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rworkflows: automating reproducible
practices for the R community

Brian M. Schilder 1,2 , Alan E. Murphy 1,2 & Nathan G. Skene 1,2

Despite calls to improve reproducibility in research, achieving this goal
remains elusive even within computational fields. Currently, >50% of R
packages are distributed exclusively through GitHub. While the trend towards
sharing open-source software has been revolutionary, GitHub does not have
any default built-in checks for minimal coding standards or software usability.
This makes it difficult to assess the current quality R packages, or to con-
sistently use them over time and across platforms. While GitHub-native solu-
tions are technically possible, they require considerable time and expertise for
each developer towrite, implement, andmaintain. To address this, we develop
rworkflows; a suite of tools to make robust continuous integration and
deployment (https://github.com/neurogenomics/rworkflows). rworkflows can
be implementedbydevelopers of all skill levels using a one-timeR function call
which has both sensible defaults and extensive options for customisation.
Once implemented, any updates to the GitHub repository automatically trig-
ger parallel workflows that install all software dependencies, run code checks,
generate a dedicated documentationwebsite, and deploy a publicly accessible
containerised environment. By making the rworkflows suite free, automated,
and simple to use, we aim to promote widespread adoption of reproducible
practices across a continually growing R community.

Reproducibility is essential to the progress of research. Yet, >70% of
researchers reported being unable to reproduce previously published
results, according to a 2016 survey by Nature1. There are a variety of
reasons contributing to this including pressure to publish, selective
reporting, and methods not being reported in sufficient detail to
replicate. Due to the programmatic nature of data analysis, there are
unique opportunities to systematically maximise reproducibility and
methodological transparency in this domain. Despite this, surveys of
PubMed and GitHub have revealed that between 68 and 70% of
bioinformatics resources were never used beyond the original
publication2,3. Contributing factors may include a lack of coding
standards, changing software dependencies, insufficient documenta-
tion, and discontinued maintenance post-publication. While general
guidelines have been proposed for making software FAIR (Findable,
Accessible, Interoperable and Reusable)4, exclusively placing the

burden on individual developers to design and implement FAIR solu-
tions is insufficient to stimulate substantial progress in this direction5.
Instead, providing tools to automate FAIR protocols that can be easily
applied to a wide variety of software applications with minimal effort
and maximal reward for the individual developer are more likely to
receive widespread adoption by the scientific community.

Within the sciences, especially bioinformatics and computational
biology, R6 has become one of themost commonly used programming
languages3,7. Initiatives such as The Comprehensive R Archive Network
(CRAN), Bioconductor (Bioc)8,9, rOpenSci10,11, and R-Forge have made
great strides towards improving the accessibility and robustness of R
packages through establishing centralised repositories that require
certain coding/reproducibility standards. There are R functions to
check whether a given package meets best-practice coding standards
include rcmdcheck (for CRAN standards)12, BiocCheck (for Bioc
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standards)13, and pkgcheck (for rOpenSci standards)14. However, initi-
ally learning how to set up R packages such that they are compatible
with these standards, and manually rerunning checks to ensure they
continue to meet these standards, incur non-trivial costs in terms of
both timeand effort. Even if all checks pass onone’s localmachine, this
does not guarantee that the same software will run as expected on a
different Operating System (OS) (e.g. due to version/availability con-
flicts acrossmany software dependencies).Most journals, funders, and
institutions do not systematically check software for any meaningful
quality or reproducibility standards, nor do they check for continued
maintenance. It is therefore usually left to each research group to
decide how rigorously they test their software, a processwhich is often
opaque to users. Presently, many softwares are exclusively distributed
through GitHub, due to the ease of doing so and the perceived chal-
lenges of submitting to dedicated R package repositories such as
CRAN/Bioc/rOpenSci. Unlike these dedicated R package repositories,
GitHub does not require R packages (or any other software) to meet
any quality standards, or even install or run. In the absence of addi-
tional safeguards, this leaves even more opportunities for such soft-
wares to fail or produce erroneous results. This is problematic for not
only developers when assessing the quality and fail points of their own
software, but for all stakeholders in the R community, including users,
research groups, companies, or any downstream entity that relies on
results generated by these software.

A prevalent culture of openly sharing software source code and
study-specific analysis scripts on public repositories has undoubtedly
helped shift the computational community towards a more transpar-
ent, collaborative, and open-source model. Over the last decade,
GitHub has rapidly overtaken all other code repositories as by far the
most widely used in the fields of bioinformatics and computational
biology (>90% in 2017)3. In that time, there has been extensive inte-
gration of GitHub with other resources such as Zenodo (for example,
rworkflows Zenodo releases15) and Figshare, enabling the assignment
of persistent Digital Object Identifiers (DOIs) with public source code
(see Supplementary Information: Links for more details). At the same
time, there have been considerable developments in the scope and
depth of tools built directly into the GitHub architecture, including the
relatively recent addition of GitHub Actions (GHA). GHA allows any
user to run customised Continuous Integration/Deployment (CI/CD)
workflows directly on GitHub servers for free and can be triggered
simply by pushing updates to one’s GitHub repository as usual. These
workflows can call upon other bundled scripts hosted elsewhere on
GitHub to perform sets of related steps, called “actions”. These actions
can be triggered to automatically launch by user-selected events,
including pushes and pull requests. This ensures that every time a
change ismade to the underlying code, the software continues towork
as expected across multiple OS with a fresh install of all dependencies.
However, setting up these workflows currently takes considerable
time, effort, and technical expertise.

In an effort to promote FAIRness, as well as enhance software
usability and longevity, we developed rworkflows: a robust, reusable,
flexible and automated CI/CD suite specifically for the development of
R packages (Fig. 1). The rworkflows suite includes three main compo-
nents: (1) the templateR template: a CRAN/Bioc-compatible R package
template that automatically generates essential documentation using
package metadata, (2) the rworkflows R package: a lightweight CRAN
package to automatically setup short, customisable workflows that
trigger the rworkflows action and (3) the rworkflows action: an open-
source action available on the GHA Marketplace (see Methods for a
more detailed description of each step in the rworkflows action).
Importantly, the rworkflows action is designed to work with any R
package out-of-the-box and can be set up by a one-time call to the R
function use_workflow(). Thismeans users do not need tomanually edit
any workflow scripts, obviating the need to invest time in learning
GHA-specific syntax or configuration. In addition, the rworkflows

action produces three main resources. First, a fully containerised
installation of the R package and all of its dependencies are auto-
matically created and pushed to a container registry (e.g. GitHub
Container Registry, Docker Hub) so that users can easily install local
copies of the fully setup environment as either Docker or Singularity
containers. Second, it creates a dedicated documentation website
entirely from README files, in-code roxygen notes16 and vignettes17,
and then deploys the website to the associated GitHub repository via
GitHub Pages. Finally, a variety of status reports can be directly dis-
played in the README/landing page of the GitHub repository as bad-
ges, such as whether all GHA have been passed, code coverage reports
(i.e. what percentage of the total code has been tested), number of
downloads, last commit date18, and more. This allows maintainers and
users to immediately assess the current state of the software package.

In an effort to assist the development community in adopting
rworkflows and make it a de facto standard for R package maintainers,
we have already begun to expand its user basebymaking Pull Requests
to GitHub repositories of R packages. In particular, wehave focused on
R packages that have a large user base (e.g. Seurat19,20, Signac21, ArchR22

or are core Bioc dependencies that thousands of other softwares rely
upon (e.g. GenomicRanges23, GenomicFiles24, BSgenome25, rtracklayer26,
RSamtools27, VariantAnnotation28). We also present evidence that over
51% of all R packages currently in existence are exclusively distributed
via GitHub. This further emphasises the need for robust, GitHub-based
quality control/documentation standards that can be frictionlessly
utilised by non-experts.

Finally, in collaboration with a multi-national community of
developers we have created a step-by-step tutorial guiding users on
how to create Bioc R packages using tools including rworkflows:
https://bioconductor.github.io/bioc_mentorship_docs/bioc-
package.html

Results
rworkflows adoption
To date, rworkflows has been successfully implemented in over 149R
repositories (including forks), and downloaded over 3700 times at an
average rate of >300 downloads/month. This includes packages both
internal and external to our own research group, as well as the
rworkflows R package itself. To illustrate this, we created a graph
illustrating many of the R packages that currently use rworkflows, or
depend on packages that do (i.e. second-order dependents) (Fig. 2). As
a proxy of rworkflows’s downstream impact on the R development
community, metadata was systematically gathered from GitHub.
Totals across 58 dependents there were: 3089 stars, 758 forks, and
5,0482 downloads (across all distribution repositories).

An interactive and periodically updated version of this graph on
the dedicated rworkflowsdocumentation website (see Data availability
section). This online version also displays the metadata for each
repository when users hover the cursor over the respective node.

GitHub as a package distributor
Most developers who distribute their R packages through dedicated
repositories like CRAN, Bioc or rOpenSci still maintain a copy of their
software on GitHub for the purposes of development, collaboration
and transparency. However many packages go through a lengthy
period of development (months to years) before being eventually
accepted to one of the dedicated R package repositories. In fact, many
developers may never submit their packages to these dedicated
repositories, and depending on where and if they publish their work,
these packages can be introduced into the scientific community
without ever being thoroughly tested. As more software becomes
exclusively distributed on GitHub, there is an increased need for
GitHub-native solutions which make CI/CD seamless. Since there are
currently few to no set standards imposed by journals or GitHub, it is
incumbent upon the R developer community to provide tools which
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Fig. 1 | The rworkflows suite. Example usage of rworkflows. a Create package:
create a new R package by forking and cloning the templateR template, or use an
existing R package. b Add workflow: Install the rworkflows R package and use the
use_workflows() command to generate a workflow yaml file in the correct folder
structure. Arguments to customise the workflow are detailed in the documentation
website. c Trigger action: trigger the rworkflows GitHub Action by pushing to
GitHub. d Run the R package through the workflow on three different OS platforms
in parallel. e Inspect the results of the workflow run. If one or more workflows fail,
an email is automatically sent to the user. f If issues are found, make fixes to the
software and push again to retrigger the rworkflows action. g When all workflows
have passed, the documentation website is built using pkgdown17 and deployed via

GitHub Pages. The containerised R package is then deployed to Docker Hub.
Badges embedded intomarkdown or HTML files (e.g. README documentation) will
also be automatically updated to reflect the R package’s current status. In this
figure, a versionof the “R” logowithmodified colours is used under the termsof the
Creative Commons Attribution-ShareAlike 4.0 International license (CC-BY-SA 4.0)
(https://creativecommons.org/licenses/by-sa/4.0/). The “container” logo was cre-
ated by Pause08 and is freely available for reuse via Flaticon (https://www.flaticon.
com/free-icon/container_860142). The Codecov logo is used with permission from
Codecov. pkgdown is provided under an MIT license (https://github.com/r-lib/
pkgdown/blob/main/LICENSE.md).
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not onlymake best-practice coding, documentation and CI/CD easy to
implement, but immediately beneficial enough to incentivise devel-
opers to widely adopt these practices.

To evaluate the magnitude of need for GitHub-based solutions in
the R community, we gathered comprehensive data on where reposi-
tories R packages are hosted (Fig. 3). An upset plot was generated to
visualise how many R packages are distributed via one or multiple
repositories.Of the 50,685 Rpackageswe identified, 39.3% (19,932) are
available via CRAN, 6.9% (3515) are available via Bioc, 0.63% (318) are
available via rOpenSci, 4.3% (2176) are available via R-Forge, and 62.3%
(31,592) are availableonGitHub.Of particularnote, 51% (25,883) of all R
packages are exclusively distributed through GitHub. This is likely a

very conservative underestimate, as the data on GitHub R packages
comes from a static snapshot previously collected in February 2018,
whereas all the CRAN/Bioc/rOpenSci/R-Forge data is fully up-to-date.
Thus, over half of all R packages are currently not vetted by dedicated
R package distributors and are instead left to the developers to
determine their own standards and strategies for reproducibility.

Comparisons with usethis/biocthis
It should be noted that there have been at least two other efforts to
implement reproducible workflows for R package development via
GHA, namely the R packages usethis29 and its Bioc-oriented derivative
biocthis30. While rworkflows was heavily influenced by these packages,

Fig. 2 | Reverse dependency graph. A reverse dependency graph showing all R
package GitHub repositories (blue nodes) that currently utilise the rworkflows
action (first-order dependents) or depend on a package that does (second-order

dependents). All data was captured from October 24, 2023. An interactive, peri-
odically updated version of this graph is also available online (see Data availability
section).
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there are several key differences. First, rworkflows operates primarily
as an actionwhich ismerely called uponby a shortworkflow script that
supplies certain parameters,whereas bothusethis andbiocthis can only
generate static workflow scripts that dictate each step of the workflow
in the file itself. This distinction becomes important when updates
need tobemade (e.g. new systemdependencies, changes toR function
implementations, deprecation of certain subactions). Actions such as
rworkflows need only be updated on the centralised Github repository
(see Code availability section), which then propagates to all users
who call the rworkflows action, even if they implemented rworkflows in
their package prior to the changes. In contrast, static workflow scripts
must be updated by every user individually, and repeated for each
GitHub repository. This issue compounds on itself when tasks are split
intomultiple workflow scripts, as is the case for usethis. In some cases,
it may take a while for users to infer that the errors they’re experien-
cing are due to changes in the VM provided by the GHA server (for
example), rather than something the user is doingwrong, or eventually
abandon using the workflow entirely. That said, if users wish to
create a more customised workflow that diverges from the rworkflows
action (and only use it as an initial basis for their script), a full
workflow version can be created with rworkflows::use_work-
flow(name=”rworkflows_static”), which offers functionality analogous
to that of biocthis.

Second, users can easily control which version of the rworkflows
action to use with the tag argument to indicate a branch (e.g. “master”
for the latest version) or release tag (e.g. “v1” for a stable release ver-
sion tied to a specific commit). Workflow-based strategies like
usethis/biocthis do not enable users to to use different versions of the
same workflow, unless they reinstall a different release of the package.
In the case of biocthis, users must also reinstall all other Bioc packa-
ges each time they want to use a different version of the workflow due
to Bioc’s strongly enforced version control standards.

Third, rworkflows offers greater customisability via over 35 fully
documented arguments (see documentation website for details:
https://neurogenomics.github.io/rworkflows/reference/use_workflow.
html) that can be supplied to the use_workflow function (with sensible
defaults that work out-of-the-box). For example, these arguments
allow users to easily choose trigger branches, trigger events,
runner OS, code check types as well as the option to support act31, a
separate software for running and troubleshooting actions locally
before launching them to GitHub. In comparison, the analogous
biocthis::use_bioc_github_action() function currently has 7 arguments
and more limited customisability (biocthis v1.12.0).

Fourth, rworkflows currently has 92% code coverage via unit tests,
whereas biocthis (v1.12.0) and usethis (v2.2.2) currently have 80% and
57% code coverage, respectively (though this could improve in the
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future). Having high code coverage helps to improve package
robustness and reduces the chances that the code will break in various
use cases32–35.

Fifth, rworkflows obviates the need for a user-supplied Dockerfile
as it creates one on the fly instead (see section Container usage). This
level of abstraction serves to expand the usage of containers to those
who do not know how to successfully set them up manually, or are
unfamiliar with the Docker-specific syntax necessary to do so. None of
this is to say that the biocthis package is obsolete, but rather that it
offers other complementary features such as more fine-grained con-
trol over template creation than the all-in-one strategy adopted by
templateR, as well as automated code styling.

Finally, unlike static workflows, all the repositories in which cen-
tralised GitHub actions (e.g. rworkflows) have been implemented are
automatically recorded by GitHub. These can be accessed under the
Insights tabof the action’sGitHub repository, providing greater insight
into the scope of usage and impact of the action (see Fig. 2).

Comparisons with Bioconductor servers
The rworkflows suite is notmutually exclusive to the package checking
services provided by Bioc, which regularly run standardised checks on
multiple OS. To the contrary, rworkflows fills an important gap for
developers of Bioc packages who wish to comprehensively test their
package before pushing to the upstream Bioc copy, as the upstream
copy can take several days to rerun checks. Having an intermediate
checking solution via GitHub provides feedback within minutes or
hours, as opposed to days, thus greatly accelerating the development
cycle. While Bioc does provide a dedicated Docker container with
several prerequisite software installed (e.g. BiocManager, BiocCheck),
these containers do not have any other Bioc packages installed. In fact,
by default rworkflows uses the Bioc Docker container as a base and
then builds upon it to generate a package-specific containerised
environment ready for distribution to users. This greatly speeds up the
time it takes for anygivenuser to successfully install and start using the
developer’s R package.

Use case: MAGMA.Celltyping
Todemonstrate how rworkflows canbehelpful in practice,we use theR
package MAGMA.Celltyping (developed and maintained by our lab) as
an example36. Since first implementing rworkflows, it has revealed a
number of vulnerabilities, missing documentation, and bugs within
MAGMA.Celltyping (https://github.com/neurogenomics/MAGMA_
Celltyping/issues?q=). Some of these bugs were only visible when run
within a particular version of R (e.g. development) or on a particularOS
type. For example, the way we constructed file paths was not robust on
Windows OS, and would lead to the software being unable to find key
resources on that platform (https://github.com/neurogenomics/
MAGMA_Celltyping/issues/92). As none of the developers use Win-
dows machines, this would have been left for users to discover these
bugs and (hopefully) report them. In the meantime, some users may
have abandoned using our tool without our knowledge. Moreover,
running code coverage tests has enabled us to identify potential weak
points in our code and design tests that are capable of better assessing
these. Whenever we make changes to our code, the coverage badge in
the README automatically updates so that we (and our users) know
how robust we can expect our tool to be (currently at 75% coverage in
v2.0.11, with plans to improve this further). Finally, users of MAGMA.-
Celltyping can now bypass all installation and dependency issues with
containers automatically generated by rworkflows. The instructions for
setting up Docker/Singularity containers were also automatically
generated by rworkflows (rworkflows::use_vignette_docker()), wherein
the process of setting up MAGMA.Celltyping on any computing envir-
onment is reduced to a single copy-and-paste step (https://
neurogenomics.github.io/MAGMA_Celltyping/articles/docker).

Discussion
Most developers would agree that the FAIR principles are noble goals
worthy of striving towards. However, the costs associated with putting
these principles into practice (e.g. time, learning curves, lack of com-
putational resources) often deter developers from ever effectively
implementing them. Therefore, there is a dire need to reduce the
burden put on individual developers by automating reproducibe
practices, while at the same time increasing the amount of useful out-
put generated by such practices. This will greatly improve the overall
cost/benefit ratio of conducting reproducible science, whichwill in turn
incentivisewidespread adoption of FAIR and open practices. rworkflows
aims to do exactly this, by enabling greatly simplified implementation
of a robust GitHub-native testing, documentation, and contain-
erisation pipeline through a single R function. This makes rworkflows
usable by even novice programmers and requires exceedingly minimal
local computing power. Furthermore, rworkflows can be used in either
public or private repositories, extending its utility to pre-production or
intellectual property-sensitive packages.

There are no doubt hundreds of invaluable and high-quality R
packages that are not hosted on CRAN/Bioc/rOpenSci. Nevertheless,
assessing package usability is currently a process of trial and error,
whichamounts to a hugenumber ofwastedhours compounded across
thousands of users. rworkflows attempts to make these distinctions
more visible and immediately accessible, all while helping tomake all R
packages meet a set of minimum standards (or at least transparently
advertise that they dont yet).

Peer-reviewed journals, as well as repositories like CRAN, Bioc,
and rOpenSci, rely almost entirely on volunteer community members
to review and approve software packages for official release11,37. Each
additional cycle in the review–response process due to common and
avoidable issues can incur substantial and unnecessary delay. This is
only exacerbated by the limited time and considerable demands both
parties are faced with38,39. rworkflows serves to significantly reduce the
burden of back-and-forth troubleshooting by decreasing the pre-
valence of installation errors (through containerisation), coding bugs
(through package checks), and miscommunications (through doc-
umentation). As the exponentially expanding scientific literature con-
tinues to outpace the proportion of qualified researchers willing to
volunteer as reviewers39, making this process more efficient will
become increasingly critical for the sustainability of timely, high-
quality peer-reviewed research37,40. Therefore, journals may wish to
consider requiring tools such as rworkflows to be implemented as a
prerequisite for progressing the review process.

Code coverage is one particularly useful metric for assessing
package robustness. While the precisemeasurement of code coverage
varies slightly fromone implementation to another, it can generally be
summarised as the percentage of lines in your software’s code that are
run during unit tests (e.g. using the testthat or RUnit frameworks). This
takes into account that codewithin conditional statementsmay not be
run in all scenarios, and thus encourages developers to test the same
code using multiple sets of parameters. Assuming that the tests
themselves are valid, a code coverage of 92% could be interpreted as
“92% of its code has been systematically tested and is working as
intended”. Thus, code coverage can serve as a useful, continuous
measure of package robustness as it reduces the chances that the code
will break in various use cases32–35. The rworkflows action automatically
runs code coverage tests via covr41 and uploads a report to the
browser-based Codecov or Coverall services where users can inter-
actively explore which portions of their code are currently not being
thoroughly tested. Finally, the rworkflows::use_badges function (which
builds upon the badger package) allows developers to easily advertise
both discrete metrics (passing on CRAN/Bioc, passing rworkflows
checks) and continuous metrics (code coverage percentage) on their
GitHub landing pages.
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Providing containerised environments with all necessary depen-
dencies pre-installed and an interactive development platform (i.e.
RStudio42) eliminates virtually all installation troubleshooting. This also
helps reduce the burden of maintaining software across hundreds to
thousandsof users, eachwithoneormore slightly different computing
environments. As an additional incentive to developers, continued
maintenance of bioinformatics tools post-publication is associated
with multiple metrics of impact including increased citations3. rwork-
flows also allows users to control which versions of R, Bioc, and Python
they wish to have installed within the container. By default, it uses the
most up-to-date development versions of R/Bioc so that developers
can stay aheadof the curve and identify issues in future versions before
they have been released to the public. This is important, as it prevents
situations where developers are suddenly faced with many bugs that
are already affecting a large number of users and must be fixed
urgently.

Beyond the initial publication of an R package, rworkflows offers a
variety of benefits for different stakeholders. Automating clean and
consistent documentation website generation without any additional
effort encourages developers to keep their documentation up to date
and accessible. Having thorough documentation is not only an
invaluable resource for new users, but also trainees in the developers’
own lab, or evenwhen reteaching themselves after a long period of not
being active on the project.

In that same vein, we recognise the importance of ensuring
rworkflows itself is maintained and extended well into the foreseeable
future. We are committed to securing this vision, out of a desire to
make this resource continually available to the R community as well as
our reliance on rworkflows for all of our R packages. It is for this very
reason that the rworkflows action was designed to, whenever possible,
use subactions from well-established developer organisations (e.g.
GitHub, R Consortium, Posit, Bioc) as they have the highest likelihood
of being maintained in the long term. In addition, we have already
begun to explore multiple avenues towards open-source longevity
including (but not limited to) seeking official support/collaboration
with software repositories, user contributions, crowd-funding, corpo-
rate sponsorship, and grants for sustainable software development. All
members of the community are encouraged to voice their ideas/con-
cerns/opinions by participating in the dedicated “Longevity”Discussion
board (https://github.com/neurogenomics/rworkflows/discussions). In
any case, we are dedicated to ensuring rworkflows remains open
source, well maintained, and free. Additional features already in
development include interactive debugging within the GitHub-hosted
rworkflows action environment, maximising VM storage capacity for
resource-intensive R packages, and improved parameter flexibility
throughout.

To conclude, the rworkflows suite offers an essential toolkit
for developers and users of any experience level. This includes devel-
operswho (1) currently (or plan to) distribute their R packages through
repositories like CRAN/Bioc/rOpenSci and want to run quality checks
before resubmitting a new version for official release, (2) wish to
exclusively distribute their code through GitHub while maintaining a
high level of coding standards, (3) want to keep the documentation
updatedwithout constantmanual upkeep of a website and/or (4) want
to distribute their software in a fully reproducible Docker/Singularity
container. Furthermore, the rworkflows action is designed to be both
easy to use and flexible (through customisable parameters), thus
enabling developers to utilise it in whatever way best suits their
project-specific goals In practice, this can range from checking for
basic installability/usability of an R package, all the way to extensive
evaluation of consortia-specific coding and documentation standards
with fully automated container deployment. Therefore, rworkflowsfills
a gap that an increasing number of R developers find themselves in by
reducing the burden of effectively implementing FAIR practices, and
increasing its immediate benefits for developers and users alike.

Finally, to further expand its accessibility we have provided a series of
YouTube videos walking new users through the theory and practice of
rworkflows (https://youtube.com/@NeurogenomicsLab).

Methods
templateR template
For users who are creating a new R package from scratch, we have
provided a CRAN/Bioc-compatible template (templateR). To get star-
ted, one simply forks the template by navigating to the GitHub repo-
sitory (see Code availability section), clicking “Use this template”, and
cloning a copy of the new R package to begin editing it (Fig. 1a). The
user need only replace key metadata fields (e.g. Package, Title,
Description, URL) in the DESCRIPTION file (a required file for all R
packages). What makes this template unique is that all other compo-
nents of the package (README, vignettes, unit test setup scripts) are
programmatically autofilled based on the DESCRIPTION file. This
strategy greatly minimises redundant and error-prone aspects of R
package documentation.

Alternatively, users can start with any pre-existing R package and
skip directly to the next step: using rworkflows R package. In either
case, we have created a companionWiki page to help guide users who
are unfamiliar with the Bioc standards and offer a variety of tips and
tricks to make this process easier, which we continue to maintain (see
Code availability section).

rworkflows R package
The rworkflows R package is available on both CRAN and GitHub (see
Code availability). Workflow scripts (written in yaml format) placed
within a specific subdirectory within the GitHub repository (.github/
workflows/*.yml), dictate which actions are triggered under which
conditions. For those not familiar with creating GHA workflows,
learning the GHA-specific expressions and idiosyncrasies can be a
time-consuming and iterative process. Instead, we have abstracted this
step away by autogenerating workflow scripts from a single R com-
mand in the dedicated R package: use_workflow(). This creates a fully
functional workflow file in the correct subdirectory even with no
arguments supplied, and only needs to be run once per R package
(Fig. 1b). For greater flexibility, users can supply the function with their
preferred arguments to generate (or regenerate) a customised work-
flow script to trigger the rworkflows action. By default, the workflow
will trigger the rworkflows action (see rworkflows action section below)
upon pushes or pull requests to the remote GitHub repository. For
minor pushes (e.g. fixing a typo in the README text), one can avoid
triggering the action by simply adding the string “[skip ci]” to the
commit message. Triggers can be set to activate for specific GitHub
branches only (e.g. “main”, “master”, “devel”) or even regex expres-
sions (e.g. “RELEASE_**”), which can be quite helpful for developing
Bioc packages with regular release updates without having to modify
theworkflow script each time. Users can evenwritemultiple workflows
to the same repository, setting each to trigger via different branches
and/or with different parameters (e.g. use the RELEASE_3_18 version of
the Bioc docker container when pushing to the RELEASE_3_18 branch).
For step-by-step instructions we provide a vignette specifically
geared towards Bioc developers (https://neurogenomics.github.io/
rworkflows/articles/bioconductor.html). Finally, the use_workflow()
allows users to control exactly which specific release of the rworkflows
action theywish to trigger (via the tag argument). For a full description
of all arguments of the use_workflow() function, please refer to the
documentation website (https://neurogenomics.github.io/rworkflows/
reference/use_workflow.html).

In addition, the rworkflows R package contains other useful
functions for developers, including use_badges(), which dynamically
generates badges indicating various aspects of the software package’s
status to the documentation pages (e.g. the README file). It also pro-
vides the function use_dockerfile(), which writes a Docker recipe file
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(i.e. Dockerfile) to create a Docker image with the user’s R package
(and all of its dependencies) pre-installed). Note that this same func-
tion is called automatically in step 8 of the rworkflows action, but if a
pre-existing Dockerfile in the current working directory is detected,
this step is skipped and the pre-existing Dockerfile is used instead.
Thus, if preferred, users can have more customised control over
how their Docker container is configured. Finally, use_readme(),
use_vignette_docker() and use_vignette_getstarted() can generate auto-
filed templates for each of these R package documentation compo-
nents respectively.

rworkflows action
Once triggered by a workflow, the rworkflows action launches three
virtualmachines (VMs) in parallel to test the R package acrossmultiple
OS, including Linux,Mac, andWindows.Within each VM, the following
steps are performed (Fig. 1d):
1. Install system: Installs all OS-specific system dependencies that

account for a variety of different functionalities that R users
may require.

2. Install R: Installs all R dependencies for the R package being tes-
ted. Three rounds dependency installation are attempted using
slightly different methods to ensure robustness of this procedure
without requiring the user to manually troubleshoot this step.

3. Install LaTeX: Install a specific version of LaTeX and any extra
LaTeX packages (controlled by the arguments has_latex, tinytex_-
installer, tinytex_version, and pandoc_version).

4. Install conda: Install conda, miniconda, miniforge, or mamba
(controlled by the arguments miniforge_variant, and mini-
forge_version). Users can additionally provide a yaml file (via the
environment_file argument) with specifications for a conda envir-
onment to build and/or activate before all other downstream
code checks. This greatly simplifies the installation of not only
python packages (which some R packages may use as a backend)
but also various extra tools and system dependencies not instal-
led in previous steps. Finally, rworkflows provide a helper R
function, construct_conda_yml(), for creating new conda yaml files
for those who are unfamiliar with the formatting requirements.

5. CRAN checks: Run CRAN checks via rcmdcheck(). When
run_rcmdcheck= TRUE, all checks must pass in order for the GHA
to succeed. This step uses CRAN standards by default, but can run
rcmdcheck without CRAN standards by setting the argument
as_cran = FALSE.

6. Bioc checks: Run Bioc checks via BiocCheck(). When run_bioc =
TRUE, all checks must pass in order for the action to succeed.

7. Unit tests: Runs unit tests implemented via the testthat43 and/or
RUnit44 R packages and generates a downloadable report of the
results.

8. Code coverage: Runs code coverage tests and uploads the results
to Codecov.

9. Build website: (Re)builds the documentation website from
README files, in-line roxygen notes, and vignettes using the
pkgdown17. It then deploys the website via GitHub Pages in a new
branch named “gh-pages” in the same repository. Deploying the
website via a separate branch is advantageous as it avoids
accidentally adding large HTML/CSS/JavaScript source files and
libraries to the R package itself (which can slow down its
installation and performance in some situations).

10. Push container: Pushes a container to a container registry with
your Rpackage, all of its dependencies, and an interactive Rstudio
interface pre-installed. Included in templateR is an auto-filled
vignette for how to create a local Docker or SIngularity container.
If you’ve selected a non-default container registry (e.g. Docker
Hub), this step requires a valid authentication token from the
relevant registry, which canbe stored as aGitHubSecrets variable.

This ensures that only users with appropriate push permissions to
a given registry account can update the container there.

Steps 6-8 are only run on the Linux VM to avoid redundancy and
avoid conflicts due to simultaneous pushes to their respective repo-
sitories (i.e. Codecov, GitHub, Docker Hub).

Container usage
Containerisation is especially useful when distributing R packages to
many users using a wide variety of OS platforms, including high-
performance computing (HPC) clusters which may have software
installation restrictions for non-root users. Once the rworkflows action
has successfully completed at least once on the Linux VM, both
developers can create Docker and/or Singularity images from the
container hosted on a container registry. By default, rworkflows
pushes to the GitHub Container Registry, which has the advantage of
not requiring any additional accounts or credentials and automatically
appearing directly on the associated GitHub repository landing page
(under the section “Packages”). Alternatively, users may specify any
preferred container registry (e.g. DockerHub) using thedocker_registry
argument.

If templateRwas used as a template, a vignette detailing a step-by-
step reproducible example is autogenerated. A rendered version of
this vignette canbe accessed via the dedicatedGitHubPages site, and a
link to this vignette is automatically rendered within the templateR
template README file (see Code availability section) under the “Doc-
umentation → Docker/Singularity” subheader.

rworkflows adoption
Metadata was gathered from the GitHub application programming
interface (API) for each repository using the R packages echodeps45.
This was used to both identify which packages are currently using the
rworkflows action (i.e. dependents), and to gather relevant metadata
on each of the repositories. Of particular interest were the following
metrics; stars (the number of users that bookmarked the GitHub repo
with a star), unique clones (the number of unique instances that the
GitHub repo was downloaded from Github), and unique views (the
number unique instances the GitHub repo was viewed in a web
browser). Here, “unique” means the number of distinct internet pro-
tocol (IP) addresses. Sums of each of these metrics across all were
computed to represent the total downstream impact of rworkflows. All
dependents were visualised as nodes in a directed acyclic graph,
connecting to an additional node representing the rworkflows
action (Fig. 2).

To identify the R packages with the highest potential for down-
stream impact on other packages, we collected data on the number of
downloads for every package in CRAN and Bioc using echogithub45. We
then selected the packages with the greatest numbers of downloads
and prioritised them for making Pull Requests on their respective
GitHub repos to implement rworkflows.

An Rmarkdown script to fully reproduce these analyses, aswell as
an interactive version of the graph with additional metadata, is avail-
able as a vignette on the official rworkflows GitHub Pages doc-
umentation website (See the Code availability section for link).

GitHub as a package distributor
To comprehensively assess which repositories R packages are dis-
tributed via,we collectedmetadata on all knownRpackages frombase
R, CRAN, Bioc, rOpenSci, R-Forge, and GitHub using the package
echogithub45. The total and intersection between packages in each of
these repositories were then computed and visualised using the R
package UpSetR46 (Fig. 3).

It should be noted that the data on GitHub-hosted R packages
comes from a static snapshot previously collected in February 2018 via
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the echogithubdependency githubinstall47, whereas all the CRAN/Bioc/
rOpenSci/R-Forge data is fully up-to-date. This means that our esti-
mates of the proportion of R packages that are distributed exclusively
through GitHub are almost certainly an underestimate. An R mark-
down script to fully reproduce these analyses is available as a vignette
on the rworkflows documentation website (See the Code availability
section).

Statistics and reproducibility
For the rworkflows adoption analysis the total number of GitHub stars,
forks, and downloads were summed across all first- and second-order
dependents of rworkflows. All analysis code can be found on GitHub.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All code and data to reproduce the analyses performed in this study is
shared publicly on GitHub. The latest release of rworkflows has been
assigned the following Zenodo.

Code availability
Each component of rworkflows is freely available on GitHub15. tem-
plateR R package template: https://github.com/neurogenomics/
templateR rworkflows R package: https://github.com/neurogenomics/
rworkflows rworkflows GitHub Action: https://github.com/
marketplace/actions/rworkflows rworkflows Docker container:
https://github.com/neurogenomics/rworkflows/pkgs/container/
rworkflows rworkflows Bioconductor vignette: https://neurogenomics.
github.io/rworkflows/articles/bioconductor.html rworkflows Docker/
Singularity container vignette: https://neurogenomics.github.io/
rworkflows/articles/docker rworkflows dependency graph vignette:
https://neurogenomics.github.io/rworkflows/articles/depgraph R
package repository distribution vignette: https://neurogenomics.
github.io/rworkflows/articles/repos.
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