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Quantifying negative selection in human
3ʹ UTRs uncovers constrained targets of
RNA-binding proteins

Scott D. Findlay 1, Lindsay Romo1,2 & Christopher B. Burge 1

Many non-coding variants associatedwith phenotypes occur in 3ʹ untranslated
regions (3ʹ UTRs), and may affect interactions with RNA-binding proteins
(RBPs) to regulate gene expression post-transcriptionally. However, identify-
ing functional 3ʹ UTR variants has proven difficult. We use allele frequencies
from the Genome Aggregation Database (gnomAD) to identify classes of 3ʹ
UTR variants under strong negative selection in humans. We develop inter-
genic mutability-adjusted proportion singleton (iMAPS), a generalized mea-
sure related to MAPS, to quantify negative selection in non-coding regions.
This approach, in conjunction with in vitro and in vivo binding data, identifies
precise RBP binding sites, miRNA target sites, and polyadenylation signals
(PASs) under strong selection. For each class of sites, we identify thousands of
gnomAD variants under selection comparable to missense coding variants,
and find that sites in core 3ʹ UTR regions upstream of the most-used PAS are
under strongest selection. Together, this work improves our understanding of
selection on human genes and validates approaches for interpreting genetic
variants in human 3ʹ UTRs.

Since the sequencing of the human genome, identifying functional
genetic variants that influence human phenotypes, including disease
has been a central goal. For variants lying in protein-coding exons, the
genetic code aids greatly in interpretation. However, the vast majority
of candidate causal variants emerging from genome-wide association
studies (GWAS) lie outside of protein-coding regions1–3, and likely
impact a variety of regulatory elements, making interpretation much
more challenging4,5.

Since transcription is a major point of regulation for gene
expression, much of the search for functional non-coding variants has
focused on transcriptional regulation and regions upstream of the
coding sequence6–8. Other regions such as 3ʹ untranslated regions (3ʹ
UTRs) have been less explored, despite playing major roles in post-
transcriptional regulation involving cleavage and polyadenylation,
mRNA stability, mRNA localization and translation9. Previous studies
have found that 3ʹUTRs explainedGWASgenotyped SNP heritability at
a rate 5-fold higher than expected10 and that expression quantitative

trait loci (eQTLs) were more enriched (> 2-fold) in 3ʹ UTRs than any
other non-coding annotation analyzed11, and hundreds of pathogenic /
likely pathogenic 3ʹ UTR variants have been submitted to ClinVar,
demonstrating an abundance of impactful genetic variation in 3ʹUTRs.

Mechanistically, interactions between RNA-binding proteins
(RBPs) and their target RNAs lie at the heart of virtually all post-
transcriptional gene regulation in 3ʹ UTRs. As examples, Argonaute
proteins guided by cellular microRNAs (miRNAs) bindmostmRNAs to
repress expression12, cleavage and polyadenylation specificity factors
(CPSFs) bind polyadenylation signals (PASs) to define 3ʹ ends of
transcripts13–15, and Pumilio family proteins (PUM1/PUM2) and AU-rich
element (ARE) binding proteins such as TIA1 regulate stability and
translation of bound transcripts16–19. Thus, the collection of RBP bind-
ing sites in 3ʹ UTRs constitutes a set of non-coding elements enriched
for regulatory activity.

Recent large-scale efforts using techniques such as enhanced
crosslinking and immunoprecipitation (eCLIP) have characterized RBP
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binding sites throughout the transcriptome20, providing a basis for the
discovery of allele-specific RNA-RBP interactions21,22. However, these
studies are inherently limited to the small number of variants that are
heterozygous in the cell lines used, and little work has been done to
more broadly assess the evolutionary pressures acting on variants that
modulate RBP-RNA interactions. The premise of such an approach is
that the number of times variant alleles are observed in human
populations will be lower within constrained functional regulatory
elements in the genome, leaving a signature of negative/purifying
selection during the “natural experiment” of human evolution. Such
efforts were initially limited in resolution by the number of genomes
with genome-wide and deep sequencing data available23,24. More
recently, projects suchas the genome aggregationdatabase (gnomAD)
and UK Biobank have cataloged genetic variation from tens of thou-
sands of whole genomes25,26. The gnomADConsortium also developed
the Mutability-Adjusted Proportion Singleton (MAPS) metric that
summarizes the allele frequency spectrum across collections of var-
iants to quantify negative selection. This metric improved on previous
measures by capturing non-selective but well-known forces impacting
allele frequency spectra, such as differential mutability, that can
greatly confound the evaluation of negative selection25,27–30.

While this type of approach has been applied to identify genetic
variation under strong selection in non-coding regions such as 5ʹ
UTRs31 and introns at splice sites32,33, it hasnot yet beenbroadly applied
to 3ʹ UTRs, suggesting that signals of negative selection may be chal-
lenging to uncover in these regions. Instead, the few instances where
negative selection in 3ʹ UTRs has been inferred have been limited in
scope, did not adjust for mutability, or were secondary to other
efforts34–37.

In this work, we detail patterns of negative selection across
diverse classes of regulatory elements in human 3ʹUTRs.We introduce
the intergenic MAPS (iMAPS) approach that is well-suited to detect
signals of negative selection in non-coding regions of the tran-
scriptome. Using this method, we confirm a major role for RBP-RNA
interactions in shaping the 3ʹ UTR regulatory landscape by describing
numerous classes of genetic variants that are under strong selection,
influence transcript levels, and can improve interpretation of non-
coding genetic variants.

Results
To quantify the extent to which different classes of 3ʹ UTR variants are
under negative selection, we used their allele frequency spectra (AFS).
For interpretability, these AFS must be calibrated by comparing them
to the AFS from a more neutrally evolving region of the genome to
establish a baseline level of negative selection. The extent to which
there is a shift toward rare variants in the AFS of the variants of interest
indicates the level of negative selection. Previous work quantifying
negative selection in broadly defined genomic regions has typically
relied on calibrating the allele frequencies of variants of interest to
synonymous coding variants. Some previous approaches have mat-
ched variants based on base change and flanking dinucleotide context,
as an additional critical aspect of calibration is to control for the
influence of mutability on the allele frequency spectrum25, although
other work has not explicitly calibrated at this resolution34. We rea-
soned that these approaches may not be sufficient for assessing more
specific classes of non-coding regulatory variation where sequence
composition is often less complex38 and the magnitude of negative
selection is likely more modest. Furthermore, some synonymous var-
iation is clearly under selection in connection to RNA splicing, mRNA
stability, etc., so calibrating to a more neutrally evolving class of var-
iation is desirable. We developed a rigorous method to better account
for the influence of mutability on the allele frequency spectrum by 1)
calibrating to variation in intergenic regions, 2) considering additional
sequence context, and 3) considering the impact of transcription on
DNA repair and mutation (Fig. 1a) for the reasons given below.

First, the vastmajority of RBPs that bind predominantly in 3ʹUTRs
also bind coding sequenceextensively20, so calibrating to a transcribed
regionmay dampen or obscure signals of negative selection from such
regulatory elements. Relative to synonymous variants in transcribed
coding regions, intergenic variants are under less selection25 and are
devoid of RNA regulatory elements characteristic of 3ʹ UTRs such as
RBP binding sites.

Second, there are many more intergenic variants available than
synonymous coding variants (over 30-fold more, even after con-
servative filtering), providing greater statistical power to account for
the influence of sequence (and other) contexts beyond dinucleotide
composition that have been shown to substantially affect mutability29.
Using intergenic variants, we identified many such contexts that
extended up to five bases on each side of the variant. The amount of
extended sequence context considered was not constant, as data was
limiting for many extended contexts (see Methods). This approach
captured significant influences of extended nucleotide contexts across
all base changes, affecting the majority (54%) of all 3ʹ UTR variants,
relative to a dinucleotide-only approach (Methods, Fig. 1b).

Third, previous work has performed calibration using paired
dinucleotide contexts, grouping together reverse complement con-
texts such as C[A >G]T and A[T >C]G25,27,31. However, it is known that
strand-biased processes including transcription-associated mutagen-
esis and transcription-coupled repair influence mutability in tran-
scribed regions for some sequence contexts, e.g., A > G/T > Cmutation
rates arehigherwhenA >Goccurs on the coding strand39–41. This effect
has not commonly been incorporated intomutation ratemodels29 and
has not yet been accounted for in any analyses of negative selection.
We assessed the influence of transcription on mutability in 3ʹ UTRs
using de novomutationdata42 in addition to allele frequencydata from
gnomAD, where increased mutability presents as a decrease in the
proportion of variants that are singletons. Consistent with previous
work39, such effects were substantial for A >G/T>C base changes and
minimal for other contexts (Fig. 1c). Variable (and often unknown)
rates of germline transcription across genes make it difficult to
account for the influence of transcription in any calibration approach.
Therefore, we excluded A >G/T >C variants from our analysis, where
transcriptional effects are most apparent.

To address these issues, we developed the intergenic MAPS or
“iMAPS” approach, an extension of the MAPS metric25,27,31, to quantify
negative selection in noncoding regions including 3ʹ UTRs. Overall,
iMAPSmore extensively accounts for non-selective factors influencing
allele frequency spectra (as summarized by proportion singleton
values), which resulted in improved calibration compared to MAPS
(Supplementary Fig. 1). We benchmarked 3ʹ UTR iMAPS values against
canonical classes of coding variation. As a whole, negative selection in
3ʹ UTRs was higher than in intergenic regions and slightly lower than
for synonymous coding variants, paralleling the pattern of evolu-
tionary conservation across mammals in these regions43. More speci-
fically, we looked at regulatory element annotations in 3ʹ UTRs,
including eCLIP peaks marking RBP binding sites20, miRNA target sites
predicted by TargetScan+ (all targets of miRNA families conserved in
mammals ormorebroadly)44, and the canonical polyadenylation signal
hexamer AWUAAA (W=A or U). In aggregate, none of these individual
annotations had iMAPS scores exceeding that of synonymous variants
(Fig. 1d), suggesting that this conventional approach of one-
dimensional annotation intersection was insufficient to enrich for
variants under negative selection and that variant interpretation in 3ʹ
UTRs may require more nuanced approaches. We reasoned that there
are subsets of variants within these annotations under strong selection
and hypothesized that further stratification of variants aided by addi-
tional annotations could uncover these classes of deleterious variants
in 3ʹ UTRs.

We first focused on general RBP binding sites in 3ʹ UTRs, with the
goal of identifying precise/short RBP binding sites of high confidence
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using complementary orthogonal methods: for each RBP with avail-
able data, we identified the highest affinity RBPamp motif (based on
high throughput in vitro RNA Bind-n-Seq (RBNS) data38,45 in the vicinity
of each of the more than 25,000 ENCODE eCLIP peaks20 and termed
these sites “RBPamp eCLIP-Proximal” or “ReP” sites (Fig. 2a). At either
10 or 11 bases long, ReP sites were about five-times more precise than
typical eCLIP peaks. The significant enrichment of ReP sites around the
5ʹ ends of eCLIP peaks highlights the coherence of these datasets and
validates this approach to identify precise RBPbinding sitesmarked by
eCLIP peaks for the vast majority of available RBPs (Supplementary
Fig. 2). We found that variants in ReP sites were up to 6-fold enriched
for variants that altered transcript levels in a 3ʹ UTR massively parallel
reporter assay (MPRA46; Fig. 2b). Additionally, relative to those in
position-matched eCLIP peak regions, positions within ReP sites were
up to 65% more likely to be conserved across species (Supplementary
Fig. 3). Together, these data suggest many ReP sites are RNA elements
with endogenous RBP-binding and regulatory capacities.

Next, we leveraged RBPamp affinity models to predict the impact
of each gnomAD variant within ReP sites on RBP binding. Variants
where the derived allele was predicted to have substantially reduced
affinity to the RBP relative to the ancestral allele were termed “dis-
rupting” (or “lost”), while variants where the derived and ancestral

alleles werepredicted to have similar affinity were termed “preserving”
(Methods). Here, we emphasized ReP sites that we term “focal,”where
most of the local affinity to the RBP is concentrated in the ReP site
itself. We reasoned that variants in focal sites would be more likely to
have large and predictable impacts on regulation relative to variants in
sites where the affinity is spread across tens of nucleotides, since the
binding location can be more confidently inferred, and there is less
potential for redundant regulationwhen affinity is concentrated toone
short element. Indeed, for 3ʹUTRReP site variants included in anMPRA
measuring transcript levels46, variants in focal ReP sites conferred
significantly larger alterations in transcript levels relative to variants in
non-focal ReP sites (Supplementary Fig. 4).

Both disrupting and preserving variants were identified in ReP
sites spanning over a dozen diverse RBPs with established regulatory
roles in 3ʹ UTRs (Fig. 2c). We observed that disrupting variants were
subject to significantly stronger negative selection than preserving
variants, supporting the importance of this distinction. Furthermore,
disrupting variants in ReP sites of increasingly high affinity were under
increasingly strong negative selection. Above the highest minimum
affinity analyzed (30% of an ideal binding site), the negative selection
experienced by these variants exceeded the genome-wide average of
missense coding variants (Fig. 2c). Conversely, for all minimum
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Fig. 1 | Using iMAPS to quantify negative selection in 3ʹ UTRs. a Schematic of
iMAPS approach. Left: each 3ʹ UTR variant is matched to multiple intergenic variants
with the same base change and flanking sequence context (ranging from dinucleo-
tide to hexanucleotide). Right: Top: the number of singletons (variant alleles detected
once across all individuals in gnomAD; depicted in purple) is used to calculate iMAPS.
“obs” = observed, exp. = expected. Bottom: sets of variants under strong selection
(green) have an excess of singletons and thus higher iMAPS scores. b The proportion
of 3ʹ UTR variants for which considering extended nucleotide contexts when
matching to intergenic variants significantly affects the expected singleton rate. Total
number of 3ʹUTRvariants for each level of sequence context: hexa = 324,986; penta =

309,244; tetra = 1,347,534; tri = 3,351,380; di = 4,591,107. c Left: A >G/T >Cmutations
have the highest strand bias in de novo mutation rate relative to all other base
changes. Right: accordingly, the proportion of variants that are singleton is also the
most strand biased for A>G/T>C variants, in the expected direction. “Coding”
(circles) and “non-coding” (triangles) indicate the strand of the labeled base change.
In B and C, each base change pair (different base change on each strand) is labeled
with the pair member where the ancestral base is A or C. Note: some pairs of points
are completely overlapping at the resolution shown. d Summary of overall average
negative selection for 3ʹUTR variants relative to intergenic variants (dashed line at 0),
benchmarked against CDS variants that differentially affect encoded protein.
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affinities analyzed, preserving variants did not surpass themuch lower
average negative selection experienced by synonymous coding var-
iants (Fig. 2c). Using orthogonal eQTL data, we also found that ReP site
variants with increasingly higher PIP values (representing the

probability of causing an expression difference) weremore likely to be
disrupting than preserving (Fig. 2d). We also tested ReP site-disrupting
3ʹUTR variants in a parallel reporter assay in cells, where 39% (11/28) of
the variants tested reproducibly modulated steady-state transcript
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that RBP. b ReP site variants are enriched for significant transcript abundance
modulating activity in a massively parallel reporter assay (MPRA) of 3ʹ UTR
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threshold. c Variants disrupting RBP affinity / binding at ReP sites are under
stronger selection than those that preserve affinity / binding. The stacked bar plot
shows the proportion of variants found within each RBP’s ReP sites. “D” = dis-
rupting, “P” = preserving. iMAPS scores for synonymous (green), missense
(orange), and/or stop-gain (pink) coding variants are shown on y-axis here and in
e-g for reference.dHighPIP (likely causal) eQTL variants inReP sites aremuchmore

likely to be disrupting than preserving. Data are presented as proportions with
error bars indicating 95% confidence intervals. e Variants disrupting ReP sites are
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selection. f Variants disrupting ReP sites detected by eCLIP in both cell lines are
under stronger selection than variants disruptingReP sites detected in onlyone cell
line. Dashed line is data for a control set of ReP sites detected in both cell lines but
at different positions in the same 3ʹ UTR. g At highly conserved positions (phast-
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Exact Tests with P <0.05. Exact P values and the number of variants available for
analysis are included in Supplementary Data 1.
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levels (Supplementary Fig. 5). Collectively, these data demonstrate
that RBPamp can be used to prioritize RBP binding site variants more
likely to drive deleterious gene expression changes, accelerating var-
iant interpretation efforts and functional variant identification.

We considered whether biases related to gene expression might
contribute to the magnitude of the above negative selection results.
Since statistical power for eCLIP peak-calling in each gene is a func-
tion of eCLIP read counts for that gene, eCLIP peaks and therefore
ReP sites are enriched in relatively highly expressed genes (Supple-
mentary Fig. 6), which tend to be more constrained. For example, we
found coding variants from genes with 3ʹ UTR ReP sites to have
slightly elevated synonymous andmissense iMAPS (~ 0.034 and 0.10,
respectively) relative to genome-wide averages. However, when
considering a set of control sites matched for gene expression and
RBP affinity with ReP sites, we found that variants that disrupt ReP
sites had substantially higher iMAPS scores than variants that dis-
rupted these control sites (Fig. 2e). This analysis shows that the
presence of eCLIP signal at ReP sites is an important feature in pre-
dicting constraint, and that independent of eCLIP, high RBP affinity
and high gene expression are not generally sufficient to identify sites
under strong selection.

In an effort to better understand other aspects of RBP binding
sites in relation to negative selection, we focused on RBP binding
events shared across cell lines, and on cross-species sequence con-
servation. SinceeCLIPwas performed in twodistinct cell lines formany
RBPs, we reasoned that ReP sites identified in both cell lines would be
enriched for RBP binding sites that are broadly utilized across cell
types and might therefore be involved in regulation of fundamental
cellular processes. Indeed, we found that variants disrupting ReP sites
present in both cell lines were under very strong negative selection
(Fig. 2f). This was not simply a result of 3ʹUTR eCLIP peaks detected in
both cell lines deriving from more highly expressed genes (where
increased read depth provides increased statistical power to call
peaks), as disruption of a control set of ReP sites fromgeneswhereReP
sites were detected in both cell lines but at distinct 3ʹ UTR positions
was much less deleterious. These results suggest that detection of
eCLIP signal at the same site across distinct cell types enriches for
functional binding.

When restricting to positions conserved across vertebrates, var-
iants disrupting ReP sites were highly deleterious. Importantly, var-
iants at the same sites that preserve RBP binding were under much
weaker selection, supporting that preservation of RBP binding is a
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major contributor to the high conservation observed at these posi-
tions (Fig. 2g). Thisfinding also highlights the capacity of our approach
— unlike most measures of cross-species sequence conservation — to
capture divergent selection signals based on the nature of the base
change introduced by the variant. Overall, these results demonstrate
that ReP sites, combining in-cell eCLIP and in vitro RBNS/RBPamp
binding site data, reveal precise and functional regulatory sites bound
by RBPs.

Moving beyond genetic variants within ancestral binding sites, we
next explored whether derived variant alleles that create new RBP
binding sites experience substantial selective pressure. While eCLIP
signals likely arise specifically from derived alleles in some cases,
detecting a reasonable number of such events would require con-
ducting eCLIP across far more individuals and cell lines than are
available. In the absence of such data, we expected that it might be
difficult to uncover strong signal for the creation of RBP binding sites.
Therefore, we focused on creation or strengthening of binding sites to
Pumilio family proteins (PUM1 and PUM2) since these RBPs have well
characterized binding sites, bind with high affinity (sub-nM Kd), and
can strongly reduce target gene expression via transcript
destabilization18.

Since this and all subsequent analyses involve regulatory elements
predicted based on primary sequence alone, it was important to con-
sider the alternative polyadenylation (APA) context. Specifically, we
distinguished between variants in “core” and “variable” 3ʹ UTR regions
for each gene. Core regions are upstream of the most utilized or
“primary” poly(A) site according to the average reads per million
across all tissues and cell lines in polyA_DB47. Variable regions are
downstream of the primary poly(A) and are included in processed
transcripts only when a less frequently selected poly(A) site is uti-
lized (Fig. 3a).

Applying this approach to the creation of RBP binding sites, we
found that variants increasing Pumilio affinity are increasingly dele-
terious for derived alleles with higher affinities, and creation of sites at
least 35% as strong as an ideal Pumilio site approached the strength of
selection seen for missense coding variants. This strong signal was
specific to the creation of putative binding sites within core 3ʹ UTR
regions. Destabilization in core regions is expected to impact the bulk
of transcripts from a gene. Conversely, variants creating putative

binding sites within variable 3ʹ UTR regions did not exceed levels of
selection seen for synonymous coding variants (Fig. 3b). Overall, 3ʹ
UTR gnomAD variants generate putative Pumilio sites (Ad / Aa > 2 and
Ad >0.25) across 2,658protein-coding genes. Using independent eQTL
data, we verified that variants creating high-affinity Pumilio binding
sites had higher probabilities of being causal of gene expression dif-
ferences (Fig. 3c) and were more likely to decrease gene expression
(Fig. 3d). Thus, in addition to disruption of RBP binding being dele-
terious, creation of strong RBP binding sites is under negative selec-
tion, at least in some contexts.

Since regulation by miRNAs is a widespread form of post-
transcriptional gene regulation, we investigated negative selection at
miRNA target sites (8mer, 7mer-m8, and 7mer-A1) in 3ʹUTRs according
to TargetScan44. Targets of both “broadly conserved” (vertebrate-
wide) and “conserved” (mammalian-wide) miRNA families were under
stronger negative selection in core 3ʹUTR regions upstreamof primary
polyadenylation sites compared to variable regions, which are present
in a subset of transcripts. Targets of more broadly conserved miRNAs
were generally under stronger selection (Fig. 4a), consistent with the
finding that miRNAs conserved in mammals and not more broadly
have fewer conserved targets48. As a positive control, conserved target
sites of these miRNA families were under stronger selection than non-
conserved sites, as has been previously observed49, exceeding average
levels for synonymous coding variants (Supplementary Fig. 7).

We next sought to explore whether certain subsets of miRNA
target sites were under stronger selection, absent target conservation
across species. We focused on the most potent target sites: 8-mer
targets of broadly conserved miRNA families. Within these sites, we
observed a positive association between AU-rich dinucleotides flank-
ing target sites and negative selection (Fig. 4b). The regions flanking
miRNA targets are enriched for adenosine50, and targets in AU-rich
contexts are known to confer stronger binding and increased repres-
sion, likely due to increased target site accessibility51–53. We also found
that overlapping targets of more than one miRNA family were under
stronger negative selection (Fig. 4c), presumably because suchoverlap
increases the likelihood that the site has regulatory activity.

To assess negative selection associated with polyadenylation, we
focused on the polyadenylation signal (PAS), which is the major
determinant of poly(A) site selection54–57. We focused specifically on
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variants in the two “top” PAS hexamers matching AWUAAA. We used
data from the polyA_DB database47 to classify AWUAAA hexamers as
“primary” (30 to 15 bases upstreamof themost utilized poly(A) site in a
gene) or “secondary” (at any other 3ʹ UTR position). Analogous to our
analysis of RBP motifs, PASs were classified as “lost” if the overlapping
variant altered theAWUAAAmotif without creating any other enriched
hexamer from Ni et al.58, and were otherwise classified as
“preserved” (Fig. 5a).

We found that variants causing primary PAS loss were under
stronger selection than variants causing secondary PAS loss. Con-
versely, preserving variants experienced selection similar to back-
ground 3ʹ UTR levels (Fig. 5b). We next assessed selection in the
context of “conserved” humanpoly(A) sites, defined as those that have
a homologous active poly(A) site inmouse and/or rat47. We found that,
in aggregate, virtually all of the selection against variants disrupting
primary PASswas attributable to PASs associatedwith these conserved
poly(A) sites. Only background 3ʹ UTR levels of selection were
observed for disruption of primary PASs associated with non-
conserved poly(A) sites (Fig. 5c). Our results are consistent with a
recent analysis arguing that most secondary poly(A) sites are non-
adaptive59, allowing for some exceptions, of course60.

Having identified classes of genetic variation under strong selec-
tion acting in different modes of post-transcriptional gene regulation
in 3ʹ UTRs, we sought to summarize the frequency of such variants.

This analysis was done in a manner that controlled for biases in gene
expression between datasets such that different iMAPS results could
be compared. We labeled variants belonging to classes with iMAPS ≥
0.06 (approaching the genome-wide average for missense coding
variants) “highly disruptive,” and those belonging to classes with
iMAPS ≥ 0.03 (greater than the genome-wide average for synonymous
coding variants) “moderately disruptive.”Weuse the term “disruptive”
based on the strong inference that these variants disrupt molecular
interactions with regulatory function, analogous to how missense
variants disrupt proteincoding. These labelswill behelpful in efforts to
interpret genetic variation associated with disease, but alone are
insufficient as evidence of pathogenicity61. We were able to label over
5,000 gnomAD variants in 3ʹ UTRs (> 1 out of every 2,000) as highly
disruptive and almost 20,000 gnomAD variants in 3ʹ UTRs (> 1 out of
every 600) as moderately disruptive (Fig. 6a). Furthermore, we have
identified all possible single nucleotide variants in 3ʹ UTRs that would
be considered highly disruptive based on our classifications and have
included the complete catalog of 140,000+ such variants (as well as
additional variants) in Supplementary Data 2.

Whilemost of our classes did not exceedmissense level selection,
this is not to suggest that there is an upper limit on selection in 3ʹUTRs.
For example, we have demonstrated that variants at conserved posi-
tions disrupting ReP sites are under very strong selection (Fig. 2g) but
chose not to include classes based on cross-species conservation in
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this summary. In all, one-quarter of protein-coding genes had at least
one 3ʹ UTR gnomAD variant labeled as highly disruptive, and half of
protein-coding genes had at least one 3ʹ UTR gnomAD variant labeled
as moderately disruptive (Fig. 6b). Next, as an orthogonal assessment
of our classifications, we asked whether the genes with highly dis-
ruptive 3ʹ UTR variants in gnomAD were depleted for types of genes
whereonemight expectdisruptive variants to bemore deleterious.We
uncovered substantial depletion for genes with pathogenic 3ʹ UTR
variants in ClinVar. This suggests that the highly disruptive variants
identified are under strong negative selection in genes where 3ʹ UTR
function has been implicated in disease pathogenesis. The highly dis-
ruptive 3ʹUTR gnomAD variant genes were not, however, depleted for
genes with benign 3ʹ UTR variants in ClinVar, suggesting the observed
depletionwas specific to evidence of pathogenicity andwas unlikely to
have resulted from ascertainment bias. Notably, we did not find evi-
dence for the depletion of essential genes or other related gene sets

investigated (Fig. 6C). This may not be surprising given that many of
our highly disruptive variants are expected to stabilize transcripts, and
that increasing the expression of genes identified by loss-of-function
studies may not necessarily be deleterious.

The data in Supplementary Data 2 can be used to augment con-
ventional approaches for 3ʹ UTR variant interpretation for many
humangenes.As examples, we highlight twogeneswith knowndisease
associations and highly disruptive 3ʹUTRgnomADvariants: insulin-like
growth factor 2 receptor (IGF2R) (Supplementary Fig. 8) and sortilin 1
(SORT1) (Fig. 6d). SORT1 encodes a sortilin family receptor involved in
intracellular trafficking and is associated with cholesterol levels and
myocardial infarction risk62. SORT1 is in the top 7% of loss-of-function-
intolerant genes (rank 1,200), in the top 10% of genes by number of
variants studied (896)63, and in the top 5% of genes by number of
significant variant-trait GWAS associations (28)64. Five SORT1 3ʹ UTR
gnomAD variants were labeled as highly disruptive: two disrupting an
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8mer target of miR-183 and miR-96, two disrupting distinct IGF2BP1
ReP sites, and one disrupting the PAS for the primary (and conserved)
poly(A) site (Fig. 6d). Notably, none of these types of annotations are
reportedby standard variant interpretation tools such as Variant Effect
Predictor (McLaren 2016)65. In addition, while some (3/5) of these
variants had high phyloP scores, a simple approach to identifying
candidate regulatory variants by focusing on positions with phyloP ≥ 2
yielded over 17-fold more SORT1 3ʹ UTR gnomAD variants (a total of
87). As another example, IGF2R encodes a receptor for insulin-like
growth factor 2 and is often mutated in hepatocellular carcinoma66.
IGF2R is also a loss-of-function-intolerant gene where four 3ʹ UTR
gnomAD variants were labeled as disruptive: three disrupting a PUM2
ReP site, and one disrupting the PAS for the primary (and conserved)
poly(A) site (Supplementary Fig. 8). Again, there were over 26-fold
more IGF2R 3ʹ UTR gnomAD variants at positions with phyloP ≥ 2 (a
total of 107). By comparison, iMAPS-based labels are more specific,
sensitive to variant base change and potential human-specific activity,
and identify specific regulatory factors.

Discussion
Recent efforts to catalog human genetic variation using deep
sequencing on a genome-wide basis and at the scale of tens of thou-
sands of individuals have enabled study of the signatures of evolu-
tionary selection in our genome25. However, it has been difficult to
detect signal within non-coding regulatory elements. Here we present
the iMAPS method to more accurately and more confidently account
for the impact of non-selective forces (such as mutability) on allele
frequencies in non-coding regions of the transcriptome. Using iMAPS,
we uncovered over 5000 gnomAD variants belonging to classes under
strong negative selection. These variants highly disrupt RBP binding,
miRNA targeting, or cleavage and polyadenylation. Our approach
classified variants using basic principles and data related to these
modes of regulation, complementing efforts to interpret 3ʹ UTR var-
iation using deep learning models35,67,68. Layering internal controls for
each set of analyses on top of our carefully controlled iMAPS metric
lends confidence that the observed effects are driven by selection on
variants affecting post-transcriptional gene regulation and not arti-
facts of forces independent of selection such asmutability, providing a
comprehensive and quantitative assessment of negative selection at
regulatory elements in human 3ʹ UTRs.

Many methods for variant interpretation34,69 incorporate mea-
sures of conservation across species, as variants at highly conserved
positions are generally more deleterious overall. However, reliance on
cross-species conservation to identify functional genetic elements in
non-coding regions has significant limitations. First, non-coding
regions such as 3ʹ UTRs are of course less conserved than coding
regions43,70. Furthermore, there is evidence that non-coding regulatory
regions undergo more frequent lineage-specific adaptation, with the
extent of lineage-specific constrained sequence rivaling or even
exceeding that which is both constrained in humans and conserved
across mammals24,30. Here, we identify classes of 3ʹUTR variants under
negative selection in humanswithout relying on anymeasures of inter-
species conservation, capturing human-specific regulatory constraints
even at non-conserved positions. As an example of how constraint can
differ within humans and between mammals, we found that variants
disrupting PASs associated with less frequently used poly(A) sites in
humans were not under strong selection, even in cases where the
homologous poly(A) site was utilized in rat and/or mouse (Fig. 5c). A
second limitation is that inter-species conservation scores such as
phastCons and phyloP do not provide any information as to whether
different possible alternative allelesmay be differentially tolerated at a
given position. We demonstrate the power of our analysis to differ-
entially classify variants based on the consequence of the base change
for binding. This is seen most strikingly for RBP binding events where
there are large differences in negative selection between disrupting

and preserving variants within the same set of ReP sites, even when
restricted to variants at the most highly conserved positions (Fig. 2g).
Conventional one-dimensional approaches to variant interpretation
typically prioritize all variants within an annotation. We show evidence
that utilizing multi-dimensional annotations (e.g., ReP sites derived
using both eCLIP and RBPamp data) is critical to uncovering classes of
variation under strong selection, and that an approach sensitive to the
impact of different potential base changes introduced by genetic
variants can filter more neutral classes of variants within these
annotations.

Our work uses orthogonal human population genetic data to
validate the utility of several RNA related datasets for detecting
regulatory elements in 3ʹ UTRs. We find that the majority of
selection against PAS-disruption, miRNA-disruption, and Pumilio
binding site creation occurs in core 3ʹ UTR regions upstream of the
most utilized poly(A) site in a gene, based on average utilization
across various cell lines and tissues from polyA_DB47, suggesting
that this consideration is extremely useful in guiding the search for
functional elements in 3ʹ UTRs. Based on the notion that variants
within expressed mRNA isoforms are more likely to be functional,
we provide evidence that the APA context needs to be explicitly
considered when interpreting 3ʹ UTR variants, as has proven useful
in identifying miRNA targets71. These results emphasize the utility
of a recently developed “expression-aware” variant interpretation
framework that considered how often variants were found within
alternatively spliced transcript regions72, and argue for similar
practices to be applied in 3ʹ UTRs based on APA. We also demon-
strate the utility of performing eCLIP across multiple cell lines, as
RBP-disrupting variants within ReP sites supported by eCLIP peaks
across two different cell lines are associated with stronger nega-
tive selection.

Wealsofind thatRBPampaffinitymodels45 derived from invitro
RBNS data38,73 are insufficient by themselves to identify constrained
RBPbinding sites (Fig. 2e). However, when complementedby in-cell
eCLIP data20, these affinity models prove crucial for the identifica-
tion of the precise binding sites associated with eCLIP peaks that
are under selection. In describing these so-called ReP sites, we
provide a powerful set of precise and high-confidence binding sites
for a diverse set of RBPs. In addition to demonstrating that these
sites are under negative selection, we also show that they are enri-
ched for regulatory function. ReP sites fill an important gap in var-
iant interpretation efforts in the context of general RBP binding.
Moreover, atReP sites, RBPampdemonstrates utility in suggesting a
general minimum relative affinity that constitutes functional bind-
ing, and in distinguishing between variants that disrupt or preserve
binding.

While using population genetic data from contemporary human
populations cannot assess negative selection acting on an individual
genetic variant, our results can inform variant interpretation. The
stratification of variants performed here provide useful thresholds and
benchmarks for interpretation of both known and not yet observed
variants thatmay impactdifferent post-transcriptional gene regulatory
mechanisms, enabling more confident interpretation of disease-
associated non-coding variants (Fig. 6 and ref. 74). Specifically, we
were able to label between 5,000 and 20,000 gnomAD variants in 3ʹ
UTRs as moderately or highly disruptive, respectively, and highlight
examples of haploinsufficient disease-associated genes with several
highly disruptive 3ʹ UTR variants. While gnomAD is a useful reference,
these numbers can be thought of as minima, as consideration of
additional rare variants from other sources increases the number of
labeled variants (Supplementary Data 2). Overall, our findings deliver
detailed insight into the nature of RBP activity in untranslated regions,
helping us to continue to discover how these fundamental interactions
regulate gene expression in ways that have and will continue to shape
human biology.
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Methods
Genetic variants
Genetic variants from gnomAD release 3.0 were downloaded from
https://gnomad.broadinstitute.org/downloads in vcf format. Single
nucleotide variants passing gnomAD quality filters were isolated using
VCFtools75. Variants observed only once in the gnomAD dataset were
considered “singletons”. Genetic variants from denovo db (from non-
SSC samples) were downloaded from https://denovo-db.gs.
washington.edu/denovo-db/Download.jsp.

Variant filtering for negative selection analyses
To reduce bias in the allele frequency spectra that might confound
negative selection analyses, we filtered variants in: low complexity
regions (defined by gnomAD), sex and mitochondrial chromosomes
(X, Y, and M), regions with median sequencing coverage less than 25
(3/4or 75%of the genome-widemedian coverage of 32) or greater than
42 (4/3 or 133% of the genome-wide median coverage of 32), the ‘C’
position of CpG dinucleotides without any available methylation data,
and CpG islands76,77. To ensure we were studying the impact of the
newly derived allele, we excluded variants where the reference allele
was not also identified as the ancestral allele using the Homo sapiens
ancestor genome sequence from Ensembl (https://ftp.ensembl.org/
pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.
tar.gz). To limit the impact of transcription-associated mutability, all
variants with base change of A >G on either strand (i.e., A >G or T >C)
were excluded. Variants with any “N” base calls for the five nucleotides
on either side of the variant were also excluded. Multi-allelic sites were
retained and treated as independent variants. Variants in 3ʹ UTRs that
were also within any Gencode CDS exons (on either strand) were
excluded from analysis.

Variant annotations
Variant positions were then annotated as either overlapping or non-
overlapping with DNase hypersensitivity peaks (hg38wgEncodeR-
egDnaseClustered from the UCSC Table Browser), CpG islands
(hg38cpgIslandExtUnmasked from the UCSC Table Browser), and
H3K9me3 peaks (E062-H3K9me3.bed downloaded using https://
github.com/carjed/smaug-genetics/blob/master/download_ref_data.
sh). CpG transition variants were intersected with methylation data
(processed data from Roadmap Epigenomics Consortium 2015; pro-
videdby gnomAD). These variantswere assigned amethylation level as
in25: High = meanmethylation > 60, medium =mean methylation ≤ 60
and > 20, low = mean methylation ≤ 20. Variants at positions with
missing methylation data were not assigned a bin and were later
excluded.

Intergenic regions
The intergenic regions used to derive the expected proportion sin-
gleton values for calibration of iMAPS scores were selected as follows:
All regions at least 25 kb from any Gencode v32 entry were eligible.
From these regions, gap locations and centromere regions were then
excluded. To avoid disproportionate contributions from very large
intergenic stretches in the genome, long continuous regions were
trimmed to a maximum length of 1.5-times the 75th percentile length.
This resulted in a set of intergenic regions totaling approxi-
mately 330Mb.

Quantifying negative selection
Both iMAPS and MAPS estimate negative selection for a given set of
variants as the rate of excess singletons (variants observedonly once in
gnomAD), using Eq. 1, where the “expected singletons” value is the sum
of the expected proportion singleton values assigned to each variant:

ðiÞMAPS=
observed singletons� expected singletons

number of variants
ð1Þ

The two approaches differ in how they derive these expected
proportion singleton values to calibrate variants of interest (and (i)
MAPS scores) to a more neutral reference region of the genome:
1. The MAPS approach derived expected proportion singleton

values for genomic contexts that considered all possible combi-
nations of base change + dinucleotide context +methylation level
(for C to T transitions at CpG loci). For each context, relative
mutation rates were estimated using variants in intergenic and
intronic regions, which were then “converted” to expected pro-
portion singleton values by regressing observed proportion sin-
gleton values from synonymous CDS variants against these
relative mutation rates. Each variant of interest was then assigned
an expected proportion singleton value (which can theoretically
vary between 0 and 1) corresponding to the proportion singleton
value returned by the regression for the matching context31.

2. In contrast, the iMAPS approach introduced here derived expec-
ted singleton values for genomic contexts that considered all
possible combination of base change + (up to) hexa-nucleotide
context + methylation level (for C to T transitions at CpG loci) +
DNase hypersensitivity peak overlap (binary) + H3K9me3 peak
overlap (binary). For each context, proportion singleton values
were obtained using variants in the select intergenic regions
described above. Each variant of interest was then assigned an
expected proportion singleton value (which can theoretically vary
between 0 and 1) corresponding to the intergenic proportion
singleton value for the matching context. Additionally, the iMAPS
approach also accounted for known influences of CpG islands29

and transcription39 by filtering variants in CpG islands and those
with an A >G base change, respectively. Notably, iMAPS does not
rely on CDS variants for calibration. Collectively, iMAPS more
extensively accounts for non-selective factors influencing allele
frequency spectra (as summarized by proportion singleton
values), which resulted in improved calibration relative to MAPS
(Supplementary Fig. 1). An iMAPS calculator that uses this
approach to quantify negative selection acting on user-provided
3ʹ UTR elements or variants is available at https://github.com/
sfindlay11/iMAPS.git. To test for significant differences in negative
selection between a group of variants we hypothesized to be
under strong selection and a control group of variants, we
performed one-sided Fisher exact tests comparing the number of
observed singletons and non-singletons between the groups.
Importantly, we tested against an odds ratio derived from
comparing the number of expected singletons and non-
singletons derived from the matched intergenic variants. Exact
P values are reported for figure panels with a single statistical test.
For those with more than one statistical test (for example testing
at different minimum affinity thresholds), we used asterisks (*) to
indicate tests with P <0.05.

Accounting for the impact of extended flanking sequence
contexts
To account for the impact of extended flanking sequence contexts on
allele frequency spectra, a set of 416 “parent contexts” was first gen-
erated to describe all possible local genomic contexts at the dinu-
cleotide level as follows: 43 = 64 dinucleotide contexts (including the 4
NCG>NTGcontexts) x 3 base changes = 192 reverse complement pairs
= 96 distinct contexts + 8 forNCG>NTG at two additionalmethylation
levels = 104 x 2 (for +/− DNaseHS peak binary) = 208 x 2 (for +/−
H3K9me3 peak binary) = 416 parent contexts. An example parent
context is “C[A >G]G, DNaseHS-positive, H3K9me3-negative.” Given
that previous literature has established that nucleotide contexts
beyond dinucleotide frequently impact mutability (e.g. (Carlson
2018)), and that the abundance of intergenic variants provides ade-
quate statistical power, we incorporated extended nucleotide context
into our iMAPS metric by accounting for contexts up to
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hexanucleotide (5 bases on each side of the variant). Since simply
utilizing the proportion singleton for every possible hexanucleotide
context (411-3 = 65,536 additional contexts for each of the 416 parent
contexts) had the potential to introduce a lot of noise for infrequently
observed contexts, we took a more conservative approach: Given that
dinucleotide context offered the most statistical power, we used the
proportion singleton value observed for intergenic variants for each
parent context as a baseline value when assessing more extended
contexts. Next, we compared each hexanucleotide context to its par-
ent dinucleotide context using two-sided Fisher exact tests and
Benjamini-Hochberg correction for multiple hypothesis testing to
determine if the extended context had a significantly different pro-
portion singleton than its parent context at an FDR of 0.2. If it did, we
used the proportion singleton value from the extended hexanucleo-
tide context for variantswith this context. If it did not, we repeated this
process iteratively for the embedded penta-, tetra-, and tri-nucleotide
contexts, respectively, defaulting to the dinucleotide parent context if
no extended contexts were found to significantly influence the pro-
portion singleton values.

Coding sequence (CDS)
Gencode v32 CDS exons were downloaded from the UCSC Table
Browser. Only CDS exons with transcript ids matching Gencode v32
protein-coding transcripts from protein-coding genes were analyzed.
Gencode phase information was used to determine codon positioning
and protein-coding consequence. CDS exons with any amount of
overlap with another CDS exon annotation with a different reading
frame were excluded from analysis. Variants within three bases of any
splice site were excluded from analysis. A very small number of var-
iants where the ancestral allele coded for a stop codon were excluded
from analysis.

Human 3ʹ UTRs
Human 3ʹ UTRs were defined using polyA_DB version 3.247. Each
poly(A) site was matched to the closest upstream stop codon anno-
tated in Gencode v32 to form a 3ʹ UTR. Only poly(A) sites downstream
of annotated stop codons from protein-coding genes were considered
for analysis. Resulting 3ʹ UTRs longer than 50kb were filtered from
analysis. For identification of ReP sites within 3ʹ UTRs, Gencode v32 3ʹ
UTRs were also used for genes with no poly(A) site data in polyA_DB.
For all analyses where core and variable 3ʹ UTR regions were stratified
(see below), only polyA_DB inferred 3ʹ UTRs were used.

RBPamp
Position-specific affinity matrices (PSAMs) of length k = 10 or k = 11
generated by RBPamp45 were used to score the affinity of a given RBP
for potential target RNA sequences relative to the RBP’s ideal binding
site (affinity = 1.0).We used PSAMs thatwere generated by considering
both the sequence and predicted secondary structure of random
sequence target RNA oligos in RBNS experiments.

RBPamp eCLIP-proximal (ReP) sites
eCLIP peak data for K562 and HepG2 cell lines were downloaded from
the ENCODE data portal. Peaks that were reproducible (IDR) across
biological replicates were used for analysis. RBPamp PSAMswere used
to score the relative affinity of every possible binding site within 75
bases of the 5ʹ end of each eCLIP peak (in either direction). Reference
sequence was used as input. We identified the highest affinity site
associated with each eCLIP peak. We termed these sites “RBPamp
eCLIP-proximal” or “ReP” sites and considered the union of ReP sites
across both cell lines. Since eCLIP peaks are typically > 50 bases (and
often hundreds of bases) in length, and the RBPampmodels consider a
maximumbinding footprint of k = 10 or k = 11 bases (depending on the
RBP), ReP sites are a more precise set of high-confidence RBP binding
sites. For most RBP-cell line pairs, the highest scoring sites were highly

enriched at or close to the 5ʹ end of eCLIP peaks. This is expected from
eCLIP experiments, given that cross-linked RNA bases often interfere
with reverse transcription, causing read pileup and subsequent peak
calling at or downstream (3ʹ) of cross-linking sites. Identification of the
highest affinity siteswas alsoused to validateRBPs forwhicheCLIP and
RBPampdata were coherent: For the union of all peaks across cell lines
for eachRBP, we determine how frequently each position (+/− 75 bases
relative to the 5ʹ end of each peak) overlapped the highest affinity site.
We then conducted a simulation where we select a random site for
each peak (+/− 75 bases from the 5ʹ end of the peak) with equal
probability across all positions.We repeat this 10,000 times toobtain a
P value of howoften the simulated data results in a single position that
is observed as frequently as or more frequently than the most fre-
quently observed position for the real set of highest affinity sites. ReP
sites for RBPs with P values < 0.01 were retained for negative selection
analyses. This resulted in filtering of only a few RBPs, most with very
few eCLIP peaks in 3ʹ UTRs (Supplementary Fig. 2).

Control sites used in Fig. 2e were generated by first masking all
ReP sites so any site overlapping any part of a ReP sitewould receive an
affinity score of 0. For each ReP site, we then identified the site in the
same 3ʹ UTR with the closest affinity (either higher or lower). Variants
in these siteswere classified using the samemethod applied to variants
in ReP sites as described below.

For RBPs with eCLIP data available for both K562 andHepG2 cells,
ReP sites were considered shared across cell lines in Fig. 2f if the exact
same ReP site was identified in each cell line for the same RBP,
regardless of whether the associated eCLIP peaks matched exactly.
Partially overlapping but not completely matching ReP sites were not
considered shared across cell lines. Since ReP sites shared across cell
lines required an eCLIP peak to be called twice (once in each cell line),
these ReP sites may be enriched for highly expressed genes (that are
more constrained in general) relative to ReP sites identified in only a
single cell line. Therefore, we used a control set of ReP sites fromgenes
where 3ʹ UTR ReP sites were detected for the same RBP in both cell
lines, but at different positions (i.e. they were not the exact same
ReP site).

MPRA transcript abundance modulating variants (tamVars)
TamVar data was obtained from46. Variants with statistically significant
tamVar activity in any cell line tested were considered significant. We
tested the odds ratio (odds of ReP site variants having significant
tamVar activity in the MPRA relative to all other variants tested) at
decreasing P value cut-offs (increasing stringency).

ReP site conservation across species
For each ReP site (10 or 11 bases in length), a control eCLIP peak region
of the same length within (or closely upstream of the 5ʹ end of) the
peak was selected. For each RBP, the positions of the eCLIP control
regions were assigned by randomly sampling from ReP site positions
(relative to the 5ʹ ends of their corresponding eCLIP peaks). This was to
ensure that the control eCLIP regions had positional distributions
similar to the ReP sites to which they were being compared. Any can-
didate control regions that overlapped the matching ReP site at all
were passed over and sampling was repeated until a non-overlapping
region was assigned. ReP site-control region pairs with any CDS over-
lap were excluded from analysis. phyloP (100-way) scores were
downloaded from http://hgdownload.cse.ucsc.edu/goldenPath/hg38/
phyloP100way/ and intersected with ReP sites and control regions. All
positions within any ReP sites above the minimum affinity threshold
and its matched control region were analyzed collectively. Bases were
considered conserved if their phyloP score was above a varying
threshold between 2 and 6. The odds ratios were calculated as:
(ConservedReP / Non-conservedReP) / (Conservedmatch / Non-
conservedmatch) and 95% confidence intervals were calculated using
Fisher exact tests.
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Classification of ReP site variants
ReP site variants were classified as either focal or non-focal and dis-
rupting or preserving. First, for each variant allele, we summed the
relative RBPamp affinities across all positions overlapping the variant
(i.e., 11 affinities for awidth k = 11 RBPampmodel) and termed these the
ancestral affinity and thederived affinity. Next, we summed the relative
affinity values spanning from 25 bases upstream to 25 bases down-
stream of the ReP site and termed this the local affinity. Focal variants
were those with ancestral affinity / local affinity > 2/3 (i.e., the majority
of the local affinity could be attributed to the ReP site). Non-focal
variants were those with ancestral affinity / local affinity <1/3, or with
another ReP site for the same RBP within 25 bases. Disrupting variants
were thosewith derived affinity / ancestral affinity <1/3, and preserving
variants were those with derived affinity / ancestral affinity > 2/3.
Negative selection analysis of disrupting and preserving variants was
performed on variants aggregated across all RBPs with available data
(after filtering as described above). Analysis of individual RBPs was not
possible due to low statistical power.

eQTLs
DAG-P fine-mapped eQTL variant call files were downloaded from the
GTex Portal. For each variant, the maximum posterior inclusion
probability (PIP) value across tissues was used. Due to the relatively
small number of ReP site variants with fine-mapped eQTL data avail-
able, we used more relaxed cut-offs for defining disrupting (derived
affinity / ancestral affinity <1/2) and preserving variants (derived affi-
nity / ancestral affinity > 1/2) for the analysis in Fig. 2d. Notably, it is not
possible to analyze negative selection acting on variants from
association-based analyses such as GWAS and eQTL, as they are highly
skewed toward common variants (with more statistical power to
detect significant effects) and measures such as iMAPS depend on
unbiased allele frequencies.

Parallel reporter assay
To test variants for their ability to directlymodulate transcript levels in
cells, a parallel reporter assay was conducted. 28 pairs of 101 nucleo-
tide 3ʹUTR fragments consisting of two variants alleles +/− 50 bases of
flanking sequence were ordered in oPools Oligo Pool format (IDT) and
cloned into a modified version of the pmirGLO (Promega) plasmid
(Griesemer 2021) downstream of a GFP ORF via BsaI sites introduced
by site-directed mutagenesis (Agilent). The plasmid library was trans-
fected into HEK 293 cells using Lipofectamine 3000 (Life Technolo-
gies) and total RNAwas collected 48hours later using the RNeasymini
kit (Qiagen). Plasmid RNA was reverse-transcribed using a gene-
specific primer (GCATTCTAGTTGTGGTTTGTCCA) and Superscript IV
(Life Technologies). Libraries were amplified and each sample (two
replicates of input plasmid DNA and two RNA samples from separate
transfections) was uniquely dual indexed using custom primers. RNA
and plasmid DNA input read counts for each fragment were obtained
using Illumina Miseq performed by the BMC at MIT. For each variant,
the variant activity is the odds ratio calculated as: (RNAAlt / DNAAlt) /
(RNARef / DNARef), where Alt = alternative allele and Ref = reference
allele. Variants with Benjamini-Hochberg corrected Fisher exact test
P <0.05 for both transfections were considered to have significant
capacity to modulate transcript levels. HEK 293 cells were cultured in
DMEM (Life Technologies) supplemented with 10% FBS (Life Tech-
nologies). Negative control variants were selected from variants
assayed in46with <10% skew inHEK293 cells, andoligopairs containing
the two nonassayed alleles (e.g. U and C for an A >G variant on the
sense strand) were synthesized and tested. Two variants where both of
the nonassayed alleles have both been observed (present in dbSNP)
were excluded from analysis. Plasmid and RNA read counts for ReP
site-disrupting and negative control variants are provided in Supple-
mentary Data 3.

Highly disruptive 3ʹ UTR gnomAD variant gene set analyses
Genes with highly disruptive 3ʹ UTR gnomAD variants belonging to
classifications with iMAPS >= 0.06 were analyzed. For each class of
disrupting variants (ReP, PAS, and miR) an equal number of control
genes were sampled from genes without any moderately disruptive
or highly disruptive 3ʹ UTR gnomAD variants. For Rep sites, highly
disruptive variants consisted of those that disrupted ReP sites with
relative affinities > 0.01. Eligible control genes had at least one var-
iant in a ReP site with a relative affinity of > 0.01. For miR targets,
highly disruptive variants were found in core 3ʹ UTR regions within
8-mer target sites for more than one broadly conserved microRNA
family. Eligible control genes had at least one variant in their core 3ʹ
UTR region within an 8-mer miR target. For PASs, highly disruptive
variants caused loss of a PAS within 15 to 30 bases of a gene’s primary
poly(A) site that was also used in mouse or rat. Eligible control genes
had at least one variant upstream of a primary poly(A) site that was
also used in mouse or rat. Gene lists for various annotations were
downloaded from https://github.com/QingboWang/gene_lists:
Essential genes were identified in a CRISPR-based cell viability
screen78. Haploinsufficient genes were identified from ClinGen79.
Autosomal dominant genes followed an autosomal dominant
inheritance pattern80.

Expression data
Gene expression summary data for HepG2 and K562 cell lines were
downloaded from the ENCODE Portal. Genes with ids matching Gen-
code v32 protein-coding genes were analyzed. Mean transcripts per
million values across replicates were used.

Defining core and variable 3ʹ UTR regions
We used polyA_DB version 3.2 data to identify core and variable 3ʹ
UTR regions47. These regions were defined based on relative utili-
zation of different poly(A) sites, not necessarily their relative
position. We defined the primary poly(A) site for each gene as the
site with the highest mean reads per million across all polyA_DB
tissues and cell lines. Thus, our primary poly(A) sites capture the
effects of both alternative last exon selection and alternative
polyadenylation. All positions between the primary poly(A) site and
its upstream stop codon, regardless of any intervening poly(A)
sites, were considered core. All positions between the primary
poly(A) site and the most distal poly(A) site were considered vari-
able. If the most distal poly(A) site associated with a given stop
codon was also the primary poly(A) site, we considered that 3ʹ UTR
to have no variable region.

Pumilio site creation
We used the RBPamp model for PUM1/PUM2 to predict the relative
ancestral and derived affinities for all 3ʹ UTR gnomAD variants as
described above. RBPampwas used to score relative affinity for PUM1/
PUM2. Variants with derived affinity / ancestral affinity > 2 were
included for negative selection analysis in Fig. 3b. All variants with
alternative affinity > reference affinity were included for analysis of
mean eQTL PIP. For eQTL gene expression analysis, the normalized
effect size (NES) values obtained from GTEx represent the relative
expression difference between transcripts containing the alternate
allele and transcripts containing the reference allele, where positive
values indicate higher expression for the alternate allele, and vice
versa. eQTL variants with alternative affinity > 0.3 and alternative
affinity > reference affinity were labeled as “created.” Variants labeled
as “none” consisted of all other variants after excluding variants with
reference affinity > 0.3 and those in PUM2 ReP sites. A Wilcoxon Rank
Sum test was performed to compare NES values between the “none”
and “created” groups. Each PIP-tissue combination was considered for
each eQTL variant.
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miRNA target sites
All miRNA target site data was downloaded from https://www.
targetscan.org/vert_80/vert_80_data_download/All_Target_Locations.
hg19.bed.zip. Only 8mer, 7mer-m8, and 7mer-A1 target sites (including
both conserved andnon-conserved sites) ofmiRNA families conserved
in mammals or vertebrates were considered, and targets of poorly
conserved miRNA families were excluded. All considered targets were
grouped together for analysis of miRNA targets in Fig. 1d. For all ana-
lyses variants in the following target positions were analyzed: bases
within the seed pairing with positions 2 through 7 of the miRNA (all
types), the base across from position 1 (for 8mer and 7mer-A1 types),
and the base pairing with position 8 (8mer and 7mer-m8 types).

Polyadenylation signal (PAS) analysis
“Top” PAS hexamers (with ancestral sequence AWUAAA, whereW=A
or U) 15 to 30 bases (inclusive) upstream of primary poly(A) sites
identified from polyA_DB data (see above) were considered primary
PASs. All other PASs (including those nearby any nonprimary poly(A)
sites in core regions) were considered secondary. PASs were con-
sidered lost if the derived allele sequence did not overlap any PAS
hexamer, including both AWUAAA and other similar A-rich hexamers
found to be enriched in PASs from58. Variants with derived allele
sequence that overlapped one or more PAS hexamers were con-
sidered preserved. Conserved and nonconserved (active in human
and either rat or mouse) poly(A) site classifications were obtained
from polyA_DB47. To account for poly(A) sites that were difficult to
confidently assign to a single stop codon/3ʹ UTR in the absence of
long-read sequencing data, we filtered pairs of 3ʹ UTRs where any
poly(A) sites are within 100 bases of a downstream stop codon / 3ʹ
UTR start.

Comparing iMAPS across modes of regulation
We scaled ReP site iMAPS values to facilitate comparison between all
three modes of regulation investigated. ReP sites are derived from
eCLIP peaks, which are enriched in highly expressed genes where
higher read counts increase the statistical power for peak calling. Since
highly expressed genes are more constrained, we expect genes con-
taining ReP sites to have slightly elevated iMAPS relative to genome-
wide averages. In contrast,miRNA targetswere predicted and analyzed
for all genes, and PASs were considered equally across all transcripts
with a detectable 3ʹ end / poly(A) site.

We calculated iMAPS for synonymous andmissense variants from
genes with 3ʹ UTR ReP sites to scale ReP site variant iMAPS values.
Specifically, we sampled CDS variants fromgeneswith 3ʹUTRReP sites
in a weighted fashion to reflect the number of ReP sites in each gene.
These CDS variants were then classified and iMAPS was calculated as
described above, resulting in iMAPS of ~ 0.034 and 0.10 for synon-
ymous and missense variants, respectively. These values were used as
relative benchmarks to convert ReP site iMAPS values to the genome-
wide scale with synonymous and missense iMAPS of 0.028 and 0.070,
respectively. For example, a ReP site iMAPS value of 0.067 (half-way
between synonymous and missense ReP site gene values) would scale
to 0.049 (half-way between synonymous and missense genome-wide
values).

After scaling of ReP site iMAPS values as described above, we
counted the number of gnomAD variants belonging to any 3ʹ UTR
element-disrupting classification with iMAPS values above a minimum
threshold ranging from 0.025 to 0.075 (in increments of 0.005). We
chose 0.03 and 0.06 as minimum iMAPS thresholds to highlight as
they exceeded genome-wide synonymous levels and approached
genome-wide missense variant levels, respectively. None of the filters
described in “Variant filtering for negative selection analyses” above
were applied when counting the number of gnomAD variants
belonging to each classification.

Data analysis software
Standard computational biology software, including R (v4.2.0), Python
(v3.8.5), bedtools (v2.29.1), and vcftools (v0.1.17) was used in data
analysis. Details for RBPamp and custom software can be found in the
“Data availability” and “Code availability” sections, respectively.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Several publicly available datasets were utilized in this study and can
be accessed as follows: gnomAD variants; https://gnomad.
broadinstitute.org/downloads denovo db variants; https://denovo-
db.gs.washington.edu/denovo-db/Download.jsp Ancestral human
genome sequence; Ensembl: https://ftp.ensembl.org/pub/current_
fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz DNase
hypersensitivity peaks and CpG islands; UCSC Table Browser: https://
genome.ucsc.edu/cgi-bin/hgTables Gencode gene regions; UCSC
Table Browser: https://genome.ucsc.edu/cgi-bin/hgTables, and Gen-
code: https://www.gencodegenes.org/human/release_32.html
H3K9me3 peaks; accessed using https://github.com/carjed/smaug-
genetics/blob/master/download_ref_data.sh CpG methylation data
processed by the Roadmap Epigenomics Consortium can be requested
from gnomAD polA_DB data; https://exon.apps.wistar.org/PolyA_DB/
v3/misc/download.php RBPamp; https://bitbucket.org/marjens/
rbpamp ENCODE eCLIP and gene expression data; https://www.
encodeproject.org/ Processed tamvar MPRA data; https://www.cell.
com/cms/10.1016/j.cell.2021.08.025/attachment/d8a42d2a-9add-4815-
b0ce-f4e1b28d5ca9/mmc1.xlsx phyloP scores; http://hgdownload.cse.
ucsc.edu/goldenPath/hg38/phyloP100way/ eQTLs; https://www.
gtexportal.org/home/ Annotated gene sets; https://github.com/
QingboWang/gene_lists ClinVar variants; UCSC Table Browser:
https://genome.ucsc.edu/cgi-bin/hgTablesmiRNA targets; https://
www.targetscan.org/vert_80/vert_80_data_download/All_Target_
Locations.hg19.bed.zip Reporter assay RNA and plasmid read counts
can be found in Supplementary Data 3.

Code availability
Custom code, along with an iMAPS calculator that uses our approach
to quantify negative selection acting onuser-provided 3ʹUTRelements
or variants is available at https://github.com/sfindlay11/iMAPS.git.

References
1. Hindorff, L. A. et al. Potential etiologic and functional implications of

genome-wide association loci for human diseases and traits. Proc.
Natl Acad. Sci. 106, 9362–9367 (2009).

2. Gusev, A. et al. Partitioning Heritability of Regulatory andCell-Type-
Specific Variants across 11 Common Diseases. Am. J. Hum. Genet.
95, 535–552 (2014).

3. Maurano, M. T. et al. Systematic Localization of Common Disease-
Associated Variation in Regulatory DNA. Science 337,
1190–1195 (2012).

4. Dunham, I. et al. An integrated encyclopedia of DNAelements in the
human genome. Nature 489, 57–74 (2012).

5. Abascal, F. et al. Expanded encyclopaedias of DNA elements in the
human and mouse genomes. Nature 583, 699–710 (2020).

6. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter
regulation from thousands of CRISPR perturbations. Nat. Genet 51,
1664–1669 (2019).

7. Wright, C. F. et al. Non-coding region variants upstream of MEF2C
cause severe developmental disorder through three distinct loss-
of-function mechanisms. Am J Hum. Genetics 108,
1083–1094 (2021).

Article https://doi.org/10.1038/s41467-023-44456-9

Nature Communications |           (2024) 15:85 13

https://www.targetscan.org/vert_80/vert_80_data_download/All_Target_Locations.hg19.bed.zip
https://www.targetscan.org/vert_80/vert_80_data_download/All_Target_Locations.hg19.bed.zip
https://www.targetscan.org/vert_80/vert_80_data_download/All_Target_Locations.hg19.bed.zip
https://gnomad.broadinstitute.org/downloads
https://gnomad.broadinstitute.org/downloads
https://denovo-db.gs.washington.edu/denovo-db/Download.jsp
https://denovo-db.gs.washington.edu/denovo-db/Download.jsp
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://ftp.ensembl.org/pub/current_fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
https://genome.ucsc.edu/cgi-bin/hgTables
https://genome.ucsc.edu/cgi-bin/hgTables
https://genome.ucsc.edu/cgi-bin/hgTables
https://www.gencodegenes.org/human/release_32.html
https://github.com/carjed/smaug-genetics/blob/master/download_ref_data.sh
https://github.com/carjed/smaug-genetics/blob/master/download_ref_data.sh
https://exon.apps.wistar.org/PolyA_DB/v3/misc/download.php
https://exon.apps.wistar.org/PolyA_DB/v3/misc/download.php
https://bitbucket.org/marjens/rbpamp
https://bitbucket.org/marjens/rbpamp
https://www.encodeproject.org/
https://www.encodeproject.org/
https://www.cell.com/cms/10.1016/j.cell.2021.08.025/attachment/d8a42d2a-9add-4815-b0ce-f4e1b28d5ca9/mmc1.xlsx
https://www.cell.com/cms/10.1016/j.cell.2021.08.025/attachment/d8a42d2a-9add-4815-b0ce-f4e1b28d5ca9/mmc1.xlsx
https://www.cell.com/cms/10.1016/j.cell.2021.08.025/attachment/d8a42d2a-9add-4815-b0ce-f4e1b28d5ca9/mmc1.xlsx
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/phyloP100way/
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/phyloP100way/
https://www.gtexportal.org/home/
https://www.gtexportal.org/home/
https://github.com/QingboWang/gene_lists
https://github.com/QingboWang/gene_lists
https://genome.ucsc.edu/cgi-bin/hgTables
https://www.targetscan.org/vert_80/vert_80_data_download/All_Target_Locations.hg19.bed.zip
https://www.targetscan.org/vert_80/vert_80_data_download/All_Target_Locations.hg19.bed.zip
https://www.targetscan.org/vert_80/vert_80_data_download/All_Target_Locations.hg19.bed.zip
https://github.com/sfindlay11/iMAPS.git


8. Deplancke, B., Alpern, D. & Gardeux, V. The Genetics of Transcrip-
tion Factor DNA Binding Variation. Cell 166, 538–554 (2016).

9. Mayya, V. K. & Duchaine, T. F. Ciphers and Executioners: How 3′-
Untranslated Regions Determine the Fate of Messenger RNAs.
Front. Genet. 10, 6 (2019).

10. Finucane, H. K. et al. Partitioning heritability by functional annota-
tion using genome-wide association summary statistics. Nat. Genet
47, 1228–1235 (2015).

11. Consortium, T. Gte. The GTEx Consortium atlas of genetic reg-
ulatory effects across human tissues. Science 369,
1318–1330 (2020).

12. Bartel, D. P. MicroRNAs: Target Recognition and Regulatory Func-
tions. Cell 136, 215–233 (2009).

13. Sun, Y. et al. Molecular basis for the recognition of the human
AAUAAA polyadenylation signal. Proc. Natl Acad. Sci. 115,
E1419–E1428 (2018).

14. Chan, S. L. et al. CPSF30 and Wdr33 directly bind to AAUAAA in
mammalianmRNA 3′ processing.Gene Dev. 28, 2370–2380 (2014).

15. Schönemann, L. et al. Reconstitution of CPSF active in poly-
adenylation: recognition of the polyadenylation signal by WDR33.
Gene Dev. 28, 2381–2393 (2014).

16. Meyer, C. et al. The TIA1 RNA-Binding Protein Family Regulates
EIF2AK2-Mediated Stress Response and Cell Cycle Progression.
Mol. Cell 69, 622–635.e6 (2018).

17. HafezQorani, S. et al.Modeling the combinedeffect of RNA-binding
proteins and microRNAs in post-transcriptional regulation. Nucleic
Acids Res 44, e83–e83 (2016).

18. Etten, J. V. et al. Human Pumilio Proteins Recruit Multiple Dead-
enylases to Efficiently Repress Messenger RNAs*. J. Biol. Chem.
287, 36370–36383 (2012).

19. Wolfe, M. B. et al. Principles of mRNA control by human PUM pro-
teins elucidated frommultimodal experiments and integrative data
analysis. Rna 26, 1680–1703 (2020).

20. Nostrand, E. L. V. et al. A large-scale binding and functional map of
human RNA-binding proteins. Nature 583, 711–719 (2020).

21. Yang, E.-W. et al. Allele-specific binding of RNA-binding proteins
reveals functional genetic variants in the RNA. Nat. Commun. 10,
1338 (2019).

22. Feng, H. et al. Modeling RNA-binding protein specificity in vivo by
precisely registering protein-RNA crosslink sites. Mol. Cell 74,
428615 (2019).

23. Auton, A. et al. A global reference for human genetic variation.
Nature 526, 68–74 (2015).

24. Ward, L. D. & Kellis, M. Interpreting noncoding genetic variation in
complex traits and human disease. Nat. Biotechnol. 30,
1095–1106 (2012).

25. Karczewski, K. J. et al. The mutational constraint spectrum quanti-
fied from variation in 141,456 humans.Nature 581, 434–443 (2020).

26. Halldorsson, B. V. et al. The sequences of 150,119genomes in theUK
Biobank. Nature 607, 732–740 (2022).

27. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706
humans. Nature 536, 285–291 (2016).

28. Harpak, A., Bhaskar, A. & Pritchard, J. K. Mutation Rate Variation is a
Primary Determinant of the Distribution of Allele Frequencies in
Humans. Plos Genet 12, e1006489 (2016).

29. Carlson, J. et al. Extremely rare variants reveal patterns of germline
mutation rate heterogeneity in humans. Nat. Commun. 9,
3753 (2018).

30. Rands, C. M., Meader, S., Ponting, C. P. & Lunter, G. 8.2% of the
Human Genome Is Constrained: Variation in Rates of Turnover
across Functional Element Classes in the Human Lineage. Plos
Genet 10, e1004525 (2014).

31. Whiffin, N. et al. Characterising the loss-of-function impact of 5’
untranslated region variants in 15,708 individuals.Nat. Commun. 11,
2523 (2020).

32. Blakes, A. J. M. et al. A systematic analysis of splicing variants
identifies newdiagnoses in the 100,000Genomes Project.Genome
Med 14, 79 (2022).

33. Lord, J. et al. Pathogenicity and selective constraint on variation
near splice sites. Genome Res 29, 159–170 (2019).

34. Zhang, J. et al. RADAR: annotation and prioritization of variants in
the post-transcriptional regulome of RNA-binding proteins. Gen-
ome Biol. 21, 151 (2020).

35. Park, C. Y. et al. Genome-wide landscape of RNA-binding protein
target site dysregulation reveals a major impact on psychiatric
disorder risk. Nat. Genet 53, 166–173 (2021).

36. Kainov, Y. A., Aushev, V. N., Naumenko, S. A., Tchevkina, E. M. &
Bazykin, G. A. Complex Selection on Human Polyadenylation Sig-
nals RevealedbyPolymorphismandDivergenceData.GenomeBiol.
Evol. 8, 1971–1979 (2016).

37. Lee, D. S. M., Ghanem, L. R. & Barash, Y. Integrative analysis reveals
RNA G-quadruplexes in UTRs are selectively constrained and enri-
ched for functional associations. Nat. Commun. 11, 527 (2020).

38. Dominguez, D. et al. Sequence, Structure, and Context Preferences
of Human RNA Binding Proteins. Mol. Cell 70, 854–867.e9 (2018).

39. Seplyarskiy, V. B. et al. Population sequencing data reveal a com-
pendium of mutational processes in the human germ line. Science
373, 1030–1035 (2021).

40. Seplyarskiy, V. B. & Sunyaev, S. The origin of human mutation in
light of genomic data. Nat. Rev. Genet 22, 672–686 (2021).

41. Green, P., Ewing, B., Miller, W., Thomas, P. J. & Green, E. D.
Transcription-associated mutational asymmetry in mammalian
evolution. Nat. Genet 33, 514–517 (2003).

42. Turner, T. N. et al. denovo-db: a compendium of human de novo
variants. Nucleic Acids Res. 45, D804–D811 (2017).

43. Lindblad-Toh, K. et al. A high-resolutionmap of human evolutionary
constraint using 29 mammals. Nature 478, 476–482 (2011).

44. Agarwal, V., Bell, G. W., Nam, J.-W. & Bartel, D. P. Predicting effec-
tive microRNA target sites in mammalian mRNAs. Elife 4,
e05005 (2015).

45. Jens, M., McGurk, M., Bundschuh, R. & Burge, C. B. RBPamp:
Quantitative Modeling of Protein-RNA Interactions in vitro Predicts
in vivo Binding. bioRxiv https://doi.org/10.1101/2022.11.08.
515616 (2022).

46. Griesemer, D. et al. Genome-wide functional screen of 3′UTR var-
iants uncovers causal variants for human disease and evolution.
Cell 184, 5247–5260.e19 (2021).

47. Wang, R., Zheng, D., Yehia, G. & Tian, B. A compendium of con-
served cleavage and polyadenylation events in mammalian genes.
Genome Res 28, 1427–1441 (2018).

48. Friedman, R. C., Farh, K. K.-H., Burge, C. B. & Bartel, D. P. Most
mammalian mRNAs are conserved targets of microRNAs. Genome
Res 19, 92–105 (2009).

49. Chen, K. & Rajewsky, N. Natural selection on human microRNA
binding sites inferred from SNP data. Nat. Genet 38,
1452–1456 (2006).

50. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved Seed Pairing,
Often Flanked by Adenosines, Indicates that Thousands of Human
Genes are MicroRNA Targets. Cell 120, 15–20 (2005).

51. Grimson, A. et al. MicroRNA Targeting Specificity in Mammals:
Determinants beyond Seed Pairing. Mol. Cell 27, 91–105 (2007).

52. McGeary, S. E. et al. The biochemical basis of microRNA targeting
efficacy. Science 366, (2019).

53. Nielsen, C. B. et al. Determinants of targeting by endogenous and
exogenous microRNAs and siRNAs. Rna 13, 1894–1910 (2007).

54. Zhu, Y. et al. Molecular Mechanisms for CFIm-Mediated Regulation
ofmRNAAlternative Polyadenylation.Mol. Cell69, 62–74.e4 (2018).

55. Hamilton, K., Sun, Y. & Tong, L. Biophysical characterizations of the
recognition of the AAUAAA polyadenylation signal. Rna 25,
1673–1680 (2019).

Article https://doi.org/10.1038/s41467-023-44456-9

Nature Communications |           (2024) 15:85 14

https://doi.org/10.1101/2022.11.08.515616
https://doi.org/10.1101/2022.11.08.515616


56. Shulman, E. D. & Elkon, R. Systematic identification of functional
SNPs interrupting 3’UTR polyadenylation signals. Plos Genet 16,
e1008977 (2020).

57. Tian, B. & Graber, J. H. Signals for pre‐mRNA cleavage and poly-
adenylation. Wiley Interdiscip. Rev. Rna 3, 385–396 (2012).

58. Ni, T. et al. Distinct polyadenylation landscapes of diverse human
tissues revealed by a modified PA-seq strategy. Bmc Genom 14,
615 (2013).

59. Xu, C. & Zhang, J. Alternative Polyadenylation of Mammalian Tran-
scripts Is Generally Deleterious. Not. Adapt. Cell Syst. 6,
734–742.e4 (2018).

60. Mayr, C. 3′ UTRs Regulate Protein Functions by Providing a Nur-
turing Niche during Protein. Synth. Cold Spring Harb. Sym 84,
039206 (2020).

61. Richards, S. et al. Standards and guidelines for the interpretation of
sequence variants: a joint consensus recommendation of the
American College of Medical Genetics and Genomics and the
Association for Molecular Pathology. Genet Med. 17,
405–423 (2015).

62. Kjolby, M., Nielsen, M. S. & Petersen, C. M. Sortilin, Encoded by the
Cardiovascular Risk Gene SORT1, and Its Suggested Functions in
Cardiovascular Disease. Curr. Atheroscler. Rep. 17, 18 (2015).

63. Chunn, L. M. et al. Mastermind: A Comprehensive Genomic Asso-
ciation Search Engine for Empirical Evidence Curation and Genetic
Variant Interpretation. Frontiers. Genetics 11, 577152 (2020).

64. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published
genome-wide association studies, targeted arrays and summary
statistics 2019. Nucleic Acids Res 47, D1005–D1012 (2019).

65. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome
Biol. 17, 122 (2016).

66. Souza, A. T. D., Hankins, G. R., Washington, M. K., Orton, T. C. &
Jirtle, R. L. M6P/IGF2R gene is mutated in human hepatocellular
carcinomas with loss of heterozygosity. Nat. Genet 11,
447–449 (1995).

67. Zhou, J. et al. Whole-genome deep-learning analysis identifies
contribution of noncoding mutations to autism risk. Nat. Genet 51,
973–980 (2019).

68. Bohn, E., Lau, T.,Wagih, O.,Masud, T. &Merico, D. A curated census
of pathogenic and likely pathogenic UTR variants and evaluation of
deep learning models for variant effect prediction. Front. Mol.
Biosci. 10, https://doi.org/10.3389/fmolb.2023.1257550 (2023).

69. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M.
CADD: predicting the deleteriousness of variants throughout the
human genome. Nucleic Acids Res 47, D886–D894 (2018).

70. Duret, L. & Mouchiroud, D. Determinants of Substitution Rates in
Mammalian Genes: Expression Pattern Affects Selection Intensity
but Not Mutation Rate. Mol. Biol. Evol. 17, 68–070 (2000).

71. Nam, J.-W. et al. Global Analyses of the Effect of Different Cellular
Contexts on MicroRNA Targeting. Mol. Cell 53, 1031–1043 (2014).

72. Cummings, B. B. et al. Transcript expression-aware annotation
improves rare variant interpretation. Nature 581, 452–458 (2020).

73. Lambert, N. et al. RNA Bind-n-Seq: Quantitative Assessment of the
Sequence and Structural Binding Specificity of RNA Binding Pro-
teins. Mol. Cell 54, 887–900 (2014).

74. Ellingford, J. M. et al. Recommendations for clinical interpretation
of variants found in non-coding regions of the genome. Genome
Med 14, 73 (2022).

75. Danecek, P. et al. The variant call format and VCFtools. Bioinfor-
matics 27, 2156–2158 (2011).

76. Gardiner-Garden, M. & Frommer, M. CpG Islands in vertebrate
genomes. J. Mol. Biol. 196, 261–282 (1987).

77. Raney, B. J. et al. Track data hubs enable visualization of user-
defined genome-wide annotations on the UCSC Genome Browser.
Bioinformatics 30, 1003–1005 (2014).

78. Hart, T. et al. Evaluation and Design of Genome-Wide CRISPR/
SpCas9 Knockout Screens. G3: Genes Genom. Genet. 7,
2719–2727 (2017).

79. Rehm,H. L. et al. ClinGen— TheClinicalGenomeResource.N. Engl.
J. Med. 372, 2235–2242 (2015).

80. Berg, J. S. et al. An informatics approach to analyzing the inci-
dentalome. Genet. Med. 15, 36–44 (2013).

Acknowledgements
We thank members of the Burge laboratory for their helpful discussions
and comments on the manuscript, especially Marvin Jens and Hannah
Jacobs for their insights. We thank NicolaWhiffin for helpful discussions
and Konrad Karczewski for facilitating access to useful datasets. We
thank James Xue andDustin Griesemer for guidance on parallel reporter
assays. We thank the staff of the BMC at MIT for their sequencing ser-
vices and technical support. We also thank David Bartel and Evan Boyle
for providing helpful comments on the manuscript. S.D.F. was sup-
ported by a postdoctoral fellowship from the Natural Sciences and
EngineeringResearchCouncil ofCanada (NSERC). Thisworkwas funded
by grants from the NIH (GM085319 and HG002439 to C.B.B.).

Author contributions
S.D.F. designed the study with input from C.B.B.; S.D.F. performed
analysis with contributions from L.R.; S.D.F. wrote the draft manuscript;
S.D.F. and C.B.B. finalized the manuscript with input from L.R.

Competing interests
The authors declare no competing interest.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-44456-9.

Correspondence and requests for materials should be addressed to
Christopher B. Burge.

Peer review information Nature Communications thanks William
Majoros, Anne O’Donnell-Luria and the other, anonymous, reviewer(s)
for their contribution to the peer review of this work. A peer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-023-44456-9

Nature Communications |           (2024) 15:85 15

https://doi.org/10.3389/fmolb.2023.1257550
https://doi.org/10.1038/s41467-023-44456-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Quantifying negative selection in human 3ʹ�UTRs uncovers constrained targets of RNA-�binding proteins
	Results
	Discussion
	Methods
	Genetic variants
	Variant filtering for negative selection analyses
	Variant annotations
	Intergenic regions
	Quantifying negative selection
	Accounting for the impact of extended flanking sequence contexts
	Coding sequence�(CDS)
	Human 3ʹ�UTRs
	RBPamp
	RBPamp eCLIP-proximal (ReP)�sites
	MPRA transcript abundance modulating variants (tamVars)
	ReP site conservation across species
	Classification of ReP site variants
	eQTLs
	Parallel reporter�assay
	Highly disruptive 3ʹ UTR gnomAD variant gene set analyses
	Expression�data
	Defining core and variable 3ʹ UTR regions
	Pumilio site creation
	miRNA target�sites
	Polyadenylation signal (PAS) analysis
	Comparing iMAPS across modes of regulation
	Data analysis software
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




