

0
x +w

y
j σ

0
y

� �
b̂j + b̂

y
j

� �
:

ð5Þ

This Hamiltonian describes the interaction between vibrational modes
and an effective spin one-half represented by the Pauli matrices
σ 0 = ðσ0

x ,σ
0
y,σ

0
z Þ, where σ0

z = 10+
�� �

10+
� ��� 10�

�� �
10�
� ��. The vector

wj = ð< 1�
� ��Ŵ j 1+

�� �
,= 1�
� ��Ŵ j 1+

�� �
, 1 +
� ��Ŵ j 1+

�� �Þ is defined in terms of
the operator Ŵ j =

P
m≠1,�1V̂ j mj i mh jĤZee=ðEm � E1Þ+h:c:, describing the

effect of the Zeeman interaction on the spin–phonon coupling. Due to
the strong magnetic axiality of the SMM considered here, the
longitudinal component of the spin–phonon coupling wz

j dominates
over the transverse part wx

j , w
y
j . In this case, we can get a better

physical picture of the system by transforming the Hamiltonian (5) to
the polaron frame defined by the unitary operator

Ŝ= exp
X
s = ±

10s
�� � 10s

� �� X
j

ξsj b̂
y
j � b̂j

� �" #
, ð6Þ

which mixes electronic and vibrational degrees of freedom by dis-
placing the mode operators by ξ ±

j = ð 1h jV̂ j 1j i∓wz
j Þ=ωj depending on

the state of the effective spin one-half31. The idea behind this
transformation is to allow nuclei to relax around a new equilibrium
geometry, which may be different for every spin state. This lowers
the energy of the system and provides a good description of the
vibronic eigenstates when the spin–phonon coupling is approxi-
mately diagonal in the spin basis (Fig. 1c). In the polaron frame, the
longitudinal spin–phonon coupling is fully absorbed into the purely
electronic part of the Hamiltonian, while the transverse components
can be approximated by their thermal average over vibrations,
neglecting their vanishingly small quantum fluctuations (Supple-
mentary Note 2). After transforming back to the original frame, we
are left with an effective spin one-half Hamiltonian with no residual
spin–phonon coupling Heff ≈ Ĥ

ðpolÞ
eff +

P
jωj b̂

y
j b̂j, where

Ĥ
ðpolÞ
eff = E1 +

Δ1

2
σ00
z +2

X
j

1h jV̂ j 1j i
ωj

wj � σ 00: ð7Þ

The set of Pauli matrices σ 00 = Ŝ
yðσ 0 � 1vibÞŜ describe the two-level

system formed by the magnetic polarons of the form Ŝ
yj10± ijfνjgivib,

where {νj} is a set of occupation numbers for the vibrational modes of
the solvent–SMM system. These magnetic polarons can be thought of
as magnetic electronic states strongly coupled to a distortion of the
molecular geometry. They inherit the magnetic properties of the
corresponding electronic states and can be seen as the molecular
equivalent of the magnetic polarons observed in a range of magnetic
materials33–35. Polaron representations of vibronic systems have been
employed in a wide variety of settings, ranging from spin-boson
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models31,36 to photosynthetic complexes37–39, to quantum dots40–42,
providing a convenient basis to describe the dynamics of quantum
systems strongly coupled to a vibrational environment. These
methods are particularly well suited for condensed matter systems
where the electron–phonon coupling is strong but causes very slow
transitions between different electronic states, allowing exact treat-
ment of the pure-dephasing part of the electron–phonon coupling and
renormalising the electronic parameters. For this reason, the polaron
transformation is especially effective for describing our system
(Supplementary Note 3). Themost striking advantage of this approach
is that the average effect of the spin–phonon coupling is included non-
perturbatively into the electronic part of the Hamiltonian, leaving
behind a vanishingly small residual spin–phonon coupling. As a last
step, we bring the Hamiltonian in Eq. (7) into a more familiar form by
expressing it in terms of an effective g-matrix. We recall that the
quantities Δ1 and wj depend linearly on the magnetic field B via the
Zeeman Hamiltonian ĤZee. An additional dependence on the orienta-
tion of the magnetic field comes from the mixing angles θ1 and ϕ1

introduced in Eqs. (2) and (3), appearing in the states 1±
�� �

used in the
definition of wj. This further dependence is removed by transforming
the Pauli operators back to the basis f 1j i, �1

�� �g via a three-dimensional
rotation σ =Rθ1 ,ϕ1

� σ 00. Finally, we obtain

Ĥ
ðpolÞ
eff = E1 +μBB � gel +

X
j

gvib
j

 !
� σ
2
, ð8Þ

for appropriately defined electronic and single-mode vibronic g-
matrices gel and gvib

j . These are directly related to the electronic
splitting term Δ1 and to the vibronic corrections described bywj in Eq.
(7), respectively (see SupplementaryNote 2 for a thorough derivation).
Themain advantage of representing the ground Kramers doublet with
an effective spinone-half Hamiltonian is that it provides a conceptually
simple foundation for studying low-temperature magnetic behaviour
of the SMM, confining all microscopic details, including vibronic
effects, to an effective g-matrix.

Vibronic modulation of the ground Kramers doublet
We begin by considering the influence of vibrations on the Zeeman
splitting of the lowest Kramers doublet. The Zeeman splitting in the
absence of vibrations is simply given by Δ1 = μB∣B ⋅ gel∣. In the presence
of vibrations, the electronic g-matrix gel is modified by adding the
vibronic correction

P
jg

vib
j , resulting in the Zeeman splitting Δvib

1 . In
Fig. 2a we show the Zeeman splittings as a function of the orientation
of the magnetic field B for ½DyðCptttÞ2�

+
, parametrised in terms of the

polar angles (θ,ϕ). Depending on the field orientation, vibrations can
lead to either an increase or decrease of the Zeeman splitting. These
changes seem rather small when compared to the largest electronic
splitting, obtained when B is oriented along the z-axis (Fig. 1b), as
expected for a system with easy-axis anisotropy. However, they
become quite significant for field orientations close to the xy-plane,
where the purely electronic splittingΔ1 becomes vanishingly small and
Δvib
1 can be dominated by the vibronic contribution. This is clearly

shown in Fig. 2b, c where we decompose the total fieldB =Bint +Bext in
a fixed internal component Bint originating from dipolar and hyperfine
interactions, responsible for opening a tunnelling gap, and an external
part Bext which we sweep along a fixed direction across zero. When
these fields lie in the plane perpendicular to the purely electronic easy
axis, i.e. the hard plane, the vibronic splitting can be three orders of
magnitude larger than the electronic one (Fig. 2b). The situation is
reversed when the fields lie in the hard plane of the vibronic g-matrix
(Fig. 2c). We note that this effect is specific to states with easy-axis
magnetic anisotropy, however, this is the defining feature of SMMs,
such that our results should be generally applicable to all Kramers
SMMs. In fact, we observe very similar results for [Dy(bbpen)Br]
(Supplementary Note 4).

Internal fields and QTM probability
So far we have seen that spin-phonon coupling can either enhance or
reduce the tunnelling gap in the presence of a magnetic field
depending on its orientation. For this reason, it is not immediately
clear whether its effects survive ensemble averaging in a collection of
randomly oriented SMMs, such as for frozen solutions or polycrystal-
line samples considered in magnetometry experiments. In order to
check this, let us consider an ideal field-dependent magnetisation
measurement. When sweeping a magnetic field Bext at a constant rate
from positive to negative values along a given direction, QTM is typi-
cally observed as a sharp step in themagnetisation of the samplewhen
crossing the region around Bext = 011,27. This sudden change of the
magnetisation is due to anon-adiabatic spin-flip transitionbetween the
two lowest energy spin states, that occurs when traversing an avoided
crossing (see diagram in Fig. 1a, right). The spin-flip probability is given
by the celebrated Landau–Zener expression43–48, which in our case
takes the form

PLZ = 1� exp �πjΔ?j2
2jvj

� �
, ð9Þ

where we have defined v = μBdBext/dt⋅g, and Δ⊥ is the component of
Δ = μBBint⋅g perpendicular to v, while g denotes the total electronic-
vibrational g-matrix appearing in Eq. (8) (see SupplementaryNote 2 for
a derivation of Eq. (9)).

In order to fully characterise the spin–flip process, we need to
quantify the internal fields that cause QTM in Kramers SMMs, which
originate from either dipolar or hyperfine interactions. In the follow-
ing, we focus on dipolar fields, since their effects can be observed at
much higher temperatures than those required to witness hyperfine
interactions (Supplementary Note 5). Samples studied in magneto-
metry experiments typically contain a macroscopic number of SMMs,
each of which produces a microscopic dipole field. We estimate the
combined effect of these microscopic dipoles in a ½DyðCptttÞ2�

+
DCM-

frozen solution by generating random spatial configurations of SMMs
and calculating the resulting field at a specific point in space corre-
sponding to a randomly selected SMM.We repeat this process 10,000
times to obtain the internal field distribution Bint, as shown in Fig. 3a.
The orientation of this field is random and its magnitude averages
5.5mT for a SMM concentration of 170mM7 (Supplementary Note 5).

In the case of the [Dy(bbpen)Br]molecular crystal, the effect of all
Dy atoms within a 100Å radius of a central magnetic centre was con-
sidered in a 5% Dy in Y diamagnetically diluted crystallite29. Random
Dy/Y substitutions at different sites and random orientations of the
magnetising field Bext were considered to mimic a powder sample,
leading to the distribution shown in Fig. 3b with an averagemagnitude
of 4.9mT.

We then sample the distribution of internal fields to calculate the
corresponding spin-flip probabilities for a randomly oriented SMM
using Eq. (9). The effect of spin–phonon coupling on the spin–flip
dynamics of an ensemble of SMMs is shown in Fig. 3c, d. The vibronic
correction to the ground doublet g-matrix leads to a suppression of
spin–flip events (orange) compared to a purely electronic model
(blue). Despite the significant overlap between the two distributions,
spin–phonon coupling results in a ~30% drop in average spin–flip
probabilities, representedby thedashed lines inFig. 3c, d. The vibronic
suppression of QTM can be intuitively understood in terms of the
polaron energy landscape sketched in Fig. 1c: strong coupling between
spin degrees of freedom and molecular distortions can stabilise spin
states, introducing a vibrational energy cost for spin reversal; i.e. flip-
ping a spin requires reorganisation of the molecular structure.

From Fig. 3c, d, we also note that crystalline [Dy(bbpen)Br] exhi-
bitsmuch larger QTM than ½DyðCptttÞ2�

+
in frozen solution. This can be

understood in terms of the different microscopic dipole fields in the
two systems. In Supplementary Note 5 we show that Bint is perfectly
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isotropic in a frozen solution. On the contrary, due to the symmetry of
the [Dy(bbpen)Br] molecular crystal, the component of the internal
field along the intra-unit cell Dy–Dy direction survives orientational
averaging, resulting in an average transverse component of 1.2mT
(Supplementary Note 5).

Discussion
As shown above, the combined effect of all vibrations in a randomly
oriented ensemble of SMMs is to reduce QTM. However, not all
vibrations contribute to the same extent. Based on the polaron
model introduced above, vibrations with large spin–phonon cou-
pling and low frequency have a larger impact on the magnetic
properties of the ground Kramers doublet. This can be seen from Eq.
(7), where the vibronic correction to the effective ground Kramers
Hamiltonian is weighted by the factor 1h jV̂ j 1j i=ωj . Another property

of vibrations that can influence QTM is their symmetry. In mono-
metallic SMMs, QTM has generally been correlated with a reduction
of axial symmetry, either by the presence of flexible ligands or by
transverse magnetic fields. Since we are interested in symmetry only
as long as it influences magnetism, it is useful to introduce a measure
of axiality on the g-matrix, such as

AðgÞ= k g� 1
3 Trg kffiffi
2
3

q
Trg

, ð10Þ

where ∥ ⋅ ∥ denotes the Frobenius norm. This measure yields 1 for
perfect easy-axis anisotropy, 1/2 for an easy-plane system, and0 for the
perfectly isotropic case. The axiality of an individual vibrational mode
canbequantified asAj =Aðgel +gvib

j Þ bybuilding a single-mode vibronic

Fig. 2 | Zeeman splitting of the ground Kramers doublet in ½DyðCptttÞ2�
+
.

a Electronic ground doublet splitting (Δ1, top) and vibronic correction (Δvib
1 � Δ1,

bottom) as a function of the orientation of the magnetic field, parametrised in
terms of polar and azimuthal angles θ and ϕ. The polar angle θ is measured with
respect to the axis joining the cyclopentadienyl centroids, corresponding
approximately to the easy axis. The dashed (solid) line corresponds to the elec-
tronic (vibronic) hard plane. The magnitude of the magnetic field is fixed to 1 T.

b, c Electronic (dashed) and vibronic (solid) Zeeman splittingof the grounddoublet
as a function of the external field magnitude Bext in the presence of a transverse
internal field Bint = 1mT calculated from Eq. (8). External and internal fields are
perpendicular to each other and were both chosen to lie in the hard plane of either
the electronic (b, purple) or vibronic (c, green) g-matrix. The orientation of the
external (internal)field is shown for both cases as circles (crosses) in the inset in (a),
with colours matching the ones in (b) and (c).

Article https://doi.org/10.1038/s41467-023-44486-3

Nature Communications |          (2024) 15:485 5



g-matrix, analogous to the multi-mode one introduced in Eq. (8). We
might be tempted to intuitively conclude that polaron formation
always increases the axiality with respect to its electronic value
Ael =A(gel), given that the collective effect of the spin–phonon
coupling is to reduce QTM. However, when considered individually,
some vibrations can have the opposite effect of effectively reducing
the magnetic axiality.

In order to see how axiality correlates to QTM, we calculate the
single-mode spin-flip probabilities hPji. These are obtained by repla-
cing the multi-mode vibronic g-matrix in Eq. (8) with the single-mode
one gel +gvib

j , and following the same procedure detailed in Supple-
mentary Note 2. The single-mode contribution to the spin–flip prob-
ability unambiguously correlates with mode axiality, as shown in
Fig. 4a for ½DyðCptttÞ2�

+
; the correlation is even starker for crystalline

[Dy(bbpen)Br] (Fig. 4c). Vibrational modes that lead to a larger QTM
probability are likely to reduce the magnetic axiality (top-left sector).
Vice versa, those vibrationalmodes that enhance axiality also suppress
QTM (bottom-right sector).

As a first step towards uncovering the microscopic basis of this
unexpected behaviour, we single out the vibrational modes that have
the largest impact on magnetic axiality in both directions. These
vibrational modes, labelled A, B for ½DyðCptttÞ2�

+
and C, D for

[Dy(bbpen)Br], represent a range of qualitatively distinct vibrations, as
can be observed in Fig. 4b, d. In the case of ½DyðCptttÞ2�

+
, mode A is

mainly localised on one of the Cpttt ligands and features atomic dis-
placements predominantly perpendicular to the easy axis. Mode B, on
theother hand, involves axialdistortions of theCp rings and, to a lesser
extent, rotations of themethyl groups. Thus, it makes sense intuitively
that A would lead to an increased QTM probability, while the opposite
is true for B, as observed in Fig. 4a.

However, the connectionbetween themagnetic axiality defined in
Eq. (10) and vibrational motion is not always straightforward. In the
case of [Dy(bbpen)Br], mode C mainly involves a tilt of the two equa-
torial pyridyl groups. This movement disrupts axiality and enhances
QTM. On the other hand, mode D features equatorial motion of the
first coordination sphere of the Dy(III) ion, involving the movement of

Fig. 3 | Internal fields and spin-flip probability. a, b Distribution of internal field
magnitudes Bint experienced by a Dy centre due to the dipolar fields produced by
surrounding Dy centres, magnetised by a randomly oriented external fieldBext. For
½DyðCptttÞ2�

+
(a), a uniform spatial distribution of 1000 randomly oriented single-

moleculemagnets (SMMs) around a central Dy(III) was assumed, corresponding to
a 170mM solution in dichloromethane. For the [Dy(bbpen)Br] molecular crystal
(b), we considered the total dipolar field arising from all Dy centres within a 100Å

radius from a central Dy assuming 5% diamagnetic dilution. c, d Distribution of
electronic (blue) and vibronic (orange) Landau–Zener spin–flip probabilities PLZ,
calculated for a randomly oriented SMM subjected to the dipolar fields shown
above, assuming an external field sweep rate of 10Oe/s. Average values are shown
as dashed lines: (c) 0.0104 (blue) and 0.0074 (orange); (d) 0.903 (blue) and 0.618
(orange). All histograms are obtained fromanensembleof 10,000 randomexternal
field orientations and dipole arrangements.
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Br and Dy itself in the hard plane. However, this vibrational mode
induces a suppression of QTM, as seen in Fig. 4c, rather than an
increase, as would be expected based on the above symmetry argu-
ments. This shows that ΔAj does not necessarily correlate to atomic
motions, but can be a useful proxy for determining a given vibration’s
contribution to the QTM probability. In fact, the correlation between
the two quantities can be rationalised with the help of the simple toy
model presented in Supplementary Note 6. Nonetheless, we note that
the out-of-phase motion of the equatorial pyridyl groups in D pre-
serves axiality and could contribute to its efficiency at suppressing
QTM. It is also worth noting that Briganti et al. recently demonstrated
that the motion of atoms beyond the first coordination sphere of the
central Dy(III) ion can greatly influence spin dynamics in the Raman
regime through bond polarisation effects14. Performing a similar
electrostatic analysis in the context of our polaronmodel is beyond the
scope of this work; however, it represents an interesting direction for
further investigations elucidating the role of vibrations on QTM.

In conclusion, we have presented a detailed description of the
effect of molecular and solvent vibrations on the quantum tunnelling
between low-energy spin states in two different single-ion Dy(III)
SMMs, corresponding to amorphous and crystalline environments.
Our theoretical results, based on an ab initio approach, are com-
plemented by a polaron treatment of the relevant vibronic degrees of
freedom, which does not suffer from any weak spin-phonon coupling
assumption and is therefore well-suited to other strong coupling sce-
narios. We have been able to derive a non-perturbative vibronic cor-
rection to the effective g-matrix of the lowest-energy Kramers doublet,
which we have used as a basis to determine the tunnelling dynamics in
an idealised magnetic field sweep experiment, building on
Landau–Zener theory. This has allowed us to formulate the observa-
tion that spin-phonon coupling does have an influence on QTM, albeit
a subtle one (~30%), as opposed to thewidespreadbelief thatmagnetic
tunnelling is not influenced by vibrations since it only becomes
effective at low temperatures. This effect is rooted in the formation of

magnetic polarons, which results in a redefinition of the magnetic
anisotropy of the ground Kramers doublet. Our theoretical treatment
is fully ab initio and represents a significant improvement over other
theoretical descriptions of QTM which rely on weak coupling
assumptions. Lastly, we observe that specific vibrational modes can
either enhance or suppress QTM. This behaviour correlates to the
magnetic axiality of each mode, which can be used as a proxy for
determining whether a specific vibration enhances or hinders tunnel-
ling. Our analysis suggests that there may be a positive side to spin-
phonon coupling in QTM. Enhancing the coupling to specific vibra-
tions via appropriate chemical design while keeping detrimental
vibrations under control, could in principle increase magnetic axiality
and thus suppress QTM even further. However, translating this
observation into clear-cut chemical design guidelines remains an open
question, that requires the analysis of other molecular systems. As ab
initio spin–phonon coupling calculations becomemore accessible, the
approach presented here can be applied to the study of vibronic QTM
in other SMMs and thus represents a valuable tool for understanding
the role of vibrations in low-temperature magnetic relaxation.

Methods
The ab initio model of the DCM-solvated ½DyðCptttÞ2�

+
molecule is

constructed using a multi-layer approach. During geometry optimisa-
tion and frequency calculation, the system is partitioned into two
layers following the ONIOM scheme49. The high-level layer, consisting
of the SMM itself and the first solvation shell of 26 DCM molecules, is
described by density functional theory (DFT) while the outer bulk of
the DCM ball constitutes the low-level layer modelled by the semi-
empirical PM6 method. All DFT calculations are carried out using the
pure PBE exchange-correlation functional50 with Grimme’s D3 disper-
sion correction. Dysprosium is replaced by its diamagnetic analogue
yttrium for which the Stuttgart RSC 1997 ECP basis is employed51. Cp
ring carbons directly coordinated to the central ion are equipped with
Dunning’s correlation consistent triple-zeta polarised cc-pVTZ basis

Fig. 4 | Single-mode contributions to tunnelling of the magnetisation.
a, c Single-mode vibronic spin-flip probabilities plotted for each vibrational mode,
shown as a function of the mode axiality ΔAj =Aj−Ael relative to the electronic
axialityAel. Themagnitudeof the internalfield isfixed toBint = 1mTand the external
field sweep rate is 10Oe/s. The probabilities Pj

D E
are obtained by averaging over

random orientations of external and internal fields. The colour coding represents

the spin–phonon coupling strength k V̂ j k. Grey dashed lines corresponds to a
purely electronic model. a and c correspond to amorphous ½DyðCptttÞ2�

+
and

crystalline [Dy(bbpen)Br]. b, d Visual representation of the displacements induced
by the vibrational modes indicated by arrows in a and c denoted by A–D; the
corresponding vibrational frequencies are denoted by ωA,ωB,ωC,ωD.
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set and all remaining atoms with its double-zeta analogue cc-pVDZ52.
Subsequently, the electronic spin states and spin-phonon coupling
parameters are calculated at theCASSCF-SO level explicitly accounting
for the strong static correlation present in the f-shell of Dy(III) ions. At
this level, environmental effects are treated using an electrostatic
point charge representation of all DCM atoms. All DFT/PM6 calcula-
tions are carried out with GAUSSIAN version 9 revision D.0153 and the
CASSCF calculations are carried out with OPENMOLCAS version
21.0654.

The starting ½DyðCptttÞ2�
+
solvated systemwas obtained using the

solvate programme belonging to the AmberTool suite of packages,
with box as the method and CHCL3BOX as the solvent model.
Chloroform molecules were subsequently converted to DCM. From
this large system, only molecules falling within 9 Å from the central
metal atom are considered from now on. The initial disordered system
of 160 DCM molecules packed around the ½DyðCptttÞ2�

+
crystal

structure7 is pre-optimised in steps, starting by only optimising the
high-level layer atoms and freezing the rest of the system. The low-
layer atoms are pre-optimised along the same lines starting with DCM
molecules closest to the SMM and working in shells towards the out-
side. Subsequently, thewhole system is geometry optimised until RMS
(maximum) values in force and displacement corresponding to
0.00045 au (0.0003 au) and 0.0018 au (0.0012 au) are reached,
respectively. After adjusting the isotopic mass of yttrium to that of
dysprosium mDy = 162.5 u, vibrational normal modes and frequencies
of the entire molecular aggregate are computed within the harmonic
approximation.

Electrostatic atomic point charge representations of the envir-
onment DCM molecules are evaluated for each isolated solvent
molecule independently at the DFT level of theory employing the
CHarges from ELectrostatic Potentials using a Grid-based (ChelpG)
method55, which serve as a classical model of environmental effects in
the subsequent CASSCF calculations.

The evaluation of equilibrium electronic states and spin-phonon
coupling parameters is carried out at the CASSCF level including scalar
relativistic effects using the second-order Douglas–Kroll Hamiltonian
and spin–orbit coupling through the atomicmean field approximation
implemented in the restricted active space state interaction
approach56,57. The dysprosium atom is equipped with the ANO-RCC-
VTZP, the Cp ring carbons with the ANO-RCC-VDZP and the remaining
atomswith theANO-RCC-VDZbasis set58. The resolutionof the identity
approximation with an on-the-fly acCD auxiliary basis is employed to
handle the two-electron integrals59. The active space of 9 electrons in 7
orbitals, spanned by 4f atomic orbitals, is employed in a state-average
CASSCF calculation including the 18 lowest lying sextet roots which
span the 6H and 6F atomic terms.

We use our own implementation of spin Hamiltonian parameter
projection to obtain the crystal field parameters Bq

k entering the
Hamiltonian

ĤCF =
X

k = 2,4,6

Xk
q=�k

θkB
q
kO

q
k ð̂JÞ, ð11Þ

describing the 6H15/2 ground state multiplet. Operator equivalent fac-
tors and Stevens operators are denoted by θk and Oq

k ð̂JÞ, where
Ĵ= ð̂Jx ,̂Jy ,̂Jz Þ are the angular momentum components. Spin–phonon
coupling arises from changes to the Hamiltonian (11) due to slight
distortions of the molecular geometry, parametrised as

Bq
kðfXjgÞ=Bq

k +
XM
j = 1

∂Bq
k

∂Xj
X j + . . . , ð12Þ

where Xj denotes the dimensionless jth normal coordinate of the
molecular aggregate. The derivatives ∂Bq

k=∂Xj are calculated using

the linear vibronic coupling (LVC) approach described in ref. 15
based on the state-average CASSCF density-fitting gradients and
non-adiabatic coupling involving all 18 sextet roots. Finally, we
express the dimensionless normal coordinates in terms of bosonic
creation and annihilation operators as X̂ j = ðb̂j + b̂

y
j Þ=

ffiffiffi
2

p
, which

define the system part of the spin–phonon coupling operators in
Eq. (1) as

V̂ j =
1ffiffiffi
2

p
X
k,q

θk
∂Bq

k

∂Xj
Oq

k ð̂JÞ: ð13Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the Figshare
database and can be accessed at https://doi.org/10.48420/2189288760.
Source data for all figures areprovidedwith this paper. Source data are
provided with this paper.

Code availability
The code used to calculate ab initio spin-phonon couplings is part of
our in-house Python packages spin_phonon_suite and angmom_-
suite, freely available from the PyPI repository at https://pypi.org/
project/spin-phonon-suite/ and https://pypi.org/project/angmom-
suite/.
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