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A genome-wide association meta-analysis
implicates Hedgehog and Notch signaling
in Dupuytren’s disease

Sophie A. Riesmeijer 1,2 , Zoha Kamali 2,3, Michael Ng 4, Dmitriy Drichel5,6,
Bram Piersma7, Kerstin Becker5, Thomas B. Layton8, Jagdeep Nanchahal 8,
Michael Nothnagel 5,6, Ahmad Vaez 2,3, Hans Christian Hennies 6,9,
Paul M. N. Werker1, Dominic Furniss 4 & Ilja M. Nolte 2

Dupuytren’s disease (DD) is a highly heritablefibrotic disorder of thehandwith
incompletely understood etiology. A number of genetic loci, including Wnt
signaling members, have been previously identified. Our overall aim was to
identify novel genetic loci, to prioritize genes within the loci for functional
studies, and to assess genetic correlation with associated disorders. We per-
formed a meta-analysis of six DD genome-wide association studies from three
European countries and extensive bioinformatic follow-up analyses. Lever-
aging 11,320 cases and 47,023 controls, we identified 85 genome-wide sig-
nificant single nucleotide polymorphisms in 56 loci, of which 11 were novel,
explaining 13.3–38.1% of disease variance. Gene prioritization implicated the
Hedgehog and Notch signaling pathways. We also identified a significant
genetic correlationwith frozen shoulder. Thepathways identifiedhighlight the
potential for new therapeutic targets and provide a basis for additional
mechanistic studies for a common disorder that can severely impact hand
function.

Fibrosis, the excessive accumulation of extracellular matrix compo-
nents, can affect nearly every tissue in the body and is increasingly
recognized as a major cause of morbidity and mortality1. Dupuytren’s
disease (DD) is a fibrotic disorder of the fascias of the hand that causes
fingers to irreversibly contract. It is also associated with excess mor-
tality due to a wide range of causes, including cancer2. DD is very
common and its prevalence increases with age, affecting 12% of Wes-
ternpopulation aged 55 years to 29%of thoseaged 75 years3. The initial
presentation is as a highly cellular nodule that progresses to form
fibrous cords. As the cords extend into the finger and undergo remo-
deling and shortening, patients develop contractures that impair

function and quality of life4. Treatment of DD is currently limited to
late-stage disease to reduce flexion contractures by disrupting or
excising the cords. However, recurrence rates are high, and there is no
cure for this debilitating disease5.

Current understanding of the etiology of DD is limited, with a
complex interaction between genetic and environmental factors6.
There is strong evidence for an association with advanced age, male
sex, family history of DD, heavy alcohol consumption, cigarette
smoking, and manual work exposure7. Furthermore DD shares a
genetic etiology with body mass index (BMI), type II diabetes mellitus
(T2D), and levels of triglycerides and high-density lipoprotein (HDL)8.
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Intriguingly, adiposity is causally protective against DD9,10. Genome-
wide associations studies (GWASs) have so far identified 61 genetic risk
variants11–13. The overall (broad-sense) heritability of DD was estimated
to be 80%, of which 67% is attributable to common genetic variants8,14.
However, the variance explained by known genetic variants was esti-
mated as 11.3%12. Thus, much of the genetic susceptibility for DD
remains to be elucidated.

Development of novel therapeutic approaches requires a sys-
tematic approach of identification of novel genetic risk factors,
broadening our understanding of themechanisms involved with these
genetic susceptibility loci, and studying their functional consequences.
Here we addressed these aims by performing meta-analysis of GWAS
data from six cohorts to prioritize genes involved in DD.

Results
Study cohorts
Sample and genotyping details of the cohorts included in the meta-
GWAS are provided in Supplementary Data 1. An overview of the QC
output parameters of the GWAS per cohort is given in Supplemen-
tary Data 2.

Association analysis
Themeta-analysis included a total of 11,320 cases and 47,023 controls,
tested at 8,123,121 variants after QC. Clumping analysis identified 85
independent genome-wide significantly associated SNPs in 56 loci
(Fig. 1; Supplementary Data 3; Supplementary Fig. 2). Forty-five of
these loci have been previously reported12,15, 11 represent new loci. In
addition, we identified 24 new secondary hits in 12 known loci. All 26
previously identified loci from the previous (UK) GWAS12 were con-
firmed, but for six loci the effects were found to be heterogeneous
between the six cohorts and were therefore excluded from our meta-
GWAS (Supplementary Data 4). We also found associations with 45 of
the 61 loci implicated by Agren et al.13. Forest plots of the significantly
associated SNPs are shown in Supplementary Fig. 3. Thirty-four of the
85 genome-wide significant meta-GWAS SNPs were replicated in the
FinnGen cohort and 77 reached genome-wide significance in the
combinedmeta-analysis with FinnGen (Supplementary Data 5). Five of
the 85 genome-wide significant SNPs were not available in FinnGen.
Gene-based analysis is shown in Fig. 2.

Bioinformatic follow-up analyses
In silico annotation. In silico sequencing analysis returned 4542 and
2111 variants in moderate (r2 > 0.5) and high (r2 > 0.8) LD, respectively,
with the identified 85 meta-GWAS SNPs (Supplementary Data 6). One
of the meta-GWAS SNPs (rs1042704) as well as eight correlated SNPs

were non-synonymous. Out of these eight nsSNPs, three were in high
LD (r2 > 0.8)with twometa-GWASSNPs: rs366905 and rs34412930. The
nine nsSNPsmapped to the genesTMEM81,DSTYK, SUMO4,CFTR, TNC,
MMP14, and LDHAL6B (three nsSNPs). We flagged four nsSNPs in
TMEM81, DSTYK, MMP14, and LDHAL6B as deleterious based on scaled
CADD scores >20. This scoremeans that thesemissensemutations are
among the top 1% of all possible substitutions in the human reference
genome (~8.6 billion) ranked by deleteriousness based on over 60
different annotation sources16. This score is also larger than themedian
for all non-synonymous variations (i.e. 15).

In silico pleiotropy analysis (lookups of associated phenotypes) of
all meta-GWAS SNPs and their correlated SNPs revealed associations
with hematologic and certain anthropometric traits (Supplementary
Data 6). Interestingly, two SNPs were associated with keloid, another
fibroproliferative disorder influenced by transforming growth factor
beta (TGF-β1) production and Wingless and Int-1 (Wnt) signaling17.
Furthermore, rs11581010 has been previously associated with lower
BMI18. Additional associations were found with variance of red cell
counts (red cell distribution width), heel bone mineral density, and
type II diabetes mellitus. The locus harboring ZBTB40 was the most
pleiotropic region, with reported GWAS associations with a variety of
hematologic traits, bone mineral density traits, and chronic inflam-
matory diseases.

Gene prioritization, pathway, and tissue prioritization analyses. The
full gene prioritization analyses can be found in the Supplementary
Results. Since effect sizes of blood and fibroblast eQTLs showed a high
similarity (r =0.71; Supplementary Fig. 4), blood eQTL data were used,
given the much larger available sample size. A list of 119 prioritized
genes resulted from these analyses (Supplementary Data 7). These
genes were then assessed for association of differential gene expres-
sion in fibroblasts and further functional analyses. The FINEMAP ana-
lysis showed that most of the 56 loci the index SNPs had considerable
evidence for being causal themselves and that the proportion of var-
iants with a considerable evidence was the highest for exonic variants
(see Supplementary Data 8 and Supplementary Fig. 10).

Functional enrichment analysis showed that our results were
enriched for genes involved in abnormal limb, cartilage, and skeleton
morphology (Supplementary Data 9). Further functional analysis sug-
gested deepermechanistic insights,most importantly TGF-β signaling,
epithelial cell migration and cell-matrix adhesion (Supplementary
Data 10). Protein-protein interaction network of the prioritized genes
revealed two connected components, of which the first one was sug-
gestive of response to stress and the second one was suggestive of
viral/bacterial infection (Supplementary Data 24).

Fig. 1 | Manhattan plot of the logistic regression for the meta-GWAS association analysis. The horizontal red line represents a p-value threshold of 5 × 10−8 (e.g. the
multiple comparison correction for genome-wide significance).
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Tissue prioritization results showed enrichment of 12 tissues for
the expression of DD prioritized genes (FDR<0.01; Supplementary
Data 11), on top of which fibroblasts showed the highest expression
levels (Supplementary Fig. 5).

Transcriptome-wide association study. SMR analysis with fibroblast
eQTLs revealed seven genes with expression levels significantly asso-
ciated with DD (PSMR < 6.84× 10−6)19. Four of these associations
remained significant after the heterogeneity test (PHEIDI ≥ 7.14 × 10−3,
Supplementary Data 12). These include RPLP0, with a higher risk for
DD, and CTD-2587M2.1, DLG5, and TEAD3 with predicted protective
effects against DD. The long non-coding RNA CTD-2587M2.1 was
associated in SMRanalysis with blood eQTLs, with consistent direction
of effect (Supplementary Data 13).

Of the 119 prioritized genes for DD, 14 reached Bonferroni-
corrected significance in the fibroblast SMR analysis (Supplementary
Data 7). Five of these (TNC, AFAP1, CHSY1, NEDD4, and CFDP1) were
identified in at least three bioinformatic follow-up analyses and fibro-
blast SMR analysis.

Cell population-relevant genes. Next, we aimed to identify cell types
whose function is likely to be influencedby genes in our risk loci. Of the
85 meta-GWAS hits, SNPsea was unable to identify SNPs rs12442366
and rs886423. Twelve loci did not contain any genes. SNPsea merges
SNPs with shared genes into single loci to avoid multiple counting of

genes, thus resulting in a dataset of 55 gene sets. Myofibroblasts
showed the strongest association to the meta-GWAS risk loci
(p = 0.08). Moreover, automatic clustering highlighted that myofi-
broblasts and fibroblasts have more similar expression of genes in our
meta-GWAS loci thanother cell types (Fig. 3). In SupplementaryData 14
genes with the greatest specificity to each cell population are given for
each combination of SNP and cell type.

Polygenic risk scores
The distributions of standardized PRS were in highly significantly dif-
ferent between cases and controls for both Dutch cohorts (CytoSNP
OR= 3.25, 95% CI = 2.92-3.62, p = 2.0 × 10−102; GSA OR= 3.16, 95% CI =
2.87-3.48, p = 3.9 × 10−122; Fig. 4) and for both UK cohorts (UK Biobank
OR= 2.94, 95% CI = 2.82-3.07, p = 1.0 × 10−310; BSSH-GODD OR= 3.48,
95% CI = 3.26-3.72, p = 1.9 × 10−307; Fig. 4) Liability-adjusted Nagelk-
erke’s pseudo R2 measures showed that 13.3% of the variance can be
explained by the PRS in the Dutch CytoSNP cohort, 15.3% in the Dutch
GSA cohort, 30.0% in the UK Biobank cohort, and 38.1% in the BSSH-
GODD cohort. Very recently the Dutch Lifelines cohort was further
genotyped using another array (FinnGen Thermo Fisher Axiom® cus-
tom array) for 28,500 additional participants, of whom 110 reported to
have DD by questionnaire and 6,148 unrelated individuals were
selected as controls. For this cohort, the PRS was less significant
(OR = 2.44, 95% CI = 1.74-3.43, p = 2.3 × 10−7) and the liability-adjusted
Nagelkerke’s pseudo R2 was 13.3%.

Fig. 2 | Gene-basedanalysis as computedbyMAGMA,using amultiple regressionmodel.Meta-GWASsummary statistics weremapped to 18,879protein coding genes.
Genome-wide significance (red dashed line in the plot) was defined by Bonferroni correction at p =0.05/18,879 = 2.65 × 10−6.

Fig. 3 | Cell population-relevant genes. Heatmap showing specificity scores
(between0 [red] and 1 [blue] where a lower value indicates greater specificity to the
cell type), produced by SNPsea, of meta-GWAS associated DD loci in cell

populations derived from single cell RNA-seq of DD nodules (n = 6 patients)60.
Dendrograms (clustering trees) can be observed for cell populations (y-axis) as well
as genetic loci (x-axis).
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Genetic correlations
Frozen shoulder showed a significant positive genetic correlation of
0.30 with DD (p-value = 1.9 × 10−6), suggesting that there is an overlap
between causal variants for DD and for frozen shoulder (Supplemen-
tary Data 15). Increasing BMI was significantly negatively correlated to
DD (p-value = 1.2 × 10−8, r = −0.14), and increasing HDL was positively
correlated (p-value = 3.6 × 10−5, r =0.12). Genetic correlations for fast-
ing glucose, HbA1c, triglycerides, idiopathic pulmonary fibrosis,
psoriasis, systemic sclerosis, T2D, bone mineral density, and height
with DD were not significant.

Colocalization analysis
The significantly genetically correlated traits frozen shoulder, BMI,
and HDL were considered for colocalization analysis. For frozen
shoulder, five genome-wide significant SNPs have been identified20.
Colocalization analysis revealed that DD and frozen shoulder share
the same causal variants rs1042704 (posterior probability 0.99) and
rs28606049 (posterior probability 0.99). SNP rs2472660, which was
also located in a locus associated to DD, was not found to be causally
related to both disorders. For BMI, two previously associated loci
were within a locus also associated with DD: rs10779751 and
rs760749021. For rs10779751, neighboring SNP rs11581010 was
revealed as a shared causal variant for both DD and BMI (posterior
probability 0.99). For rs7607490, none of the SNPs within its region
had a causal effect on both BMI and DD (posterior probability 0.12).
None of the previously associated HDL SNPs were at the same loci as
genome-wide significant DD SNPs, thus colocalization analysis for
HDL could not be performed.

Other gene prioritization analyses
Results from supplementary methods and results are available in the
supplements: list of prioritized genes, Supplementary Data 17; co-
regulation analysis, Supplementary Data 18; multi-layer analysis, Sup-
plementary Data 19; multi-QTL analysis, Supplementary Data 20;
functional enrichment analysis of 73 prioritized genes, Supplementary
Data 21; functional enrichment analysis of 23 prioritized genes, Sup-
plementary Data 22; functional enrichment analysis of 119 prioritized
genes, SupplementaryData 23 Protein-protein interaction (composite)
network analysis, Supplementary Data 24.

Discussion
Although DD is a common disease with a strong genetic component,
underlying genetic factors and diseasemechanisms are widely elusive.
Therefore, the aims of this study were to identify additional genetic
loci and pathways for DD to further explain the genetic variance of DD,
and to provide directions for future functional follow-up studies. We
performed the largestGWASofDD todate,meta-analyzing six cohorts,
including 11,320 cases and 47,023 controls. It yielded 85 genome-wide
significantly associated SNPs at 56 loci, 34 of which have not been
previously described. With these variants thrice the amount of phe-
notypic variance (narrow-sense heritability) can be explained, up to
38.1% in contrast to 11.3%12. Nevertheless, a large amount remains
undiscovered considering the estimated heritability of 80%8,12,14.

Replication of our genome-wide significant SNPs in the FinnGen
cohort revealed only amoderate number of replicated SNPs (34 out of
85). Thismoderate overlap of SNPs available from both datasets might
be explained by the fact that the Finnish population is known to have

Fig. 4 | Variance explained through polygenic risk score analyses. Density plot of the PRS distribution for cases and controls in (A) the Dutch CytoSNP cohort, (B) the
Dutch GSA cohort, (C) UK Biobank cohort (D) the UK BSSH-GODD cohort, and (E) the Dutch FinnGen cohort.
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experienced a population bottleneck and therefore to be genetically
diverse fromother European populations22. Consequently we chose to
report all 85 SNPs as DD associated variants and not only those that
could be replicated in FinnGen. In addition, FinnGen used a Thermo-
Fisher Axiom custom array containing variants enriched in Finland,
thereby explaining why many of the suggestive associations found by
FinnGen were not available in our meta-GWAS. Nevertheless, the
majority (n = 77) of the 85 genome-wide significant SNPs from our
meta-GWAS reached a genome-wide significance in the meta-analysis
of our meta-GWAS results and those from the FinnGen cohort.

Very recently, a meta-analysis of DD GWAS was performed using
the results from three biobanks (UK Biobank, FinnGen, and Michigan
Genomics Initiative)13. For this study, the authors identified DD cases
based on available International Classification of Diseases codes (ICD,
Ninth Revision, Clinical Modification; code 728.71) available from
hospital inpatient data. In the current study, we used DD cases diag-
nosed and/or treated by a plastic or hand surgeon in our outpatient
clinics. Due to the difference in diagnosing, these cohorts are likely not
quite comparable regarding phenotyping, in addition to the above-
mentioned genetic diversity of the studied populations.We thus chose
not to include these cohorts in our meta-analysis, but rather compare
the results. From the 56 regions that we identified, Agren et al. also
implicated 45, among which 25 that were already reported
previously11–13. The eleven additional loci include the genes MTOR,
BABAM2, LRRC3B, LIMD1, LPP, AFAP1, LOC101927691, TFEB, MICAL2,
MEOX1, and ADAMTS5.

To prioritize genes that substantially impact DD phenotype we
performed extensive bioinformatic follow-up analyses of our 85
genome-wide significantly associated SNPs in 56 loci in order to identify
the most likely causal variants within these loci. These analyses identi-
fied 40 functional SNPs on the basis of it being a non-synonymous SNP,
an eQTL, a multiQTL, or being colocalized with DD-related phenotypes
(Supplementary Data 17. Although prioritized genes require experi-
mental validation to reveal the mechanistic link with associated SNPs,
they implicated the Hedgehog (Hh) and Notch signaling pathways.
While Notch signaling has very recently been associated with DD23, we
newly report on Hh signaling. Both may contain potential therapeutic
drug targets. In addition, we also found further candidates in theWnt/β-
catenin and Hippo signaling pathways, which are already known to be
involved in the pathogenesis of DD11,12,24–26. Therefore, these signaling
pathways and their prioritized genes are discussed inmore detail below
and visualized schematically in Supplementary Fig. 6. We focus our
discussion on genes identified in at least three gene prioritization
analyses and replicated in the fibroblast SMR analysis (Supplementary
Data 16), as we consider these results to be robust.

Hh signaling plays a crucial role in embryonic development, reg-
ulating differentiation, proliferation, and tissue patterningof thebrain,
internal organs, and limbs27. The importance of Hh signaling in fibrosis
has already been established in both animal models and humans27. In
humans, Hh signaling is implicated in fibrotic kidney disease, pan-
creatic fibrosis, liver fibrosis, and biliary fibrosis28–30. Hh signaling can
be activated by injury28–30. Profibrotic factors such as TGF-β1 can acti-
vate expression of Hh members of the GLI family in human
fibroblasts31. CHSY1 is a regulator of Hh signaling. It encodes an
enzyme that plays a critical role in the biosynthesis of chondroitin
sulfate, a glycosaminoglycan involved in many biological processes
including cell proliferation and morphogenesis. To our knowledge we
are the first to report a link between CHSY1 and fibrosis (see Supple-
mentary Fig. 6). Future research on the role of CHSY1 in DD should
focus on studying its expression levels in DD myofibroblasts. The
extracellular matrix (ECM) glycoprotein gene TNC (encoding tenascin
C) is a target of theHh signaling pathway transcription factorsGLI1 and
GLI2 (Supplementary Fig. 6)27. Berndt et al. found that tenascin C was
one of the constituents of the extracellular matrix formed by
Dupuytren’s myofibroblasts32. In kidney fibrosis tenascin C was

induced by Sonic Hedgehog (SHH) and identified as a major con-
stituent of promotion of fibroblast proliferation33. In our analyses
tenascin Cwas found to be involved in one of the twomajor connected
components of DD protein-protein interaction networks, which was
enriched in ECM organization. As we also identified a nsSNP in TNC,
functional studies might be particularly fruitful. DLG5 is a member of
the MAGUK superfamily that is involved in maintenance of epithelial
cell polarity, cell proliferation control, and cell migration and
invasion34. In mice Dlg5 is required to interact with Hh receptor
Smoothened (Smo) for Gli protein activation35. In mouse fibroblasts
lacking Dlg5, Hh-induced Smo accumulation was observed35.

Several drugs targeting the Hh signaling pathway are being or
have been developed, studied, and manufactured. Cyclopamine, a
small molecule inhibitor of the transmembrane protein SMO, atte-
nuated renalfibrosis in vivo27. Hhpathway inhibitors havebeen studied
as cancer drugs36–38. Vismodegib also inhibits SMO, blocking activation
of GLI proteins to transcribe Hh target genes. Thus, cyclopamine and
vismodegib might have mitigating effects on the DD phenotype.

Notch signaling is a highly conserved embryonic developmental
signaling pathway. It consists of several receptors, NOTCH1–NOTCH4,
and their ligands, delta-like and jagged (JAG). Activation of the pathway
usually occurs via expression of the ligand in a signal-giving cell39.
Notch signaling has been shown to be activated in retinal, renal, and
hepatic fibrosis40–43. In vessels of the microcirculation in DD nodules,
pericytes (that surround the endothelial cells) were shown to specifi-
cally express NOTCH323. Furthermore, the γ-secretase inhibitor XX
(GSIXX, referred to as DBZ), a pharmacological inhibitor of Notch,
effectively ameliorated renal fibrosis in mice43. CHSY1 is a member of
the Fringe family of genes that modulate Notch signaling via ligand
interaction with Notch receptors44. Tian et al. described over-
production of JAG1 and subsequent Notch activation in absence of
CHSY1 in fibroblasts from patients with syndromic brachydactyly
associated with a truncating frameshift mutation in CHSY145. Knock-
down of CHSY1 promotes Notch signaling, and overexpression of
CHSY1 reversed Notch activation45, consistent with the predicted
protective effect on DD that we found for CHSY1 in the SMR analysis
with fibroblast data.

The Hippo signaling pathway has been previously implicated in
fibrosis andDD25,26. We found a new associationwith TEAD3, a member
of the TEA domain family of transcription factors that are essential in
mediating YAP-dependent gene expression. YAP1 is a regulator of
myofibroblast differentiation and contributes to the maintenance of
the contractile phenotype in DD myofibroblasts25. As TEAD3 is a key
transcription factor mediating YAP function46, we hypothesize that its
decreased expression might up-regulate YAP dependent gene
expression in DD.

We have demonstrated that the previously observed phenotypic
association of frozen shoulder with DD47 likely results from a sub-
stantial genetic correlation. Moreover, we showed that frozen
shoulder and DD share two causal variants among the three variants
that are shared between the two diseases in total. Of these, rs1042704
is an exonic SNP inmatrixmetalloproteinase 14 gene (MMP14), that has
been shown to cause a specific defect in collagenolytic activity in DD
derived fibroblasts48. Interestingly, in a series of 12 people treated for
an inoperable gastric carcinoma with a synthetic matrix metallopro-
teinase inhibitor, half developed frozen shoulder or a condition
resembling DD49. These findings further underline the importance of
MMPs in both frozen shoulder and DD48. The second shared causal
variant rs28606049 is an intron variant in WNT7B, which is highly
upregulated in DD24,50. As inferred from the substantial genetic corre-
lation, many more variants are likely shared between frozen shoulder
andDD.We also reproduced previously described genetic correlations
with BMI and HDL, but not for triglycerides and T2D. BMI and DD only
shared one causal variant, indicating that LD between associated SNPs
or (mediated) pleiotropic effects of non-genome-wide significant SNPs
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are likely the driving force behind the genetic correlation51. This is
further underlined by our in silico pleiotropy analysis, where a sub-
stantial enrichment of DD loci in a previously conducted BMI GWAS
was found. The same theory holds true for HDL and DD, as none of the
genome-wide significant SNPs for HDL resided at the same loci as
those for DD.

Strengths of this study include the large sample size of DD
patients and controls and the thorough phenotyping of the DD
patients by a plastic or hand surgeon, resulting in the identification of
many additional loci. Furthermore, the inclusion of cohorts from
multiple European countries achieved translatability of results across
multiple European populations (except for Finns, as discussed above),
instead of only one subpopulation. Moreover, genotype imputation
facilitated integration of genotype data from multiple cohorts ana-
lyzedwithdifferent arrays andenhanced thepower for detecting SNPs.
We performed a multitude of bioinformatic follow-up analyses from
different mechanistic angles and only took genes into account that
were prioritized in at least three analyses and replicated in a tissue
specific analysis. Therefore, we argue that the results are robust.
Although we provided starting points for functional studies, a limita-
tion of this study is that we did not investigate experimentally the
effects of associated SNPs and prioritized genes in vitro. Unfortunately
age and sex were not available for some cohorts. Therefore in these
cohorts cases and controls could not be age and sex matched and
these parameters could not be included in the analysis as covariates.
However the result is likely that some statistical power is lost in case
the controls were younger than the cases, as the control cohort may
still include individuals who became cases after inclusion in the study.
In case controls were older than cases, this could have introduced bias
due to increasedmortality, however this is likely not of great influence
in the case of DD. In addition we excluded heterogeneous effects from
the meta-analysis results, which will have filtered out a spurious result
due to potential age or sexmismatching in one of the cohorts. Another
limitation of this work is that we were not able to validate our meta-
GWAS results in a genetically similar cohort, as the replication analysis
used the FinnGen population which is genetically diverse from other
European populations22. The generalizability of our results, acquired
studying populations of European ancestry, to other ethnic popula-
tions, is likely limited. To our knowledge, no GWAS have been per-
formed in populations other than from European ancestry. Increasing
diversity of ancestries among GWAS study participants can advance
our understanding of the genetic susceptibility to DD for all popula-
tions. We believe a next step in genetic epidemiological research into
DD would be performing multi-ancestry GWAS, perhaps through uti-
lizing multi-ethnic biobanking studies due to the lack of available
cohorts.

In conclusion, this meta-analysis of six GWASs identified 34 novel
loci for DD and newly implicated the Hh signaling pathway and con-
firmed association of the Notch signaling pathway in the etiology of
DD. Prioritized genes CHSY1, NEDD4, and DLG5 have regulatory prop-
erties in Notch, Hh, Hippo, andWnt signaling. These pathways contain
therapeutic targets for which a number of inhibitors exist. We have
outlined starting points for future mechanistic studies for DD. Addi-
tionally, we found a genetic correlation between frozen shoulder and
DD and identified two SNPs that are causal variants for both frozen
shoulder and DD. Our data will help inform future mechanistic studies
to validate therapeutic targets and develop new treatment strategies
for DD. Until then, the increased knowledge about the genetic sus-
ceptibility to DD provided by this meta-GWAS facilitates research into
individualized risk prediction for DD through genetic profiling.

Methods
Study cohorts
We used data from six cohorts with DD cases and healthy controls
from the Netherlands, United Kingdom (UK), and Germany. The cases

were individuals of European ancestry who had been diagnosed with
DD by a plastic or hand surgeon and/or who had undergone surgical
treatment for DD. Controls were population-based subjects from the
Lifelines cohort study (the Netherlands), from the UK Household
Longitudinal Study (UK), the UK Biobank initiative (UK), and from the
PopGen and KORA studies (Germany) with no known diagnosis of DD.
All study populations were described in detail previously11,12,52–59. All
samples analyzed in previous GWASs11,12,51,54,60 were included in these
cohorts.

Ethical approval
The studies used in this meta-analysis were approved by the Research
Ethics Committee or equivalent at all institutions where the data were
collected: (1) The Genetic Origin of Dupuytren Disease (GODDAF)
Study (the Netherlands) was approved by the Ethics Committee of the
University Medical Center Groningen, document number 2007/067;
(2) The Lifelines study (the Netherlands) was approved by the Ethics
Committee of the University Medical Center Groningen, document
number 2007/152. This study (‘The role of genetic variants in
Dupuytren disease’) has Lifelines study ID OV18_0461; (3) The British
Society for Surgery of the Hand Genetics of Dupuytren’s Disease
(BSSH-GODD) study (United Kingdom) was approved by the Oxford-
shire Research Ethics Committee, document number B/09/H0605/65;
(4) The UK Biobank (United Kingdom) was approved by the North
West Multi-Centre Research Ethics Committee, document number 11/
NW/0382. This study (‘The Genetics and Epidemiology of Common
Hand Conditions’) has UK Biobank study ID 22572; (5) The German
Dupuytren Study was approved by the Ethics Commission of the
Faculty of Medicine of the University of Cologne, document number
14/292. The KORA study was approved by the Ethics Committee of the
Bavarian Medical Association (Bayerische Landesärztekammer) and
the Bavarian commissioner for data protection and privacy (Bayer-
ischer Datenschutzbeauftragter). The PopGen study was approved by
the Ethical committee of the Medical Faculty of Christian-Albrechts-
Universität (CAU), Kiel. Informed consent was obtained from all sub-
jects in accordance with Declaration of Helsinki protocols.

Genotyping, quality control and imputation procedures
The genotyping, quality control (QC), and imputation procedures of
the UK and German cohorts were described in detail previously12,51–53,60

A detailed pipeline of genotype QC and imputation procedures for the
Dutch case cohorts can be found in the Supplementary Materials.

GWAS
GWAS for the Dutch cohorts were performed with logistic regression
analysis in PLINK (version 1.961–64. For each single nucleotide poly-
morphism (SNP) an analysis was performed with disease status as
outcome and age, sex, and the first ten principal components as cov-
ariates. For the UK and German cohorts, for each SNP a logistic
regression was performed with sex and principal components as
covariates, calculated with PLINK (version 1.9) or SNPTEST (version
2.5.4-beta3), respectively65,66. Age was not available in these cohorts.
Theprincipal componentswerecalculatedusing PLINK (version 1.961,64.
Quality control of the GWAS summary statistics was performed in R
(version 3.6.1) using the GWASinspector package for each cohort
separately67. In case of quality issues the respective cohortwas notified
and problems were solved. Using the QQ plots from GWASinspector,
for each cohort specific imputation quality and allele frequency
thresholds were set (see SupplementaryMethods). Genomic reference
build 37 (GRCh37/hg19) was used in this study.

Meta-analysis
Meta-analysis of the six GWAS results (meta-GWAS) was performed
using METAL with fixed effects inverse variance weighting method68.
We used a double genomic control correction to control for genomic
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inflation due to population stratification within and between study
cohorts69. After meta-analysis, only high-quality variants were con-
sidered for follow-up analyses: i.e. variants present in three or more
(out of six) cohorts, variants present in >10,000 participants (~20% of
total), and variants with a heterogeneity p-value > 0.05 (alongside
other quality criteria) were considered for follow-up analyses. These
filtered meta-GWAS summary statistics (containing only high-quality
variants) were used for gene-based analysis through Functional Map-
ping and Annotation of Genome-Wide Association Studies (FUMA)70.

We sought to replicate significant loci discovered in our meta-
GWAS in the FinnGen cohort consisting of 3248 cases and 197,724
controls and performed a combinedmeta-analysis for these loci of our
meta-GWAS and FinnGen’s results15. For replication, SNPs with a one-
sided p-value < 0.000588 (=0.05/85, i.e. Bonferroni correction) in
FinnGen were considered replicated.

Identifying independent loci and secondary signals
SNPs were regarded as genome-wide significant if the p-value was
<5 × 10−8. Genome-wide significant loci were considered independent
when SNPs in neighboring loci were separated by >1Mb on the same
chromosome or on different chromosomes. If a locus contained only
one significant SNP, it was considered unreliable andwasdiscarded. To
ascertain secondary signals, clumping was performed in PLINK
(r2 ≤0.01; distance < 1Mb) at each genome-wide significantly asso-
ciated genetic locus65.

Bioinformatic follow-up approach
In silico annotation. To uncover functional characteristics of the
independent genome-wide significant SNPs and their surrounding
regions, we determined which SNPs were in at least moderate linkage
disequilibrium (LD) (r2 > 0.5) with the GWAS SNPs based on 1000G
European reference data (with a maximum of 2Mb distance) and
annotated these using ANNOVAR (i.e. an in silico bioinformatics-based
annotation approach)71. Variant call format (VCF)files for individuals of
the European continental population from the 1000 Genomes Project,
Phase 3 (version v5a, Feb. 20th 2015) were downloaded and data of the
2Mb region surrounding eachof the 85 identified SNPswere extracted
with VCFtools62,72. The r2 between identified SNPs and all biallelic SNPs
residing in the 2Mb region was calculated with PLINK65. SNPs were
deemed sufficiently correlated if r2 > 0.5. Identified and correlated
SNPs were annotated using ANNOVAR (version October 2019) for
functional consequences73. Nonsynonymous (ns, e.g. protein altering)
SNPs were then characterized for their damaging effect using Com-
bined Annotation Dependent Depletion (CADD) scores16. A scaled C-
score > 20 was considered deleterious16. To better understand the
possible functionof the SNPs,we alsoperformedan in silicopleiotropy
analysis, that is, checking for association of all identified SNPs and
SNPs in linkage disequilibrium (LD) (r2 > 0.5) with other traits and
diseases available in the GWAS Catalog database (version 21 April
2021)73,74.

Gene prioritization, pathway, and tissue prioritization analyses. We
followed up our GWAS results with a multi-omics post-GWAS
approach75,76 to gain insight on the biology of DD phenotype and
identify potential key players in disease pathogenesis (Supplementary
Fig. 1, Supplementary Methods), including FINEMAP to identify the
most likely causal variants within each locus77. We used blood eQTL
data for two gene prioritization analyses (as a discovery) and fibroblast
eQTL data as a replication analysis of significant discovery findings, as
proposed by Qi et al.78. We correlated blood and fibroblast eQTL data
to check whether the use of blood data with large sample sizes for
discovery, then fibroblast data for validation, was justified.

Cell population-relevant genes. Next, we estimated enrichment of
genes implicated by genetic risk loci in DD cell populations, since

genes expressed in relatively few cell types are hypothesized to affect
cell type functions. We studied single cell RNA sequence (scRNAseq)
data from nodules of six DD patients containing seven cellular
subtypes60. Using SNPsea, we prioritized cell types that are specific for
Dupuytren’s disease. We mapped the associated loci to candidate
genes, calculated specificity scores of these genes to cell populations,
and tested their significance79. We used default settings, except for
‘–slop’ (1 × 105), ‘–min-observations’ (100), and ‘–max-iterations’
(1 × 106). A heatmap showing specificity scores of significant meta-
GWAS loci in cell populations was created with the R-package heat-
maply (version 1.3.0)80. For clustering we used heatmaply’s default
Euclidean distance measure and the average linkage function80.

Polygenic risk score calculation
We calculated polygenic risk scores (PRS) for the two Dutch and two
UK cohorts in order to study the variance explained (i.e. narrow-
sense heritability) by genetic risk variants identified in the meta-
GWAS. First, we re-ran the meta-analysis of GWASs with the same
settings as described above, using a leave-one-out approach to
acquire summary statistics that are independent of said cohort and
could thus be used for PRS calculation. Then, we used SBayesRC
(v.0.2.0) to improve polygenic risk prediction by integrating effect
sizes from our summary statistics with functional genomic
annotations81. Next, we constructed PRSs with PLINK using the
improved weights calculated by SBayesRC65. Logistic regression
analysis was performed to associate the PRS with the outcome DD
adjusting for age, sex and principal components (PCs). Last, we cal-
culated liability-adjusted Nagelkerke’s pseudo R2 measures to scale
the phenotypic variance explained by PRS to the (previously esti-
mated) disease prevalence of 7.08% (Dutch population) and 13.40%
(UK population) that has been corrected for the general population
of all ages, instead of the disease prevalence in the study population
which was affected by ascertainment bias82,83.

Genetic correlations
We assessed shared genetic etiology between DD and twelve clinically
associated traits: body mass index (BMI), high-density lipoprotein
(HDL), triglycerides, type 2 diabetes mellitus (T2D) adjusted for BMI,
T2D unadjusted for BMI, T2D in European UK Biobank subjects with
only variants available from the Haplotype Reference Consortium,
fasting glucose, HbA1c, idiopathic pulmonary fibrosis, systemic
sclerosis, frozen shoulder, psoriasis, bone mineral density, and
height20,21,55,64,84–93. We employed LD score regression to calculate
genetic correlations, using full GWAS summary statistics of DD and
traits of interest94. We assessed the significance of the genetic corre-
lation with a Bonferroni‐corrected threshold being α = 0.05/
14 = 0.0036.

Colocalization analysis
For traits sharing a significant genetic correlation, we first selected
genetic loci significantly associated to both traits. Then, SNPs from a
200 kb block surrounding the significantly associated SNPs were
selected. Colocalization analysis was performedwith the coloc and the
Sum of Single Effects (SuSie) R-packages95, using data from the 1000
Genomes Phase 3 dataset from the European continental population
(version v5a, Feb. 20th 2015)62, and calculated raw inter-variant allele
count correlations (–r) with PLINK65. Missing correlation values were
set to zero. Colocalization analysis estimates the posterior probability
of a shared causal variant, a high posterior probability value indicating
a shared variant.

Data visualization
A Manhattan plot was created with the GWASinspector package (ver-
sion 1.5.1)67. Gene-based analysis (as computed by MAGMA) and gene
Manhattan plot were performed and visualized with FUMA (v1.3.6)
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SNP-to-Gene function70,96. Forest plots of the odds ratios and con-
fidence intervals of all meta-GWAS hits were constructed in R (version
3.6.1) using the rmeta package (https://CRAN.R-project.org/package =
rmeta, version 3.0). Regional association plots of each SNP were cre-
ated with Locuszoom (version 0.13.2)97.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The summary statistics data generated in this study have been
deposited in the GWAS catalog under accession code GCST90301252.
The raw genotype data are protected and are not available due to data
privacy laws. The open source data used in this study from FinnGen
(v6) [https://r6.finngen.fi/pheno/M13_DUPUTRYEN], 1000Genomes
(phase 1 and 3) [https://www.internationalgenome.org/data/], and the
Haplotype Reference Consortium [http://www.haplotype-reference-
consortium.org/] were downloaded from each of their respective
websites. SNPs of interest were extracted with VCFtools [https://
vcftools.github.io/]. GWAS Catalog database (version 21 April 2021)
was used for in silico pleiotropy analysis. Single cell RNA sequencing
data were aqcuired via correspondence. Blood cis-eQTL data were
downloaded from the eQTLGen consortium [https://eqtlgen.org/].
Fibroblast cis-eQTL data were downloaded from the Genotype-Tissue
Expression (GTEx) version 8 [https://gtexportal.org/home/]. Co-
regulation analysis was performed using DEPICT and its accompany-
ing expression dataset of 77,840 samples [https://github.com/perslab/
depict]. The Phenoscanner database (version 2) was queried to look up
quantitative trait loci (QTL) associations [http://www.phenoscanner.
medschl.cam.ac.uk/login/?next = /data/]. GeneMANIA was used to
construct composite networks of the prioritized genes based on the
database accompanied by the software (build 12-02-2019) [http://
genemania.org/]. The STRING database v11.0 to find the protein-
protein interactions [https://version-11-0.string-db.org/]. The
Genotype-Tissue Expression (GTEx) database (v8) was used to study
gene expression of prioritized genes [https://gtexportal.org/home/].
To assess enrichment of tissue-specific genes, theHuman Protein Atlas
(PMID 25613900) and mouse gene expression as well as RNAseq data
from the GTEx database were used [https://www.proteinatlas.org/].
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