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Terminalmodifications independent cell-free
RNA sequencing enables sensitive early can-
cer detection and classification

Jun Wang 1,11,12, Jinyong Huang 1,2,11,12, Yunlong Hu 3, Qianwen Guo1,
Shasha Zhang1, Jinglin Tian 1, Yanqin Niu1, Ling Ji3, Yuzhong Xu4, Peijun Tang5,
Yaqin He6, Yuna Wang7, Shuya Zhang7, Hao Yang8, Kang Kang9,
Xinchun Chen 9, Xinying Li10, Ming Yang1 & Deming Gou 1

Cell-free RNAs (cfRNAs) offer an opportunity to detect diseases from a tran-
scriptomic perspective, however, existing techniques have fallen short in
generating a comprehensive cell-free transcriptome profile. We develop a
sensitive library preparation method that is robust down to 100 µl input
plasma to analyze cfRNAs independent of their 5’-endmodifications. We show
that it outperforms adapter ligation-based method in detecting a greater
number of cfRNA species. We perform transcriptome-wide characterizations
in 165 lung cancer, 30 breast cancer, 37 colorectal cancer, 55 gastric cancer, 15
liver cancer, and 133 cancer-free participants and demonstrate its ability to
identify transcriptomic changes occurring in early-stage tumors. We also
leverage machine learning analyses on the differentially expressed cfRNA
signatures and reveal their robust performance in cancer detection and clas-
sification. Our work sets the stage for in-depth study of the cfRNA repertoire
and highlights the value of cfRNAs as cancer biomarkers in clinical
applications.

Early diagnosis of malignancy offers the greatest opportunity to
improve long-term patient survival by increasing the likelihood of
cure1. Utilization of liquid biopsies for cancer detection is rapidly
gaining prominence in clinical practice2. Although cell-free DNA-based
assays interrogating somatic mutations3, fragmentation patterns4,5,
andmethylation signatures6–8 have shown high specificity in detecting
and localizing cancer, complementing them with transcriptomic
information will improve their sensitivity in diagnosing cancer at its
earliest stage. Cell-free RNAs (cfRNAs) represent a landscape of

extracellular transcripts and thus provide extensive clinical value9,10.
Alterations in cellular RNA expression are a dynamic process that can
serve as an indicator of disease11. Overexpression of specific tumor-
associated transcripts can result in amplification of tumor-derived
cfRNA signals in the blood12. The release of cfRNAs into the blood-
stream is not solely through cell death but can also occur through
dynamic signaling processes of extracellular vesicles13, expanding the
opportunities to detect cancer in individuals with limited levels of
circulating tumor DNA.
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Over the past decades, the characterization of cfRNAs has mostly
focused on microRNAs (miRNAs)14–16, which have limited tissue or
disease specificity17. Recently, there has been a rising interest in the
study ofmessenger RNAs (mRNAs),which have been shown to possess
tissue and cancer subtype specificity12 as well as cell types of origin
specificity18. mRNAs can also distinguish pre-malignant conditions of
cancer19 and evaluate pathophysiological alterations in the brain20.
Moreover,mRNA signatures havedemonstrated value inobstetric care
through early prediction of preeclampsia21–24. However, miRNA and
mRNA account for only a small fraction of the cfRNA repertoire. The
potential value of other kinds of cfRNAs in plasma remains elusive.
There are two major barriers to comprehensive cfRNA profiling. First,
large volumes ofplasma (up to 2ml) are required because the recovery
rate of cfRNAs is typically low. Second, cfRNAs are severely frag-
mented, resulting in diverse terminal modifications25. However, con-
ventional adapter ligation-based library preparation workflows are
only sensitive to RNA fragments with a 5’-phosphate (5’-P) and 3’-
hydroxyl (3’-OH) group26,27. Therefore, innovative cfRNA profiling
technologies that can efficiently handle low abundance and highly
fragmented samples are urgently needed.

Here, we develop Splint Ligation and Phosphate-independent RNA
Sequencing (SLiPiR-seq), a sensitive library preparation method that
remains reliable with as little as 100 µl of input plasma and allows pro-
filing of cfRNAs independent of their 5’-end phosphorylation, coupled
with a bioinformatics analysis pipeline (Supplementary Fig. 1) for the
discovery and absolute quantification of non-canonical small RNA
species in plasma. To verify the clinical feasibility of SLiPiR-seq, we
conduct transcriptome-wide characterizations in patients with various
cancer types and cancer-free donors, demonstrating its ability to detect
transcriptomic changes occurring in early-stage tumors. We further
carry out machine learning analyses and establish multiple models to
detect and localize different types of cancers, highlighting the strong
potential of cfRNA signatures for future clinical applications.

Results
Technology optimizations of SLiPiR-seq
To perform library preparation for highly fragmented cfRNAs, we
optimized the S-Poly(T) Plus method that was previously developed

for high-throughput small RNA profiling28–30. In brief, the input cfRNA
was subjected to 3’-end polyadenylations along with reverse tran-
scription (RT) in a one-step reaction (Fig. 1a). A custom synthetic RT
primer consisting of oligo(dT), sample barcode, and sequencing
adapter sequences was designed. cDNAwith a 5’-adapter was obtained
after the polyadenylations/RT reaction. The excess primer was then
depleted using exonuclease I (ExoI). This is a critical step as any
remaining RT primer can lead to adapter-primer ligation (~160 nt)
(Fig. 1b), which would significantly impact the ratio of informative
reads and the number of RNAs detected (Fig. 1c, Supplementary
Fig. 2a–c). Consistently, similar results were observed upon the addi-
tion of excessive RT primer (Fig. 1d, Supplementary Fig. 2d, e). Sub-
sequently, a double-stranded adapter with 3’-overhanding degenerate
nucleotides was annealed to the 3’ end of cDNA by splint ligation
(Fig. 1a). The randomized bases on the degenerate extension can
transiently hybridize to cDNA31,32. The blocking strand of the adapter
was then removed by excision of uracil residues using USER enzyme,
followed by library amplification and sequencing. Removal of the
blocking strand can significantly improve library amplification effi-
ciencyby facilitatingprimer binding (Fig. 1e, SupplementaryFig. 3a–d).
To reduce RNA/DNA loss during library preparation, we further opti-
mized SLiPiR-seq protocol by making the entire workflow compatible
within a single tube.

To generate stable and reproducible transcriptome profiles, we
extensively benchmarked SLiPiR-seq regarding plasma input volumes
(from 12.5 µl to 400 µl) and the impact of various pre-analytical con-
ditions (i.e., blood standing time before plasma separation and num-
ber of freeze/thaw cycles of the plasma). We found that the lower limit
of plasma input for reliable SLiPiR-seq results is 100 µl (Fig. 1f, Sup-
plementary Fig. 3e, f), significantly lower than the minimum require-
ment for most commercially available small RNA library preparation
kits. The ratio of unspecified reads increased as the starting plasma
volume decreased (Fig. 1g). We observed no significant difference in
the recovery of total cfRNAs among plasma samples separated after 3,
6, and 9 hours of blood collection (3 h vs. 6 h p = 0.291; 3 h vs. 9 h
p =0.189) (Supplementary Fig. 4a). Furthermore, our results showed
that cfRNAs remain stable upon one freeze/thaw cycles of plasma
(p = 0.237) (Supplementary Fig. 4b). However, the informative reads

Fig. 1 | Technology optimizations of SLiPiR-seq. a Schematic representation of
the SLiPiR-seqworkflow.bGel electrophoresis showing the effect of ExoI treatment
on the final library size. Black arrow indicates the library size derived from the
ligation between RT primer and adapter. Red arrow indicates the correct cfRNA
library size. c Effect of ExoI treatment on the number of cfRNA species detected
(RPM>0) from nine RNA types. d Effect of different concentration of RT primer
(from 1.25 nM to 80nM) on the number of cfRNA species detected and adapter-RT
primer reads ratio. e Effect of USER enzyme treatment on library amplification

efficiency. Library concentrations (ng/µl) of different amplification cycles are
shown. Points represent mean of three technical replicates. Error bars indicate
standard deviation (SD). f Gel electrophoresis showing the size of final libraries
produced by different starting input volumes of plasma (from 12.5 µl to 400 µl).
g Proportion of different kinds of cfRNAs across different starting input volumes of
plasma. For all graphs, N = 3 technical replicates were performed for all conditions,
and themean of the replicates was calculated. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-023-44461-y

Nature Communications |          (2024) 15:156 2



were significantly reduced upon more freeze/thaw cycles (p <0.001).
Correlation analysis suggested that long noncoding RNAs (lncRNAs),
mRNAs, miRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs
(snoRNAs), and transfer RNA-derived small RNAs (tsRNAs) are stable in
plasma under different pre-analytical conditions (Supplementary
Fig. 4c, d). Taken together, we determined to separate the plasma
within 3 hours of blood collection and to preserve 200 µl of aliquoted
plasma by freezing it until SLiPiR-seq was performed to ensure one
freeze/thaw cycle.

Technology assessments of SLiPiR-seq
To assess whether the sequencing results of SLiPiR-seq can accurately
represent the molecular characteristics of the plasma transcriptome,
we compared it to quantitative real-time PCR (qPCR), the gold stan-
dard technique for RNA quantification. We randomly selected varying
expression levels of cfRNAs detected by SLiPiR-seq for comparison.
Primer design was based on our previously described S-Poly(T) Plus
strategy28,29. Notably, we observed a high concordance (R =0.86)
between read counts profiled by SLiPiR-seq and Ct valuesmeasured by
qPCR (Fig. 2a, Supplementary Fig. 5, Supplementary Data 1), suggest-
ing that SLiPiR-seq can accurately profile the plasma transcriptome.

Taking advantage of the splint ligation, we hypothesized that
SLiPiR-seq could be used to profile cfRNAs independently of their 5’-
end phosphorylation, thereby providing a broader coverage of the
cfRNA repertoire. To test this hypothesis, we compared SLiPiR-seq
with an adapter ligation-based method (NEBNext Small RNA Library
Prep Set, NEBNext) using synthetic small RNAs with or without a 5’-P
group. Our findings revealed that SLiPiR-seq can reliably construct a
sequencing library regardless of the presence or absence of a 5’-P
group. However, adapter ligation of NEBNext failed when using RNAs
lacking a 5’-P group (Fig. 2b). Consistently, sequencing read counts
generated by SLiPiR-seq showed no difference between the two
groups given the same amount of library input, whereas NEBNext
exhibited sensitivity onlywhen the 5’-endphosphorylationwaspresent
(Fig. 2c, Supplementary Data 2).

We subsequently compared the two library preparation methods
to evaluate their capacity to detect cfRNAs in human plasma samples.
SLiPiR-seq detected 3.68 times more total RNA species than NEBNext
(65204 vs. 17696) with 20 million clean reads (Fig. 2d). Specifically,
17932 mRNA and 12236 lncRNA species were detected by SLiPiR-seq,
which were 4.37 and 14.34 times more than NEBNext, respectively.
More importantly, by performing a cross-analysis with tissue-specific
genes of various tissues from the Human Protein Atlas database, we
discovered that a considerable number of mRNAs detected by SLiPiR-
seq showed tissue-specific elevated expression patterns (Fig. 2e, Sup-
plementary Data 2). Compared to NEBNext, SLiPiR-seq displayed a
substantially increased proportion of mRNAs (7.9% vs. 1.9%) and
lncRNAs (8.4% vs. 0.7%) (Fig. 2f). In addition, the fragment size of
mRNAs (NEBNext: α = 3.32, β =0.10; SLiPiR-seq: α = 10.22, β =0.24, fit-
ted to Gamma distribution) and lncRNAs (NEBNext: α = 6.29, β =0.21;
SLiPiR-seq: α = 12.07, β = 0.35) exhibited smoother distribution and
broader coverage in SLiPiR-seq, as suggested from the kurtosis values
(mRNA: 13.22 for NEBNext vs. 11.25 for SLiPiR-seq; lncRNA: 30.58 for
NEBNext vs. 14.92 for SLiPiR-seq) (Fig. 2g). This finding was further
validated by analyzing the fragment length of the twenty most highly
expressed mRNA and lncRNA species (Supplementary Fig. 6a, b).
Exonic mRNA and lncRNA sequences detected by both methods were
derived from the sense orientation rather than the antisense orienta-
tion (Supplementary Fig. 6c), suggesting successful recovery of tran-
script. Our findings also indicated that SLiPiR-seq detected a broader
coverage of the 3’ end of mRNAs than NEBNext (Supplementary
Fig. 6d, e).

miRNAs emerged as the predominant RNA type (60.7%) in NEB-
Next results (Fig. 2f), consistentwith the fact that plasmamiRNAs are in
the canonical form with 5’-P and 3’-OH termini33. Although miRNAs
accounted for a lower proportion (10.3%) of total cfRNAs in SLiPiR-seq,
the expression levels of miRNAs detected by both methods were
strongly correlated (R = 0.938, Supplementary Fig. 7). We also
observed low correlations for the expression levels of other RNA types
between the two methods, because SLiPiR-seq identified a greater
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number of RNA species than NEBNext. Together, these observations
suggest that SLiPiR-seq holds great promise to uncover the biological
implications of diseases in plasma, given its enhanced detection of
more diverse and integral RNA species associated with gene expres-
sion and regulation.

Characterizations of tsRNAs, rsRNAs, and ysRNAs
Intrigued by the abundant expression of tsRNAs (14.4%), ribosomal
RNA-derived small RNAs (rsRNAs, 6.0%), and Y RNA-derived small
RNAs (ysRNAs, 9.6%) revealed by SLiPiR-seq (Fig. 2f) and recognizing
the absence of publicly available reference genome for rsRNA and
ysRNA, we purposed to establish a reference genome for cfRNAs
aligned to rRNAs andYRNAs.Wemapped the small RNAs to the parent
rRNAs (28 S, 18 S, 5.8 S, and 5 S rRNA) and Y RNAs (RNY1, RNY3, RNY4,
and RNY5) and extracted unique sequences from the outputs of
alignment to ensure a complete annotation of each rsRNA and ysRNA
(Fig. 3a). From all the samples included in this study, we detected a
total of 45397 rsRNA and 2664 ysRNA unique sequences (Supple-
mentary Data 3). Together with 28,824 unique tsRNA sequences
acquired from an online tsRNA database34, we used a custom Python
script to call the read counts of tsRNAs, rsRNAs, and ysRNAs. This

script only tallies a fragment if it aligns perfectly with a sequence in the
FASTA file (Fig. 3a).

Next, we analyzed the differences between SLiPiR-seq and NEB-
Next in characterizing tsRNAs, rsRNAs, and ysRNAs. Compared to
NEBNext, the number of amino acids corresponding to the parent
tRNAs of tsRNAs was significantly increased in SLiPiR-seq (Fig. 3b).
Furthermore, our results showed that SLiPiR-seq identified a higher
overall sequencing depth and broader coverage of the 3’ end
than NEBNext, because RNA fragments resulting from 3’ end cleavage
are more likely to lack a 5’-P group. For example, SLiPiR-seq displayed
increased read counts for tsRNAs starting at the 3’end and ending
at the anticodon position (3’-tRHs) or ending before the anticodon
position (3’-tRFs) (Fig. 3c, d)35. This finding was particularly evident
for the 3’end of 5.8 S rRNA, RNY4, and RNY5, which were undetectable
using NEBNext (Fig. 3e, f). These findings highlight the potential
of SLiPiR-seq in discovering underexplored small RNAs in blood.

Identification of cfRNA signatures for lung cancer using
SLiPiR-seq
To investigate whether SLiPiR-seq can detect differentially expressed
(DE) cfRNAs in cancer, we retrospectively profiled a discovery cohort
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containing plasma samples from 139 lung cancer (LC) patients (cases)
and 106 cancer-free individuals (controls). Transcriptome-wide com-
parison of normalized sequencing reads between the two cohorts
showed a high Pearson’s correlation (R = 0.987, p < 2.2 × 10−16), indi-
cating that SLiPiR-seq has robust reproducibility (Fig. 4a, Supple-
mentary Fig. 8). We identified 17622 DE cfRNAs (11550 gain and 6072
loss, adjusted p value < 0.1) between cases and controls based on a
negative binomial model of fragment counts (Fig. 4b, Supplementary
Fig. 9, Supplementary Data 4). The majority of DE cfRNAs have
increased expression in cancer patients, consistent with the fact that
more cfRNAs are released into the circulation in the context of cancer.
The three most abundant categories of DE cfRNAs are rsRNAs (73.4%),
tsRNAs (8.3%), and piwi-interacting RNAs (piRNAs) (8.2%) (Fig. 4c).

To enhance computational efficiency, we reduced our dataset by
filtering out non-DE cfRNAs, followed by removal of cfRNAs with low
expression levels (mean read counts <10) and minimal differences
between cases and controls (log2 fold change <0.8). Next, we com-
pared the sum of reads of the remaining DE cfRNAs between early-
stage LC patients (stage I and II,N = 81), late-stage LC patients (stage III
and IV, N = 57), and controls. We observed a significant increase in the
cumulative expression level of DE cfRNAs in early-stage LC patients
compared to controls (p = 7.10 × 10−13), and no difference (p =0.321)
between early and late-stage LC patients (Fig. 4d, Supplementary
Fig. 10). Hierarchical cluster analysis using the top fifteen DE cfRNAs of
each type revealed a higher level of DE cfRNAs in cancer patients than
in cancer-free controls (Fig. 4e). As expected, no evident differences in
the expression profiles of these cfRNAs between patients with differ-
ent cancer stageswere observed in the heatmap. These results indicate

that SLiPiR-seq can detect aberrant transcriptional events that occur
early in tumor pathogenesis, enabling SLiPiR-seq as a promising tool
for early cancer screening.

Construction of lung cancer detection models
Given that SLiPiR-seq successfully identified tumor-derivedDE cfRNAs,
we then investigated whether the utility of plasma transcriptome
profiles could detect LC. We leveraged three different strategies to
screen for candidate features: (1) filter method - “Top N”; (2) wrapper
method - “Boruta”; (3) intrinsic method - “LASSO” (see Methods for
details). To explore the potential of different kinds of RNAs in cancer
detection, we carried out a series of machine-learning analyses. Three
different algorithms (logistic regression (LR), random forest (RF), and
support vector machine (SVM)) were applied to ensure the reliability
of selected candidate features. We randomly partitioned the discovery
cohort into 80% as a training set to train a diagnosticmodel and 20% as
a test set to evaluatemodel performance. The sample partitioning and
train-test processes were repeated 100 times for all feature selection
and machine-learning analyses to avoid sampling bias. Consequently,
we obtained 27 sets of candidate features, all of which can precisely
detect LC in the training and test sets of the discovery cohort (Fig. 5a,
Supplementary Table 1a, b). Since the candidate features identified by
the LASSO method achieved the highest overall area under the recei-
ver operating characteristic curve (AUC) in the test sets, we used the
models trained with these features for subsequent validations.

To verify the performance of these models in detecting early-
stage LC, we profiled an independent validation cohort of 26 stage I LC
patients and 27 cancer-free individuals using SLiPiR-seq (Fig. 5a,
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Supplementary Table 1c). Among all candidate cfRNAs, miRNA fea-
tures detected LC with the highest accuracy (LR AUC=0.905 [inter-
quartile range (IQR) 0.895–0.912]) (Fig. 5b). mRNA features also
showed robust LC detection performance (LR AUC=0.846
[0.823–0.860]). Interestingly, the seldom studied snRNA (SVM AUC=
0.903 [0.893–0.911]), snoRNA (LR AUC=0.788 [0.772–0.798]), and
tsRNA (SVMAUC=0.741 [0.721–0.765]) features revealed considerably
great ability in detecting LC as well (Fig. 5b). LR and SVM models

training with rsRNA (SVM AUC=0.819 [0.786–0.843]) or ysRNA (SVM
AUC=0.793 [0.747–0.829]) features showed high AUC in LC detec-
tion. However, models trained by the RF algorithm shared no agree-
ment with these results (Supplementary Table 1c). Although the
selected lncRNA and piRNA candidates demonstrated high AUC in the
discovery cohort, none of them revealed LCdetection capability in the
validation cohort. Fifteen representative candidate cfRNAs showed
concordant expression levels in both the discovery and validation

0.25

0.50

0.75

1.00

Lung cancer patients (N=139)

Lu
ng

 c
an

ce
r r

is
k 

sc
or

es

Stage I

Stage II

Stage III

Stage IV
0.00

0.25

0.50

0.75

1.00

Study subjects in the validation cohort (N=53)

Lu
ng

 c
an

ce
r r

is
k 

sc
or

es

Lung cancer
Cancer−free

snoRNA tsRNA rsRNA ysRNA

mRNA lncRNA miRNA piRNA snRNA

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

AU
C

 in
 1

00
 it

er
at

io
ns

LR

RF

SVM

Training

Test

Validation

a

b

d e

c

m+sn+sno+ts

Specificity

Se
ns

iti
vi

ty

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

miRNA   LR     AUC=0.905
snRNA   SVM  AUC=0.903
mRNA    LR     AUC=0.846
snoRNA LR     AUC=0.788
tsRNA    SVM  AUC=0.741

mi+sn+sno

0.7

0.8

0.9

1.0

m
i+

sn
+s

no
m

+m
i+

sn
+s

no
m

i+
sn

+s
no

+t
s

m
+m

i+
sn

m
i+

sn

m
+m

i+
sn

+s
no

+t
s

m
+m

i+
sn

o
m

i+
sn

o
m

+m
i+

sn
+t

s
m

i+
sn

+t
s

m
i+

sn
o+

ts
m

+m
i+

sn
o+

ts
m

+m
i

m
+m

i+
ts

m
+s

n+
sn

o+
ts

m
+s

n+
sn

o
m

+s
n

m
+s

n+
ts

sn
+s

no
+t

s
m

+s
no

+t
s

sn
+s

no
sn

+t
s

m
i+

ts
m

+s
no m

i
sn

o+
ts

m
+t

s m sn sn
o ts

AU
C

 in
 L

R
 m

od
el

s

Discovery−test
Validation

Fig. 5 | Evaluation of cfRNA signatures in early-stage lung cancer detection.
a Area under the ROC curve (AUC) of nine different types of cfRNAs using three
dissimilarmachine learning classifiers (LR, RF, SVM) over 100model iterations. The
results in the 80% training set and 20% test set of the discovery cohort and the
independent validation cohort (N = 26 cases and N = 27 controls) are shown. b ROC
curves constructed from the median performance of 100 model iterations. The
results of miRNA, snRNA, snoRNA, mRNA, and tsRNA in the validation cohort are
shown. c AUC of Ridge regularized LR models constructed from different combi-
nations ofmRNAs,miRNAs, snRNAs, snoRNAs, and tsRNAs in the test set (blue) and

the validation cohort (red). All models were repeated 100 times. d Lung cancer risk
scores of different cancer stage (according to the AJCC/UICC 7th Edition) of LC
patients predicted by 100 iterations of LR models trained with the “mi+sn+sno”
panel. e Lung cancer risk scores of individual study subjects in the validation cohort
predicted by 100 iterations of LRmodels trainedwith the “m+sn+sno+ts”panel. For
all boxplots, the extremes of the boxes define the upper and lower quartiles, and
the center lines define themedian. Whiskers indicate 1.5× interquartile range (IQR).
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-44461-y

Nature Communications |          (2024) 15:156 6



cohorts (Supplementary Fig. 11). These observations indicate that
SLiPiR-seq is promising in identifying not only commonly studied
(miRNAs andmRNAs) but also rarely reported (snoRNAs, snRNAs, and
tsRNAs) cfRNAs as cancer biomarkers.

Combination of multiple types of cfRNAs achieved higher
accuracy
Intrigued by the fact that cancer is a highly heterogeneous disease and
that SLiPiR-seq has detected multifarious types of DE cfRNAs, we
wondered if combiningdifferentRNAcategoriesmight improvemodel
accuracy. To this end, we tested all possible combinations of the five
types of candidate cfRNAs (aka. 29 mRNAs, 26 miRNAs, 10 snRNAs,
19 snoRNAs, and 38 tsRNAs, Supplementary Data 5) that have suc-
cessfully undergone the ordeal of all three machine learning algo-
rithms, resulting a total of 31 different combinations. We found that
the combination ofmultiple RNA types providedmore accurate results
than using a single RNA type in most cases (Supplementary Fig. 12,
Supplementary Data 6), suggesting that the combination strategy is
beneficial for model performance.

To identify the best combination, we focused on the LR algorithm
for calculating AUC, model sensitivity and specificity, and cancer risk
scores in subsequent analyses. The top three most accurate combi-
nations ranked by the median of AUC in the test set and validation
cohort were “mi+sn+sno” (AUC =0.979), “m+mi+sn+sno” (AUC =
0.970) and “mi+sn+sno+ts” (AUC=0.970) (Fig. 5c). Next, we calcu-
lated the “risk scores” (aka.model-predicted probabilities) for all study
subjects using the top panel “mi+sn+sno”. Of the 137 individuals in the
discovery cohort who were assigned a high median risk score (≥0.5),
134 were true LC patients in the real world (97.81% specificity) (Sup-
plementary Fig. 13a).Meanwhile, 134of 139LCpatients in thediscovery
cohort were correctly diagnosed by this panel (96.40% sensitivity). As
expected, we observed no evident differences in the model-predicted
AUC and risk scores between early- and late-stage cancer patients
(Fig. 5d, Supplementary Fig. 13b, c). In the validation cohort, all LC
patients were diagnosed as high-risk individuals (100% sensitivity).
However, the specificity of this panel is low in the validation cohort, 7
out of 33 individuals diagnosed as high-risk were not LC patients in the
real world (78.79% specificity) (Supplementary Fig. 13d).

In the context of cancer screening, specificity often assumes a
heightened importance than sensitivity. By ranking the specificities of
all combinations (Supplementary Data 6), we identified an optimal
panel for lung cancer screening in the general population. The “m+sn
+sno+ts” panel shows 100% specificity and 99.28% sensitivity in the
discovery cohort, and 95.24% specificity and 76.92% sensitivity in the
validation cohort (Fig. 5e, Supplementary Fig. 13e). Prioritizing speci-
ficity can mitigate the multifaceted consequences of false-positive
results, ensuring a more efficient and patient-centered approach to
healthcare. These findings demonstrate the robust performance of
cfRNA signatures in early-stage LC detection achieved by the integra-
tion of multiple types of cfRNAs.

Establishment of cancer classification models
To ascertain the clinical feasibility of SLiPiR-seq, we further explored
its ability to identify cfRNA signatures for cancer classification. We
expanded our study to encompass a pan-cancer patient cohort, com-
prising 30 breast cancer (BRC) patients, 37 colorectal cancer (CRC)
patients, 55 gastric cancer (GC) patients, and 15 liver cancer (HCC)
patients. The high Pearson correlation coefficients of the tran-
scriptome profiles from distinct subject cohorts demonstrate that
SLiPiR-seq can produce stable results under varying temporal and
spatial conditions (Supplementary Table 2). We performed differential
expression analyses for each cancer type in a one-class versus-other-
classes paradigm (Supplementary Data 4), followed by LASSO LR to
select discriminative features from the five RNA categories of interest
(aka. mRNA, miRNA, snRNA, snoRNA, and tsRNA). Consequently, we

identifiedfive cancer type-specific panels (aka. 21-cfRNABRCpanel, 33-
cfRNA CRC panel, 36-cfRNA GC panel, 33-cfRNA HCC panel, and 30-
cfRNA LC panel) (Fig. 6a, Supplementary Fig. 14, Supplementary
Data 5). Visualization using t-distributed stochastic neighbor embed-
ding (t-SNE) revealed clear separation based on cancer type (Fig. 6b).
We also combined all cancer patients as a group named “cancers” to
compare with cancer-free donors and identified 65 cfRNAs that were
commonly upregulated in all five cancer types studied. Subsequently,
we conducted one-class versus-other-classes machine learning ana-
lyses on the six sets of candidates and observed high AUC values for
the held-out test set samples across all classes (Fig. 6c, Supplemen-
tary Fig. 15).

We then assessed cancer risk scores as well as five cancer type-
specific risk scores for all subjects. Notably, cancer-free individuals
(NOR) exhibited low median risk scores in all six panels (Fig. 6d). All
cancer patients exhibited high cancer risk scores in the 65-cfRNA
common cancer panel. Furthermore, patients with a particular cancer
type had high-risk scores only in the corresponding cancer type-
specific panel but had low risk scores in the non-corresponding panels
(Fig. 6d, Supplementary Fig. 16, Supplementary Data 7). The afore-
mentioned independent validation cohort (N = 53) was used to verify
the cancer classification performance of these panels. Remarkably, LC
patients exhibited high median cancer risk scores (cancer 65 cfRNAs
panel) and LC risk scores (LC 30 cfRNAs panel) while maintaining low
risk scores in the BRC, CRC, GC, and HCCmodels (Fig. 6e). Cancer-free
individuals had lowmedian risk scores in all sixmodels (Fig. 6e). Of the
27 cancer-free individuals, seven were erroneously assigned high
cancer risk scores. Interestingly, only one was misclassified as GC but
the remaining six cancer-free individuals had low risk scores in all five
cancer type-specific models (Supplementary Data 7). This observation
suggests that a two-step verification process could enhance the spe-
cificity of the cancer detection assay. A diagnosis should only bemade
when both the common cancer risk scores and at least one of the
cancer type-specific risk scores are high. However, impaired sensitivity
is expected as such a strategy will misclassify some real LC patients
with only one positive risk scores. Collectively, these results demon-
strate that cfRNA signatures identified by SLiPiR-seq are promising in
the classification of different cancer types, motivating us to validate
the clinical utility of SLiPiR-seq in larger sample cohorts in future
investigations.

Discussion
Compared to extensively investigated cfDNAasbiomarkers for disease
diagnosis and prognosis, cfRNAs are relatively poorly studied due to
the absence of a robust and standardized methodology to compre-
hensively profile the highly fragmented cell-free transcriptome.
Numerous studies have made efforts to optimize the library prepara-
tion protocol to analyze fragmented RNA with varied 5’ and 3’-
ends26,27,31,36,37. However, none of these studies has systematically con-
ducted case-control studies to validate the clinical feasibility of their
optimized protocols. In this study, we not only developed a cfRNA
profiling technology but also performed a comprehensive evaluation
of nine different types of cfRNAs across the plasma transcriptome in
cancer patients and cancer-free individuals.

This study began with benchmarking efforts to find out the opti-
mal experimental and pre-analytical conditions for SLiPiR-seq, which
will standardize the technology and set the stage for subsequent large-
scale testing using clinical samples. To determine the accuracy of
SLiPiR-seq in generating transcriptome profiles, we compared it with
the gold standard RNA quantification method qPCR and the adapter
ligation-based method NEBNext. The results of the comparisons
demonstrated a high level of concordance among these techniques,
indicating the robustness of SLiPiR-seq in capturing the RNA land-
scape. To our surprise, SLiPiR-seq identified significantly more unique
cfRNA species and a broader range of fragment size than NEBNext,
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expanding the opportunity for the identification of candidate cfRNAs
as disease biomarkers.

The use of splint ligation for small RNA library preparation has
been reported in previous studies31,38,39. It is crucial to delineate the
specific distinguishing features between SLiPiR-seq and the previous
approach. Maguire et al. employed an RNA splint ligation adapter
containing six degenerate nucleotides at the 5’ end of the RNA. This
approach effectively increases ligation efficiency compared to tradi-
tional single-stranded RNA-RNA base adapter ligation, thereby
increasing sensitivity, especially for low-input RNA libraries. However,
even with this method, 5’-phosphate modification of the RNA remains
a prerequisite for successful adapter ligation. In SLiPiR-seq, reverse
transcription is performed prior to adapter ligation. Important
sequencing elements, such as the sample barcode and the P7 primer
sequences, are added to the first-strand cDNA after reverse tran-
scription. SLiPiR-seq employs a DNA-based splint adapter that is cap-
able of ligating to the 3’ end of the cDNA, corresponding to the 5’ end
of the RNA. Consequently, this bypasses the necessity for a 5’-phos-
phate modification on the RNA.

The SLiPiR-seq technique has some limitations. First, a 3’-OH
group is required for 3’-end polyadenylations. However, due to the
random fragmentation characteristic of cfRNAs, a small fraction of
them lacking a 3’-OH group cannot be analyzed by SLiPiR-seq. Second,
modifications onRNAcandisrupt the reverse transcription reaction by
interfering with the Watson-Crick base pairing40. In the presence of a
modification, the reverse transcription enzyme may dissociate from
the RNA molecule, producing truncated reads. In the nine RNA cate-
gories investigated, tRNA molecules are extensively modified to fulfill
their crucial role in decoding genetic information41. As expected, the

majority of tsRNAs detected by SLiPiR-seq exhibit a fragment length of
18 nt because of the presence of them1Amodification at position 58 of
tRNA,which is 18 nt away from the 3’-end42. Therefore, we encountered
difficulties in accurately annotating tsRNAs due to the truncated reads.
Despite this challenge, the potential value of tsRNA signatures for
cancer detection and classification is evident. Third, circular RNAs in
plasma are not identified by SLiPiR-seq as the design of this method is
specifically sensitive to linear RNAs.

In our study, we employed three distinct machine learning algo-
rithms (LR, RF, and SVM) to assess the candidate cfRNA signatures in
the case-control studies. The convergence of results across different
algorithms underscores the strength and validity of the identified
biomarkers for their potential clinical application. Importantly, the
results of mRNAs, miRNAs, snRNAs, snoRNAs, and tsRNAs obtained
from these algorithms exhibited a high level of agreement, demon-
strating the reliability of our findings. It is important to note that the
accuracy achieved by the models in detecting early-stage lung cancer
is likely due to the retrospective study design. Therefore, the pre-
sented model accuracy does not reflect the accuracy that would be
achieved for lung cancer screening in the general population. How-
ever, the cfRNA signatures identified in our study may still hold sig-
nificant value in real-world cancer screening.

Recent studies have reported that tsRNAs can regulate cancer
progression at the post-transcriptional level through multiple
mechanisms and are thus considered critical regulators and bio-
markers of cancer43–45. When we sorted the average specificities of
different cfRNA combinations in the discovery and validation cohort,
we found that tsRNAswere present in all top five combinations (“m+sn
+sno+ts”, “m+mi+ts”, “m+sn+ts”, “sn+ts”, “m+ts”) (Supplementary
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Data 6). This finding suggests that the inclusion of tsRNAs in the
combination panel significantly enhances the specificity of the
machine-learning models in lung cancer detection. This heightened
specificity is of paramount importance in early cancer screening,
where the cost and psychological implications of false positives can be
substantial.

There are also some concerns regarding the clinical feasibility
assessment of SLiPiR-seq. First, it is important to acknowledge that
plasma samples of cases and controls were collected from different
sites, and the age and sex were not rigorously matched due to the
inherent challenges of sample collection. Therefore, the differences
observed in transcriptome profiles between cases and controlsmay be
influenced by confounding factors. However, it is worth mentioning
that differences arising from confounding factors are unlikely to be
consistently present across different cohorts. By applying our analysis
to an independent validation cohort, we aimed tominimize the impact
of such confounding factors and increase the reliability of our findings.
Second, detailed clinical information, including risk factors such as the
smoking history of cancer patients, was not systematically collected at
the participating clinical centers. Consequently, we were unable to
analyze the potential influence of these covariates on the plasma
transcriptome profiles. Third, the small sample size of the pan-cancer
patient cohort limited our ability to perform a comprehensive cancer
classification test. Further studies with more cancer types and larger
patient cohorts are needed to validate our findings.

In conclusion, wehave developed a sensitive and robust approach
for plasma transcriptome profiling that paves the way for compre-
hensive research on cfRNAs. We uncovered transcriptome landscapes
of plasma from cancer patients and cancer-free individuals. Our find-
ings require further validation in more independent cohorts, but this
proof-of-principle study provides important insights into the potential
future clinical applications of SLiPiR-seq todetect cfRNA signatures for
sensitive and accurate early cancer detection and classification.

Methods
Sample acquisition and clinical cohorts
Pooled plasma samples of healthy individuals were used in the tech-
nology optimization part. In the clinical feasibility test part, study
subjects were recruited from People’s Hospital of Bao’an Shenzhen
(N = 111 cancer-free individuals, NOR_SZBA), The Fifth People’s Hospi-
tal of Suzhou (N = 27 cancer-free individuals, NOR_SZDW), The Second
People’sHospital of Shenzhen (N = 140 lung cancer patients, LC_SZDE),
Peking University Shenzhen Hospital (N = 28 lung cancer patients,
LC_SZBU), General Hospital of Ningxia Medical University (N = 30
breast cancer patients, BRC_NXYK; N = 37 colorectal cancer patients,
CRC_NXYK; N = 55 gastric cancer patients, GC_NXYK; and N = 16 liver
cancer patients, HCC_NXYK). Inclusion criteria for cancer patients
were: (1) patient was diagnosed with cancer through histopathology;
(2) patient has not undergone tumor resection surgery or any other
form of therapy. The clinical characteristics of all study subjects are
available in Supplementary Table 3. The study protocol was reviewed
and approved by the Institutional Review Board of all participating
sites. Informed written consent was obtained from each participant
prior to sample collection.

Whole blood processing
For all cohorts, 2ml of whole blood samples were collected in EDTA
anticoagulated vacutainers. Blood was drawn in the morning from
participants who had fasted overnight. Plasma separation was done
within 3 hours of whole blood collection. Blood samples were first
centrifuged at 1600 × g for 10min at 4 °C. The plasma layer was
transferred to a clean tube and further centrifuged at 16,000 × g for
10min at 4 °C to ensure complete depletion of cell debris. The double-
spun plasma was split into 200μl aliquots and stored at −80 °C until
RNA isolation.

cfRNA extraction
Frozen plasma samples were thawed on ice prior to cfRNA extraction.
200μl of plasma samples were subjected to cfRNA extraction using
the Apostle MiniMaxTM High-Efficiency cfRNA Isolation Kit (Apostle),
following the manufacturer’s protocol with minor modifications. The
experiments were conducted throughmanual operation on the bench
up until the step involving the additionof 6.5μl of Binding Enhancer to
the 200μl supernatant. The mixture was transferred to a 96-well plate
with the prepared binding/nanoparticle solution, cfRNA Wash Solu-
tion, and 80% Ethanol (two columns) on different columns (eight
samples in parallel). The subsequent steps, includingbinding and three
rounds of magnetic nanoparticles washing, were performed using an
automated magnetic bead handling device (TANBead Nucleic Acid
Extraction System - Maelstrom 8 Autostage). After the final washing
step, the liquid phasewas transferred from the automation system to a
new 1.5ml tube, followed by the removal of any residual liquid in the
tube and air drying on a magnetic rack. Lastly, cfRNA was eluted from
the nanoparticles using 10μl of RNase-free water. Due to the trace
amounts of extracted cfRNA, it was directly employed for library
preparation.

SLiPiR-seq library preparation
Polyadenylations (poly A) and reverse transcription (RT) reactions
were performed simultaneously in a 10μl reaction system within
0.2ml PCR tubes. This system consisted of 6.75μl of cfRNA, 1.25μl of
4× poly A/RT buffer29, 1μl of 5 nM RT primer (GenScript Gene Synth-
esis, 5’-TACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
NNNNNNNNTTTTTTTTTTTTTTTTTTVN-3’), and 1μl of premixedpoly-
A polymerase (Enzymatics) and M-MLV reverse transcriptase (Fapon
Biotech). The tubewas incubated at 37 °C for 30min in a thermocycler.
The 8 nt of ‘NNNNNNNN’ in the RT primer sequence represent unique
sample barcodes. To deplete any remaining RT primer, 1μl of Exonu-
clease I (New EnglandBioLabs) was added after the poly A/RT reaction,
followed by incubation at 37 °C for 30min and 80 °C for 20min.
Single-stranded cDNA was obtained through denaturation at 95 °C
for 5min.

The 11μl RT reaction mix was then combined with a 9μl master
mix for splint ligation. Themastermix comprised 1μl of T4 DNA ligase
(New England BioLabs), 1μl of 10× T4 DNA Ligase buffer (New England
BioLabs), 2μl of 50% Polyethylene glycol 4000 (Thermo), 2μl of
10mM ATP (Enzymatics), 1μl of 10μM premixed synthetic adapter
(GenScript Gene Synthesis, 5’-CACCTCTCTAUACACUCTTUCCCUACA
CGACGCTCTUCCGATCUNNNNNN-3’ and 5’-AGATCGGAAGAGCGTCG
TGTAGGGAAAGAGTGTATAGAGAGGTG-3’), and 2μl of double-
distilled water. Splinted ligation occurred by incubating at 20 °C for
1 hour and 65 °C for 10min. To digest the blocking strand of the
adapter, 1μl of USER enzyme (New England BioLabs) was added, fol-
lowed by incubation at 37 °C for 15min.

The libraries were amplified using 2× KAPA HiFi HotStart Ready-
Mix (Roche Diagnostics) in a 50μl reaction system with synthetic
forwardprimer (5’-AATGATACGGCGACCACCGAGATCTACACCTCTCT
ATACACTCTT-3’) and reverse primer (5’- CAAGCAGAAGACGGCAT
ACGAGATGTGACTGGAGTT-3’). Amplification conditions were set as
follows: activation at 95 °C for 3min, followed by sixteen cycles of
98 °C for 20 s, 60 °C for 30 s and 72 °C for 30 s, and a final extension of
72 °C for 1min. Amplified libraries were quantified by Qubit assay with
the Equalbit 1× dsDNAHS Assay Kit (Vazyme). If the concentration of a
sample was less than 10 ng/μl, additional amplification cycles were
applied. The amplified libraries were purified using 1.8 times the
volume of AMPure XP beads (Beckman Coulter), followed by quanti-
fication of the final libraries. To reduce RNA/DNA loss, the entire
SLiPiR-seq library preparation workflow was performed within one
tube. Libraries with different sample barcodes were pooled together
and sequenced on the Illumina NovaSeq 6000 platform (HaploX,
Shenzhen) to at least 10 million paired-end reads per sample.
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Raw reads processing
The adapter, sample index, and poly-A sequences at the 3’ end of R1
raw sequencing reads were cut away using Cutadapt46. Low-quality
reads (q < 20) and reads less than 15 nt in length in the R1 file were
trimmed away using Trimmomatic47. The first 8 nt of R2 raw
sequencing reads (aka sample index), and their identities were
extracted using awk. The trimmed R1 fastq files were then split to
several subfiles based on the sample indices using a customized
python script. The R1 subfiles were used for subsequent reads call-
ing. The R2 files were discarded because their insert reads are of low
quality due to the foregoing poly-T sequences. The data processing
pipeline was accelerated by executing jobs in parallel in Linux shell
using GNU Parallel48.

Establishment of the reference genome and reads calling for
tsRNAs, rsRNAs, and ysRNAs
Since there is no existing publicly available reference genome for
rsRNAs and ysRNAs, the trimmed clean reads were aligned to the full-
length Homo sapiens ribosomal RNAs (28 S, 18 S, 5.8 S, and 5 S rRNA)
and Y RNAs (RNY1, RNY3, RNY4, and RNY5) sequences obtained from
NCBI with zero mismatch tolerance (--score-min C,0) using Bowtie249.
Small RNA fragments mapped to rRNAs and Y RNAs were considered
as rsRNA and ysRNA, respectively. Ordered ID were named to all
unique rsRNAs and ysRNAs, and then their sequences were archived in
a FASTA format file. The reference genome of tsRNA was obtained
from MINTbase (https://cm.jefferson.edu/MINTbase/)34. Due to the
high similarity of the sequences of parent tRNAs, alignment to a
database of validated tsRNA sequences allows for more accurate
quantification than alignment to a database of full-length tRNAs. The
readcounts of tsRNAs, rsRNAs, and ysRNAswere called using a custom
python script that only counts when a fragment is 100% matched to
one of the sequences in the FASTA file.

Reads calling for miRNAs and piRNAs
Reference sequences of miRNAs and piRNAs were acquired from
miRbase (https://www.mirbase.org/)50 and piRNABank (http://
pirnabank.ibab.ac.in/)51, respectively. The clean reads were first map-
ped to these references using Bowtie2. Read counts of miRNAs and
piRNAs were then called from the output SAM file using awk. Frag-
ments less than 19 nt in length were further trimmed away before
miRNA read calling to avoid misclassifications.

Reads calling for lncRNAs, mRNAs, snRNAs, and snoRNAs
The clean readsweremapped to theGRCh38 (hg38) referencegenome
using Bowtie2. The expression level of mRNAs, lncRNAs, snRNAs, and
snoRNAs were called with the GENCODE annotation (release 41,
https://www.gencodegenes.org/human/release_41.html) using
featureCounts52 from the Subread package. Additional trimming of
fragments less than a length of 23 nt was performed beforemRNA and
lncRNA read calling to reduce the multiple alignment rate.

Quality controls of sequencing results
The called read counts of each sample were merged into an
expression matrix using R, followed by reads per million (RPM)
normalization and log transformation. The number of total reads,
clean reads (≥15 nt), and mappable reads (mapped to GRCh38) were
calculated. The sum of reads for each of the nine RNA types, and
their percentage ratios were calculated. The number of RNA species
detected (RPM > 0) for each RNA type was also calculated. Exclusion
criteria of low-quality samples were: (1) Clean reads ratio <20%; (2)
Clean reads <2 million; (3) rsRNA ratio > 30%; (4) the sum of lncRNA
andmRNA ratio > 30%. 9 out of 444 samples were excluded based on
these criteria. The reproducibility of SLiPiR-seq was measured by
transcriptome-wide Pearson correlation using the normalized read
counts of each detected cfRNA.

Technology optimizations
Plasma samples from multiple healthy donors were pooled together
for theoptimizations of SLiPiR-seq. The SLiPiR-seq library construction
was carried out using either the full protocol described above, or a
modified protocol with a single variable, including the replacement of
ExoI or USER enzyme with distilled water, different final concentra-
tions (1.25 nM, 2.5 nM, 5 nM, 10 nM, 20 nM, 40 nM, and 80nM) of RT
primers, different input plasma volumes (12.5μl, 25μl, 50μl, 100μl,
200μl, and 400μl), different blood standing time before plasma
separation (3 h, 6 h and9 h), anddifferent freeze-thawcycles of plasma
(FT0, FT1, FT2, and FT3). The same number of total reads was ran-
domly subsampled from the sequencing results of different conditions
for subsequent reads calling.

Quantitative real-time PCR
Single-stranded cDNA was obtained through the same procedures as
described in the SLiPiR-seq library preparation section. qPCR was
performed based on the S-Poly(T) Plus method: 1μl of cDNA template
(1:25, 1:10, 1:10, 1:20, 1:2, 1:20, 1:2, 1:20, and 1:10 dilution of original
cDNA for lncRNA, miRNA, piRNA, mRNA, snRNA, rsRNA, snoRNA,
ysRNA, and tsRNA, respectively), 0.2μl of AceTaq DNA Polymerase
(Vazyme), 2μl of 10× AceTaq Buffer (Vazyme), 0.4μl of 10mM dNTP
Mix (Vazyme), 0.2μl of 100× ROX (Sigma-Aldrich), 0.5μl of 5× SYBR
Green (Roche Diagnostics), 5μl of 1μM universal reverse primer (5’-
TACGAGATGTGACTGGAGTT-3’), 5μl of small RNA specific forward
primer (Supplementary Data 1), and add double-distilled water up to
20μl. Amplification conditions were set as follows: activation at 95 °C
for 5min, followed by forty cycles of 95 °C for 10 s, 60 °C for 30 s.
Assays were performed on ABI StepOne plus a real-time PCR system
(Applied Biosystems).

5’-phosphate modification detection tests
RNA oligos synthesized with or without 5’-phosphate modification
(Supplementary Data 2) (GenScript Gene Synthesis) were resuspended
at a concentration of 100μM in TE buffer. Equimolar of RNA oligo was
mixed at afinal concentrationof 10μM. 1μl of themixturewasused for
library preparation using NEBNext Small RNA Library Prep Set (New
England Biolabs) according to themanufacturer’s protocol and SLiPiR-
seq as described above.

Calculation of coverage and fragment length distribution
cfRNA was extracted from the pooled plasma for the comparison of
NEBNext and SLiPiR-seq. 20 million clean reads were randomly sub-
sampled fromthe sequencing results of bothmethodsandwereused for
subsequent reads calling. Fragment length distributions were calculated
based on the size and depth of sense-aligned reads. Exon and intron
coordinates were extracted from mRNA and lncRNA annotations in
GENCODE (release 41). Aligned reads obtained from sam files were used
to determine “sense” or “antisense” in exon and intron regions. Gene
body coverage of both NEBNext and SLiPiR-seq was evaluated using the
‘geneBody_coverage.py’ function in the RSeQC package with corre-
sponding bam files and GRCh38 reference genome53.

Cross-analysis of tissue-specific genes
Tissue-specific genes were obtained from the Human Protein Atlas
database (https://www.proteinatlas.org/humanproteome/tissue) by
selecting the ‘The Tissue-specific Proteome’ in the ‘Tissue’ tag. 131
breast, 919 intestine, 441 kidney, 956 liver, 127 lung, 145 ovary, 303
pancreas, 127 prostate, and 307 stomach tissue elevated genes were
selected to intersect with mRNAs detected by NEBNext and SLiPiR-seq
(Supplementary Data 2).

Sample grouping and partitioning
In the lung cancer study, samples from NOR_SZBA and LC_SZDE were
grouped as a discovery cohort (N = 245). In the pan-cancer study,
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samples from NOR_SZBA, LC_SZDE, BRC_NXYK, CRC_NXYK, GC_NXYK
andHCC_NXYKwere grouped as a discovery cohort (N = 382). Samples
from NOR_SZDW and LC_SZBU were grouped as a validation cohort
(N = 53) to validate models established in both the lung cancer detec-
tion study and the pan-cancer classification study. The discovery
cohort was randomly partitioned into training and test sets in an
80–20% manner using the createDataPartition function in the R
package caret54. The training set was used to train models, and the
held-out test set was used to assess the models. The independent
validation cohort represents unbiasedmeasures of model accuracy, as
samples in this cohort were not used for either candidate feature
selection or model training and tuning.

Differential expression analyses
The raw count matrices were fitted to a negative binomial distribution
using the R package DESeq255. DE cfRNAs were identified at a sig-
nificance level of 0.1 Benjamini–Hochberg false discovery rate (BH-
FDR,Wald test). Differential expression analyseswere implemented on
(1) SLiPiR-seq cfRNA data of lung cancer patients versus cancer-free
controls in the discovery cohort; (2) SliPiR-seq cfRNA data of both the
discovery and pan-cancer cohorts in a one-class versus-other-classes
paradigm. Volcano plots were made by the EnhancedVolcano R
package. Pie chart was used to visualize the distribution of different
RNA types in theDE cfRNAs. Inclusion criteria for initial candidates are:
(1) Upregulated in cancer (fold change > 0); (2) moderate expression
level (mean read counts across all samples >10); (3) large differences
between cases and controls (log2 fold change >0.8).

Candidate feature selection
Three different strategies were applied to select candidate features for
lung cancer detection: (1) Filter method—‘Top N’, based on the rank of
significance level; (2) Wrapper method—‘Boruta’, a relevant feature
selection wrapper algorithm; (3) Intrinsic method—‘LASSO’, based on
least absolute shrinkage and selection operator (LASSO) regularized
binomial generalized linearmodel (GLM). All strategieswereapplied to
each type of cfRNA individually.

In the self-developed filter method, different combinations of the
topN cfRNAs ranked by significance level in the differential expression
test were examined. Candidate features were selected by first com-
bining the most and the second most significant cfRNAs (N = 2), and
then sequentially adding the next significant one after another. For
example, N = 3 means the combinations of top three significant
cfRNAs. The best value of N was determined by the mean Area Under
the receiver operating characteristic Curve (AUC) in the test set across
three machine learning algorithms (see the next section for details).
Features that negatively affected the mean testing set AUC were fur-
ther filtered out. For example, if AUC of the top three cfRNAs was
smaller than AUC of the top two cfRNAs, the third most significant
cfRNA was removed from the combinations. The remaining features
were verified in the independent validation cohort.

In the wrapper method, Boruta algorithmwas applied using the R
package Boruta. The variable importance measure was based on RF.
The maximal number of important source runs was set to 500. The
importance measurement process was repeated 100 times in the
randomly partitioned training set. Features evaluated as high impor-
tance at least 10 times of the 100 repeats were considered as candi-
dates for verification in the held-out test set and validation cohort.

In the intrinsic method, LASSO regularization of binomial GLM
was constructed using the R package glmnet56. ‘Lambda.1se’ deter-
mined by 10-fold cross-validation was used as it gives a less compli-
cated model while maintaining a low deviance. LASSO regression
coefficient of each cfRNAwas calculated for 100 times in the randomly
partitioned training set. Features evaluated with a non-zero coefficient
at least 10 times of the 100 repeats were considered as candidates. The
candidateswere further verified in the test set and validation cohort. In

the cancer classification analysis, ‘LASSO’ method was used to select
candidate features from the six sets of one-class versus-other-classes
DE cfRNAs. Over 100 iterations, features evaluated with a non-zero
coefficient at least 10 times were considered as candidates.

Machine learning analyses
Three different machine learning algorithms, including logistic
regression (LR), random forest (RF), and support vector machine
(SVM), were applied in this study using the R packages glmnet,
randomForest57, and caret, respectively. For the selection of candidate
features, LASSO regularized (alpha = 1) LR was used. For the verifica-
tion of selected candidate features, Ridge regularized (alpha = 0) LR
was used. 10-fold cross-validation was done to determine the mini-
mum lambda penalty value in all LR models. Random forest models
were grown by 500 decision trees with default parameters. Likewise,
Support Vector Machines with Linear Kernel (‘svmLinear’) was done
using default parameters. All sample partitions and model train-test
processes were repeated 100 times to prevent random sampling bia-
ses. The performance of models was evaluated by AUC and predicted
risk scores of individuals. Receiver operating characteristic (ROC)
curvewas plotted by theRpackage pROC. AUCwas calculated by theR
package ROCR. Risk score was the probability of individual sample
predicted by the model. Sensitivity was the ratio of LC patients with a
highmedian risk score to all LC patients. Specificity was the ratio of LC
patients who received a highmedian risk score to all individuals with a
high median risk score.

Statistics and reproducibility
All experiments for the technology optimizations of SLiPiR-seq were
repeated at least three times to ensure reproducibility. All sample
partitions andmodel training and testing processeswere repeated 100
times to avoid random sampling biases. Unless otherwise stated,
comparison of means was performed with a two-sided, unpaired
Welch’s t-test. Differential expression analyses were performed with
Wald test and multiple testing correction (BH-FDR). No statistical
method was used to predetermine the sample size. Nine out of
444 samples were excluded due to low sequencing data quality (see
the exclusion criteria above). Samples were randomized and blinded
during cfRNAextraction, library preparation, and sequencing. Samples
were unblinded during data processing and analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing data (fastq) and raw read countmatrix for technology
optimizations are available through the Sequence Read Archive [SRA,
PRJNA962827] and Supplementary Data 8, respectively. Raw read
count matrices for all detected cfRNAs and all de-identified studied
clinical samples are available in Supplementary Data 9. The raw
sequencing data for clinical samples reported in this paper have been
deposited in the Genome Sequence Archive58 in National Genomics
Data Center59, China National Center for Bioinformation/Beijing insti-
tute of Genomics, Chinese Academy of Sciences [GSA-Human:
HRA004959]. The raw sequencing data are under controlled access
and are available upon request from the corresponding author to
comply with the ethics regulation of Shenzhen University. Applicants
should have obtained ethical approvals from their ethics committees
and submitted a research proposal for the data request. Timescale for
access to be granted would be around one month, and there are no
restrictions on the duration of access. Reference genome: miRNA
(miRbase, https://www.mirbase.org/), piRNA (piRNABank, http://
pirnabank.ibab.ac.in/), tsRNA (MINTbase, https://cm.jefferson.edu/
MINTbase/), GRCh38 (hg38, https://hgdownload.soe.ucsc.edu/
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goldenPath/hg38/bigZips/), GENCODE (https://www.gencodegenes.
org/human/stats_41.html). Source data are provided in this paper.

Code availability
All computational analyses were performed using Linux shell, Python
3, or R 4.2. Scripts used to generate the findings in this study are
available on Github at https://github.com/JinyongHuang/SLiPiR-seq
(https://doi.org/10.5281/zenodo.10128082).
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