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Projected soil carbon loss with warming in
constrained Earth system models

Shuai Ren 1,2, Tao Wang 1 , Bertrand Guenet3, Dan Liu1, Yingfang Cao1,2,
Jinzhi Ding 1, Pete Smith 4 & Shilong Piao 1,5

The soil carbon-climate feedback is currently the least constrained component
of global warming projections, and the major source of uncertainties stems
from a poor understanding of soil carbon turnover processes. Here, we
assemble data from long-term temperature-controlled soil incubation studies
to show that the arctic and boreal region has the shortest intrinsic soil carbon
turnover time while tropical forests have the longest one, and current Earth
system models overestimate intrinsic turnover time by 30 percent across
active, slow and passive carbon pools. Our constraint suggests that the global
soils will switch from carbon sink to source, with a loss of 0.22–0.53 petagrams
of carbon per year until the end of this century from strongmitigation toworst
emission scenarios, suggesting that global soils will provide a strong positive
carbon feedback on warming. Such a reversal of global soil carbon balance
would lead to a reduction of 66% and 15% in the current estimated remaining
carbon budget for limiting global warming well below 1.5 °C and 2 °C,
respectively, rendering climate mitigation much more difficult.

Soil is the largest reservoir of terrestrial organic carbon1, and there is
compelling experimental evidence of accelerated soil carbon loss with
warming2,3, suggesting that soils may act as a positive carbon feedback
on climate change. However, it is still not clearhowglobalwarmingwill
affect soil carbon dynamics4,5, either in terms of the magnitude of the
effect or even its sign. One significant, and poorly understood, com-
ponent of the system is soil carbon turnover1,6, which is defined as the
average time it takes for a carbon atom to enter and leave the soil
system7. In the sub-models of Earth system models (ESMs), the soil
organic carbon is generally viewed as a heterogeneous mix of two to
several pools with different degrees of decomposability8, and the soil
carbon decomposition is commonly dictated by intrinsic decay con-
stants, which are modified only by abiotic factors (temperature and
moisture) with few spatially-uniform parameters9–12. The models vary
greatly in the assumed values of constants and parameters12, and the
observational constraints on thesevalues are generally lacking1,4,13. This

deficiency in model structure and/or parameters is manifested in
simulations of soil carbon turnover time at local to regional scales
which diverge both from each other12,14 and from radiocarbon-based
observations6,15, reducing confidence in forecasts of how soil carbon
stock will respond in the long term.

Here, we take advantage of the growing number of long-term soil
incubation experiments to generate a spatially-explicit understanding
of intrinsic soil carbon turnover (τi) across the globe

16,17. Notably, soil τi
is representative of the theoretical carbon turnover time under opti-
mal conditions. While various environmental constraints such as
freezing and physical protection could inhibit the achievement of this
theoretical value, leading to longer apparent value of τi in the real-
world settings8 (Methods). Using global soil τi observations, we then
develop an observationally-calibrated three-pool model, which
includes emerging concepts of controls on soil carbon stabilization
(e.g., soil physical-chemical protection and priming effect)18–21, to
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constrain projected soil carbon changes in ESMs by the end of this
century under different emissions scenarios.

Results and discussion
We assessed the soil carbon turnover time by assembling a global
database of aerobic carbon dioxide (CO2) efflux data from
temperature-controlled soil incubation studies conducted at 178 sites
covering eight biomes, ranging from Arctic permafrost to dry Medi-
terranean forests (Fig. 1a). Due to the large heterogeneity of soil car-
bon, we represent the time evolution of soil CO2 efflux (SR) using a
three-poolmodelwhich partitions the total soil carbon (Ctot) into three
reservoirs, with each decaying at its own intrinsic turnover rate (that is,
the inverse of turnover time τ)16,17.

SR=
X3
p= 1

1
τp

� Ctot � f p ð1Þ

where f is the partitioning coefficient of Ctot for each pool (p). Using
deconvolution analysis, the pool-specific τ values were quantified at
their own incubation temperatures, and then scaled to a common
temperature of 15 °C (ref. 22; see Methods). Note that the soils were
incubated at constant temperatures, while other environmental
factors such as soil moisture were generally maintained at the
optimum level23, suggesting that the inverted carbon pool-specific
values of τ can be considered as intrinsic ones without environmental
constraints.

Global patterns of intrinsic soil carbon turnover times
There were considerable variations in soil τi within each biome and
across biomes for each of the three carbon reservoirs (Fig. 1b–d). We

then used a boosted regression trees (BRT) model to determine the
dominant environmental drivers (e.g., vegetation growth, local climate
and soil attributes consisting of bulk density, pH value, organic carbon,
total nitrogen, C:N ratio and soil texture) of the cross-site τi variations.
Of the tested predictors, mean annual temperature (MAT) was the
most important variable in explaining cross-site variability of τi for all
three soil carbon pools, with importance values of 27–42% across the
different pools (Supplementary Fig. 1). The normalized difference
vegetation index (NDVI) and soil organic carbon came second in
explaining τi variability in the fast soil carbon pool (Cfast) and in the
slow (Cslow) and passive (Cpassive) carbon pools. Specifically, soil τi had
positive correlations with MAT (Supplementary Figs. 2–3), with lower
MAT being associated with shorter τi.

Based on the empirical relationships between environmental
predictors and soil τi, we generated a predictive model that could
explain more than 75% of the cross-site variability in τi of each soil
carbonpoolwithout bias (Supplementary Fig. 1). Thispredictivemodel
enabled us to interpolate τi of each soil carbon pool to a depth of 1m
across global soils (Fig. 2a, d, g).Wederived a global τi of0.3 yr forCfast,
with a spatial variation ranging between 0.06 yr (first percentile) and
0.64 yr (99th percentile) (Fig. 2a and Supplementary Table 1). The
global Cslow and Cpassive τi are 6.68 (2.3–12.1) and 398 (89–696) yr,
respectively, with the values in parentheses denoting the spatial range
between the first and 99th percentiles (Fig. 2d, g and Supplementary
Table 1). We also calculated carbon-weighted τi to a depth of 1m using
the fraction of each soil carbon pool. The fraction of each soil carbon
pool at the global scalewas extrapolated from that derived at site level,
using the empirical relationships between fraction of specific pools
and environmental drivers across sites (see Methods). The global
carbon-weighted τi is 316 yr with a spatial variation ranging between

Fig. 1 | Distributionof sample locations and intrinsic soil carbonturnoverdata.
a The spatial distribution of long-term temperature-controlled soil incubation
experiments. b–d The boxplots showing the distributions of intrinsic soil carbon
turnover times (τi) of Cfast (b), Cslow (c) and Cpassive (d) that are inverted from all
experiments within each of the eight biomes, respectively. The eight biomes are

tropical forest (n = 53), temperate forest (n = 73), boreal forest (n = 33), cropland
(n = 59), grassland (n = 69), shrubland (n = 8), tundra (n = 64) and wetland (n = 15),
respectively. Oneach box, the central black linemarks themedian, the edgesof the
box correspond to the 25th and 75th percentiles, the whiskers extend to the range
of the data, and the outliers are shown as dots.
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81 yr (first percentile) and 609 yr (99th percentile) (Supplementary
Table 1).

The longest τi values were found in tropical forests (0.43, 9.41 and
601 yr for Cfast, Cslow and Cpassive, respectively), shrublands (0.31, 7.8
and 467 yr) and grasslands (0.28, 6.93, and 418 yr), whereas tundra
(0.25, 4.48 and 288 yr) and boreal forests (0.32, 5.58, and 326 yr) have
the shortest values (Supplementary Table 1). We also find that the τi
values of the three carbon pools vary considerably with latitude, with
higher values in the tropical zone between 20° N and 20° S (mean τi is
0.35, 9.1 and 543 yr) but lower values in the northern high latitudes
(0.27, 4.99 and 269 yr above 50°N) (Fig. 2a, d, g). To explore the extent
to which the intrinsic turnover times translate into the actual ones due
to environmental constraints8, we compared our estimates with the
radiocarbon-derived carbon age as a surrogate of realized or apparent
turnover times (Supplementary Table 1). We find that soil τi is more
than 16 times shorter than the actual one across the globe (316 yr
versus 5,238 yr), and this value is largest in tundra (58.6) and boreal
forests (18) but smallest in tropical forests (4.4) (Supplementary
Table 1; Supplementary Fig. 4).

Observational constraints on projected soil carbon dynamics
in ESMs
Next, we evaluated soil τi specified in the five ESMs which have three
soil carbon pools (Cfast, Cslow and Cpassive) archived in the Coupled
Model Intercomparison Project Phase 6 (CMIP6). Soil τi in ESMs are
generally described as global constants without any spatial variability
(Supplementary Table 2). We found that ESMs overestimated soil τi in
high-latitude ecosystems for all carbon pools (Fig. 2 and Supplemen-
tary Fig. 5), with a factor of 1.2, 2 and 1.7 for Cfast, Cslow and Cpassive,
respectively. By contrast, in the tropics, soil τi are overestimated to a
less extent, and even underestimated in some regions (Supplementary
Fig. 5). Overall, themodel ensemble overestimated soil τi by about 30%
across the three different pools globally, with larger biases in Cslow

(58%) than those inCfast (12%) andCpassive (17%) (Fig. 2). Themodel-data
bias of soil τi could be attributed to the omission of critical microbial
processes from ESMs, such as thermal adaptation24. Specifically,
microbial turnover rates have been shown to adjust to temperature
changes via biochemical trade-offs in enzyme and cell membrane
structure and function25,26. Low temperatures typically select for

Fig. 2 | Global distributions of intrinsic soil carbon turnover times.
a,d,gObservation-derived intrinsic soil carbon turnover times (τi) at 1mdepth that
are upscaled from 374 data points at 15 °C using the machine learning model for
Cfast (a), Cslow (d) and Cpassive (g), respectively. b, e, h Standard deviations of global
soil τi estimates derived from different combinations of data sets. c, f, i Latitudinal

profiles of soil τi, aggregated at 0.5° latitudinal resolution. The black and red lines
indicate observation-derived and ESMs-averaged soil τi, respectively. The pink
dashed lines are soil τi specified in each model (Supplementary Table 2). The red
shading represents the standard deviation. The x-axis data in c, f, i are log-
transformed.
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enzymes and/or membranes that are highly flexible to efficiently alter
conformation and facilitate interactions27. As a result, cold-adapted
microbial communities have faster growth and respiration rates than
the warm-adapted when compared at common temperatures5,26.
Future modeling efforts should seek a spatial representation of soil
intrinsic turnover parameters especially for Cslow, e.g., by incorporat-
ing microbial metrics (such as thermal adaptation24, species
composition28) into ESMs tobuild confidence inpredicting soil carbon-
climate feedback.

The large deviation of modeled τi from the observations could
lead to substantial biases in projections of soil carbon stock changes.
To remove simulation biases due to misinterpretations of τi in ESMs,
we firstly developed a reduced-complexity three-pool model, which
could partition soil organic carbon into components with different
intrinsic turnover rates, to emulate soil carbon simulations in much
more complex ESMs (see Methods). Although our constructed
reduced-complexity model is capable of mimicking ESMs soil carbon
dynamics and making projections (Supplementary Fig. 6), it is limited
to rudimentary processes without integrating emerging knowledge of
controls on soil carbon turnover time. To improve the realism of the
model, we constructed a refined reduced-complexity model to con-
strain ESM projections under three different emissions scenarios
(SSP1-2.6, SSP2-4.5 and SSP5-8.5; Supplementary Fig. 7). In the refined
reduced-complexity model, we described the soil carbon decay as a
function of τi that is not only modified by climate factors, but also by
the two competing processes (mineral protection and the rhizosphere
priming effect) (see Methods). We forced the model with climatolo-
gical mean (2000–2014) climate variables and satellite-based net pri-
mary productivity (NPP), and calibrated the model against both the
gridded historical soil carbon pool and upscaled field determinations
of soil carbon age (as a proxy of apparent soil carbon turnover times)
derived from radiocarbonmeasurements15 tominimize themodel-data
mismatch for the historical period (see Methods). The parameter
uncertainties were obtained from different combinations of soil
organic carbon (SoilGrids and the Harmonized World Soil Database)
and NPP data sets (MODIS and Global Inventory Modeling and Map-
ping Studies) (Supplementary Table 3 and Supplementary Fig. 8).

The refined reduced-complexity model, constructed in this way,
was run forward to 2100 using bias-corrected NPP and climate forcing
(temperature and precipitation) under three different emissions sce-
narios (see Methods). An ensemble of original ESMs projected an
increase of 18.6–29.8 petagrams of carbon (PgC) in global soils by the
end of this century relative to the period 2005–2014 across the three
scenarios (Fig. 3 and Supplementary Fig. 9). In contrast, constrained

ESM simulations using the refined reduced-complexity model showed
that global soils will lose 19.1 Pg of carbon under SSP1-2.6, and this loss
will be further escalated to 24 and 45.2 PgC under SSP2-4.5 and SSP5-
8.5, respectively (Fig. 3). These projections translate into an estimated
annual soil carbon loss rate of 0.22–0.53 PgC fromnowuntil the end of
this century under different emissions scenarios. This finding is gen-
erally consistent with the expectation that the intrinsic turnover time
was overestimated in complex ESMs (Fig. 2). This is because faster
intrinsic soil carbon turnover would lead to amore rapid decline in soil
carbon stock in response to warming, although environmental con-
straints such as climatic limitation and physical protection would
inhibit the achievement of this intrinsic value8. Such soil carbon losses
could largely offset increases in plant biomass due to the fertilization
effect of rising CO2, thereby reducing the potential capacity of land
biosphere carbon sequestration in future. For example, in an inter-
mediate emission scenario, the increase in CO2 expected by 2100
would enhance the global plant biomass by 59 PgC using an empirical
upscaling of CO2 fertilization effect29. However, this enhancement in
biomass carbon stock would be substantially counterbalanced by soil
carbon losses (24 PgC).

In most regions, the soil carbon stock switched from a sink in the
original simulations to a source in the constrained simulations (Fig. 3).
Such a reversal of the soil carbon balance is most prominent in the
arctic tundra and boreal regions (Supplementary Fig. 10), and occur-
red there even without invoking warming-induced permafrost soil
carbon degradation30,31. The arctic tundra and boreal region have the
shortest soil-carbon intrinsic turnover time of all the regions (Fig. 2),
and the release of environmental constraints via warming and the
plant rhizosphere priming effect will largely decrease the apparent soil
carbon turnover time, thereby inducing large soil carbon losses. For
example, a recent synthesis showed that rhizosphere priming could
induce an additional 40 PgC loss from northern soils by 210032. Fur-
thermore, the entire tropical forest soils, including that in Amazonia,
will also become a net carbon source of 8.2–21.4 PgC (Supplementary
Fig. 10). Our results are in broad agreement with previous in situ
experiments which showed that warming could accelerate the rate of
soil carbon losses in tropical forests3,33. However, themagnitude of soil
carbon losses from tropical forests under SSP5-8.5 (21.4 PgC) is lower
than a recent estimate (65 PgC) that is simply extrapolated from a two-
year warming experiment in a tropical forest under 4 °Cwarming3. The
relatively low soil carbon loss is also due to the large increase in soil
carbon input due to CO2 fertilization in ESMs. While emerging evi-
dence suggests that this CO2 fertilization effect in ESMsmay have been
overestimated34, and our estimates of soil carbon losses are then likely
underestimated.

Implications for the global remaining carbon budget
The vanished capacity of soils to sequester CO2 suggests that a more
aggressive strategy toward emissions reduction is required to realize
the pledges of the Paris Agreement. A likely (50%) chance of keeping
warming well below the 1.5 °C and 2 °C temperature targets requires
that the maximum permitted carbon emissions remain below 68 PgC
and 327 PgC from the start of 202235, respectively. We further esti-
mated the amount of carbon absorbed by global soils to be less than
the original ESMprojections at the end of this century (Supplementary
Fig. 11). The results imply that the currently estimated remaining car-
bon budget should be reduced by nearly 15–66% over the course of
this century to achieve the warming goals, rendering climate mitiga-
tion much more difficult.

In summary, we synthesized long-term incubated-soil CO2 flux
measurements to provide observationally-constrained estimates of
future soil carbon stock changes, using an optimized three-pool soil
carbonmodel which includes the emerging concept of controls on soil
carbon turnover time. Our observational constraints supported the
current idea that global soils will create a strong positive carbon

Fig. 3 | Projected changes in global soil carbon stock. Changes in global soil
carbon stock between the current period (2005–2014) and the end of the century
(2080–2099) from the original and constrained CMIP6 models under SSP1-2.6
(blue), SSP2-4.5 (orange) and SSP5-8.5 (red) emissions scenarios, respectively.

Article https://doi.org/10.1038/s41467-023-44433-2

Nature Communications |          (2024) 15:102 4



feedback to climate change in a warmer world4,5,36, and indicated that
such soil carbon-climate feedback is substantially underestimated in
current ESMs due to poor parameterizations of soil carbon turnover
processes. The observationally-calibrated soil carbon model, with its
spatially-varying estimates of parameters, is effective at capturing soil
carbon turnover acrossdiverse terrestrial biomes. It indicates the areas
which require improvement in conventional models which para-
meterize carbon turnover processes in a spatially-uniform manner.
The study provides important insights into the potential use of an
observationally-constrained soil carbon model on projected soil
carbon-climate feedback. However, our constrained projection is still
subject to uncertainties, due to the omission of deep permafrost car-
bon dynamics11, a divergent projection of soil carbon inputs37, and a
lack of feedbacks between soil carbon dynamics and nutrients. By
includingmore data, particularly from under-sampled regions, such as
Africa, central and southern Asia and some high latitudes, similar
constrained projection studies are likely to provide further value to
this area of research.

Methods
Collection of long-term soil incubation experiments
The intrinsic soil carbon turnover time reflects kinetic properties of
various soil organic compounds under optimal conditions8. Generally,
molecular structures with greater complexity exhibit an increased
resistance to decomposition38, resulting in a longer τi. However, in real-
world conditions, various environmental constraints, including freez-
ing, flooding and physical protection, can dampen decomposition
processes8, frequently leading to a longer apparent value of τi.
Laboratory soil incubation experiments, with incubation duration
varying from days to years, are a widely-used approach to estimate the
intrinsic decomposability of soil carbon pools by measuring soil CO2

fluxes under controlled conditions17,39. Results from such soil incuba-
tion experiments are invaluable for informing process-based ecosys-
tem models about carbon pool sizes and their intrinsic turnover
rates40. In contrast to short-term incubations (a few days to weeks),
where measured soil CO2 fluxes mostly originate from respiration in
the fast-cycling carbon pool, long-term incubations can provide more
information on the decomposability of slow-cycling carbon pools41,42.

Here, we assembled a raw dataset of soil CO2 fluxes from soil
incubation experiments to assess the intrinsic decomposability of
different soil carbon pools. We included only soil incubations which
satisfied the following criteria: (1) the length of the incubation
experiment was longer than 6months; (2) the aerobic CO2 production
must have been measured over the parallel-warming incubation
experiments. If more than one incubated temperature was available,
we selected the high-end temperature treatment, as a higher incuba-
tion temperature generally leads to a quicker depletion of the fast-
cycling carbon pool and therefore enables more information on the
slow-cycling carbon decomposability to be retrieved17; (3) the initial
soil carbon concentration must be available; (4) the soils were incu-
bated without any substrate addition; (5) soil respiration rates in the
initial phasemust be higher than those at the end of incubation; and 6)
data can be taken directly from tables or extracted from figures using
the GetData (v.2.25) software. In total, we gathered 102 peer-reviewed
publications covering 178 sites (Fig. 1), resulting in a total of >5000
time-series of soil CO2 flux data. The soil CO2 flux datawere taken from
a range of depths from 5 cm to >1m, with incubation temperatures
ranging from 4 to 35 °C and incubation durations ranging from 180 d
to >10 yr. The metadata for each sampling site included location
(latitude and longitude), climate (mean annual temperature and pre-
cipitation), soil physicochemical attributes (bulk density, pH, soil
organic carbon, total nitrogen, C:N ratio, and sand and silt content),
vegetation types, sampling depth, incubation temperatures and
duration. The samples fromwhichdata were obtained can be classified
into tropical forest (23° S–23° N; n = 53), temperate forest (23–50° N

and S; n = 73), boreal forest ( > 50° N; n = 33), grassland (n = 69),
cropland (n = 59), shrubland (n = 8), tundra (n = 64) and wetland
(n = 15) (Fig. 1). For sampling sites where climate and soil attributes
were not available, we extracted data from WorldClim version 2.043

and SoilGrids44, respectively, based on the published location and
depth information. The normalized difference vegetation index from
the MODIS was also obtained for each sampling site as a measure of
site productivity.

Inversionof intrinsic carbon turnover times fromsoil incubation
experiments
We assumed that the total CO2 flux is composed of contributions from
the three different carbon pools (that is Cfast, Cslow and Cpassive). For
each sampling site, we fitted the time series of total soil CO2 fluxes
using the three-pool carbon decomposition model17 described below.
In thismodel, the total soil CO2flux (R, inmgCg-1dwd-1) was the sumof
the respiration rates (r) derived from the three carbon pools (p) with
different sizes and turnover rates (Eq. (2)).

R=
X3
p = 1

rp =
X3
p = 1

kp × Ctot × f p ð2Þ

f p =
Cp

Ctot
,
X3
p= 1

f p = 1 ð3Þ

where the pool-specific respiration rate (rp) was computed as the
product of intrinsicpool-specific decay rate (kp, ind−1; the inverseof τi),
the total initial carbon pool (Ctot, in mg C g−1dw) and a partitioning
coefficient (fp). The partitioning coefficient describes the ratio of
carbon pool p to the total carbon pool, with the sum of the three
coefficients equal to unity (Eq. (3)).

The model parameters (m), consisting of k and f for each pool,
were optimized against measured soil CO2 fluxes (O) using a Bayesian
probabilistic inversion approach45. This approach states that the pos-
terior probability density function (PDF) of the model parameters
p(m |O), conditional on the data (O), can be obtained by applying
Bayes theorem46.

pðmjOÞ / pðOjmÞpðmÞ ð4Þ

wherep(m) is the prior PDF and p(O |m) is the PDF ofO conditional on
m, also called the likelihood function. For constructing p(m), we first
specified the range of each parameter according to values obtained
from the literature (Supplementary Table 4) and then assumed that
they are uniformly distributed over this range. The likelihood function
p(O |m) summarizes the difference between the simulated and mea-
sured CO2 flux data. Through assuming that the errors of measured
CO2 flux data follow a normal distribution with zero mean, the like-
lihood function p(O |m) is given by,

pðOjmÞ / exp � 1

2σ2

X
t2obsðSiÞ

SiðtÞ �OiðtÞ
� �2

8<
:

9=
; ð5Þ

whereOi(t) and Si(t) are themeasured and simulated CO2 fluxes, and σ
is the standard deviation of the measured CO2 fluxes.

To derive the posterior distribution of model parameters analy-
tically, we resorted to the Metropolis–Hastings (M–H) algorithm, a
powerfulMarkovChainMonteCarlo (MCMC) technique for simulating
complex and nonstandard multivariant distributions, which would
iteratively search for the optimum feasible solution47,48. During the
inversion process, the sum of the fractions (f) of all three carbon pools
must be equal to unity, and the intrinsic decay rate (k) should be
largest in the fast carbon pool and smallest in the passive one.We then
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computed the maximum likelihood estimates for well-constrained
parameters (e.g., the decay rates from the fast and slow carbon pools),
the means of the poorly-constrained parameters (e.g., the decay rate
from the passive pool), and the confidence intervals for all parameters
from their posterior distributions. Overall, the performance of the
three-pool model in fitting the measured soil CO2 fluxes was good
(Supplementary Figs. 12 and 13).

In the compiled data, soil incubation temperatures ranged from 4
to 35 °C, making it difficult to compare τi across studies in a quanti-
tative manner. Therefore, we adjusted τi at different incubation tem-
peratures to a reference temperature of 15 °C by using the following
equation22,49.

τi, 15 = τi,T × Q
T�15
10
10

ð6Þ

where τi,15 and τi,T are soil intrinsic turnover times at the reference
temperature of 15 °C and the incubation temperature T (°C), respec-
tively. Q10 is a temperature sensitivity parameter defined as the factor
by which soil respiration increases with a 10 °C increase in tempera-
ture. Here, we assumed that Q10 varies with temperature, and their
empirical function was derived from a previous synthesis analysis of
Q10 and temperature from laboratory studies across various ecosys-
tems at the global scale23 (Supplementary Fig. 14).

Upscaling of site-level intrinsic carbon turnover times to the
global level
We used boosted regression trees (BRT) to assess the relative impor-
tance of the independent variables, including local climate (mean
annual temperature andmean annual precipitation (MAP)), vegetation
productivity (NDVI) and edaphic properties (bulk density, pH value,
organic carbon content, total nitrogen content, C:N ratio, silt and sand
content), on spatial variability in τi for each carbon pool (at 15 °C;
Supplementary Table 5). Note that we selected local climate variables
because they can affect the structure of soil microbial communities
and then the soil carbon decomposition50. BRT is an ensemblemethod
that combines the strengths of regression trees (tree-based models
that relate a predicant to predictors through recursive partitioning)
and boosting algorithms (using large numbers of relatively simple tree
models to give improved predictive performance)51. Our approach,
which is superior to most traditional methods, can handle different
types of predictor variables and interaction effects between pre-
dictors, and does not require data transformation or outlier elimina-
tion. We used a grid-search procedure, using ten-fold cross-validation,
to select the best hypermeter combination of BRT modeling with the
lowest cross-validation root mean square error (Supplementary
Table 6). The BRT analysis was performed using the gbm and caret
packages in R 4.0.5. The soil τi data were log10 transformed before
starting the analysis.

The constructed BRTmodel was able to explainmore than 75% of
the variances in τi across different sites (Supplementary Fig. 1), andwas
subsequently used to produce global maps of τi for each pool at a
spatial resolution of 0.1°. The uncertainties of these parameters were
further generated by forcing the constructed BRT models with com-
binations of different sources of climate and edaphic data (Fig. 2). For
climate predictors, we used mean annual temperature and mean
annual precipitation from both the Climate Research Unit (CRU) ver-
sion 4.0152 and WorldClim version 2.043; for edaphic factors (soil phy-
sicochemical properties), we considered both the Global Soil Dataset
for Earth System Modeling (GSDE)53 and the SoilGrids44 data (Supple-
mentary Table 5). We also tested the extent of our extrapolations and
found that our soil samples spanned most environmental conditions
around the globe (Supplementary Fig. 15). Despite this, certain regions
(such as Africa, central and southern Asia and some high latitudes) are
underrepresented by our samples (Fig. 1). Thus, more long-term soil
incubations are urgently needed in these specific regions.

To calculate soil carbon-weighted τi (τi,w in Eq. (7)), we used the
same method as used to obtain global maps of fractions in different
soil carbon pools (fp in Eq. (7); Supplementary Fig. 16).

τi,w =
X3
p = 1

τi,p × f p ð7Þ

Development of a reduced-complexity three-pool model
From the CMIP6 historical and future simulations for three different
emissions scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5), we selected only
those ESMs which reported the total soil carbon stock partitioned into
the three discrete soil carbon components: cFast, cMedium and cSlow.
For ESMs with litter or woody debris carbon pools (cLitter and cCwd),
we combined these pools with cFast to form the fast-cycling carbon
pool6. SinceESMsdonotprovidedepth information for soil carbon,we
assumed that the carbon was stored within the top one meter of the
soil6,12. The models used here are ACCESS-ESM1-5, CESM2-WACCM,
IPSL-CM6A-LR, NorESM2-LM and TaiESM1 (Supplementary Table 7).

We developed a reduced-complexity three-pool model to
approximate soil carbon simulations in each grid cell of the five ESMs.
This three-pool model partitions soil organic carbon into components
with different intrinsic turnover rates (Eqs. (8–10)).

dCf
dt =NPPðtÞ � kf ×Cf ðtÞ
dCs
dt = kf ×Cf ðtÞ× rf � ks ×CsðtÞ
dCp

dt = ks ×CsðtÞ× rs � kp ×CpðtÞ

8>><
>>:

ð8Þ

where rf and rs are transfer coefficients for carbon flowing from fast to
slow pools and from slow to passive pools, respectively. Cf, Cs, Cp

represent the soil carbon stock of the fast, slow and passive pools,
respectively. kf, ks and kp are the actual carbon decay rates (yr-1) cal-
culated using Eq. (9).

k =
1
τa

=
1
τi

× FðTÞ× FðPÞ ð9Þ

FðTÞ=Q
T�Tref

10

� �
10 ; FðPÞ=Pb ð10Þ

Where τa denotes the actual-, and τi the intrinsic, carbon turnover time
(yr) at a reference temperature (Tref). T and P are the ambient tem-
perature (°C) and precipitation (mm), respectively. F(T) is a Q10-based
standard exponential function to represent the temperature modifier
of τi. F(P) represents a moisture modifier that increases with annual
precipitation, normalized to maximal annual precipitation for each
ESM, using an exponential function where b is greater than zero12.

In the three-pool model, five of eight parameters, including
intrinsic soil carbon turnover time of eachpool,Q10 and associated Tref
were from original ESMs (Supplementary Table 2). In particular, for
ESMs with more than three carbon pools, we aggregated τi of cLitte
and/or cCwd into that of Cfast. The transfer coefficients (rf and rs) and
the environmental dependency parameter (b) were diagnosed using a
Bayesian global optimization algorithm in each grid cell54, and their
uniform priors are shown in Supplementary Table 8. Specifically, we
initialized the reduced complexity model with pool-specific carbon
stock from historical ESM simulations (2000–2014), and then used the
variables npp, tas and pr from different emissions scenarios as inputs
to force the reduced model from 2015 to 2100 for each ESM. The
objective function was constructed based on the root mean square
error between the actual andmodeled soil carbon stock for each of the
three carbon pools. The reduced-complexity model with these diag-
nosed parameters was found to reproduce ESM soil carbon
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simulations very well (Supplementary Fig. 6), suggesting that the
three-pool model was an almost perfect approximation of the ESMs.

Notably, the five models used in this study may not be repre-
sentative of the broader CMIP6 ensemble because they draw heavily
from the CENTURYmodel and then have similar structures (e.g., three
different soil carbon pools)55. Other CMIPmodels derived frommodels
other than CENTURY may behave differently and deserve further
exploration.

Constrained projections of soil carbon stock changes
The model-data comparison suggested that τi in ESMs has a large
deviation from interpolated observations at the global scale (Fig. 2).
Here, to remove soil carbon simulation biases due to misinterpreta-
tions of τi in ESMs, we constrained the ESM projections of soil carbon
sink by 2100 (Supplementary Fig. 7). Our constructed reduced-
complexity model was demonstrated to well mimic soil carbon
dynamics in ESMs (Supplementary Fig. 6), but it generally assumes that
decomposition rates are only constrained by temperature and moist-
ure availability9–11. In fact, emerging processes, such as mineral pro-
tection and the rhizosphere priming effect, have the potential to affect
soil carbon turnover time8, but which were mostly absent in current
ESMs. We, therefore, refined the reduced-complexity model by
including the impacts of climatic factors and theseemergingprocesses
(Eqs. (11–12)) on soil carbon turnover time.

k =
1
τi

× FðTÞ× FðPÞ× FðMÞ× FðRPÞ ð11Þ

Where k is the actual soil carbon decay rate (yr-1) and τi denotes the
intrinsic carbon turnover time (yr) at a reference temperature of 15 °C.
F(T) and F(P) are temperature andprecipitationmodifiers describedby
Eq. (10). Specifically, Q10 in F(T) was spatially-heterogeneous and pool-
specific, rather than a constant as assumed in ESMs56. Furthermore, the
Q10 values of different carbon pools follow the carbon quality-
temperature hypothesis38, with higher values for more recalcitrant
carbon pools. F(M), a scalar representing themineral protection of soil
carbon, is described as a function of soil clay content (clay in Eq. (12);
Supplementary Fig. 17a)57.

FðMÞ= 24:2× clay clay<0:033

FðMÞ= � 2:1 × clay2 + 6:2× clay+0:6 clay≥0:033

�
ð12Þ

F(RP), a scalar representing the plant rhizosphere priming effect,
is given as a function of root respiration (Rroot)

32.

FðRPÞ= 1
.

1 +
2:47×Rroot

13:01 +Rroot

� �
ð13Þ

This Michaelis–Menten function is derived from a global meta-
analysis, which showed a positive relationship between the rhizo-
sphere priming effect and root respiration (Rroot in Eq. (13)) across all
studies (Supplementary Fig. 17b). The root respiration was estimated
to be around 7% of NPP32. Here, the rhizosphere priming effect was
assumed to only occur in slow and passive pools with “older” soil
organic carbon18,58. The rhizosphere priming effect could also increase
the release of soil nutrients, which would, in turn, stimulate plant
growth59 and thereby create a positive feedback loop that further
decreases soil carbon turnover time. On the other hand, enhanced
plant growth due to the rhizosphere priming effectmight partly offset
soil carbon losses due to enhanced soil carbon turnover rates. The net
effect due to this positive feedbackon soil carbon stock changesmight
not be so large. This effect was not included in our refined reduced-
complexity models due to a general absence of carbon-nitrogen cou-
pling processes in most of ESMs. To fully resolve this question, we
require next generation of Earth system models that explicitly

incorporate the rhizosphere priming effectwithin the coupled carbon-
nitrogen cycle framework.

In the refined reduced-complexitymodel, the parameter τi of each
pool was taken fromour interpolated observations at the grid cell level
(Supplementary Fig. 7). Other parameters, including precipitation
scalar b, pool-specific temperature scalar Q10, as well as the transfer
coefficients rf and rs, were optimized through minimizing errors
between the observed andmodeled carbon content of the three pools
in each grid cell (Supplementary Table 9). These parameters were
empirically calibrated so as to ensure that the input rate for each
observed soil carbon pool was coupled to τi which is modified by
climatic factors, mineral protection and rhizosphere priming. The
observed soil carbon content for each pool at the grid cell scale was
derived from gridded soil carbon data multiplied by our estimated
carbon content fraction for each pool (Supplementary Fig. 16). We
used data-driven estimates of soil carbon turnover times from global
radiocarbon measurements15 as a surrogate for observed τa at the grid
scale. In the optimization process, the 15-year mean (2000–2014) of
climate and satellite-based NPP were used as inputs. In addition, to
account for uncertainties in these empirical parameters, we con-
sidered the four combinations of the two gridded soil carbon data sets
(SoilGrids and the HarmonizedWorld Soil Database60) and the two net
primary productivity data sets (MODIS61 and Global Inventory Model-
ing and Mapping Studies37) in the optimization algorithm (Supple-
mentary Table 3).

To initialize the soil carbon pool for the start of the future simu-
lations, the refined three-poolmodel, with parameters calibrated using
mean climate and NPP from 2000–2014, was further run repeatedly,
using yearly climate and satellite-based NPP from the period
2000–2014 as inputs, formore than 30 cycles until it reached a steady-
state condition. The steady-state condition is defined as the 15-year
mean difference between NPP and simulated carbon decomposition
rate from the three pools being approximately equal to zero. The
inclusion of such a steady-state run is to avoid introducing an artefact
into the projection of future soil carbon change. After reaching the
steady-state condition, the size of the global soil carbon pool reached
2433 ± 325 PgC over the four ensemble predictions: a value that is well
within the range of observation-based global soil C stock estimates
(~1500–3000 PgC)62,63.

Following the steady-state run, we then ran the refined three-pool
model forward to 2100 using bias-corrected climate (temperature and
precipitation) and NPP data simulated by CMIP6 ESMs under three
different emissions scenarios (Supplementary Fig. 18). We applied the
following delta or change method64,65 to correct biases in the future
climate and NPP at the monthly timescale (Eq. (14)).

T fut,cor =Tbas,obs + ðT fut,mod � Tbas,modÞ
Pfut,cor = Pbas,obs ×

Pfut,mod
Pbas,mod

	 

NPPfut,cor =NPPbas,obs + ðNPPfut,mod � NPPbas,modÞ

8>><
>>:

ð14Þ

where Tfut,cor, Pfut,cor and NPPfut,cor are bias-corrected temperature,
precipitation andNPPprojections for 2015–2100, respectively. Tbas,obs,
Pbas,obs and NPPbas,obs are CRU-derived temperature and precipitation,
and satellite-derived NPP during the baseline period 2000–2014,
respectively. Tbas,mod, Pbas,mod and NPPbas,mod are ESM-simulated
temperature, precipitation and NPP for the baseline period
2000–2014, respectively, and Tfut,mod, Pfut,mod and NPPfut,mod are
ESM-simulated temperature, precipitation and NPP for 2015–2100,
respectively.

Sensitivity analysis. To assess the robustness of our constrained
results, we conducted the following sensitivity experiments (SE)
(Supplementary Fig. 19; Supplementary Table 10). First, we used the
Arrhenius function instead of the empirical Q10-temperature
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relationship in our default simulation to scale site-level τi at their own
incubation temperatures to that at 15 °C and then further obtained
global estimates of soil τi in amachine learning algorithm linking these
τi to environmental variables across sites. We then prescribed τi using
these data-driven estimates based on the Arrhenius function in refined
reduced-complexity model to constrain soil carbon projections (SE1).
Second, the use of laboratory incubation experiments, albeit with the
length of the period longer than six months, would still have uncer-
tainties in thequantificationof τi of slow-cycling carbonpool especially
Cpassive. In SE2, we prescribed τi of Cpassive as the ensemble mean of
ESM’s own values rather than the data-driven estimates in our default
simulation (Fig. 2).

Third, in SE3-SE6, we used the reduced-complexity model (Eq. 8),
which only considered climate controls on soil carbon turnover time
and used model inputs such as NPP, MAT and MAP directly from the
original ESMs, instead of the refined model (Eq. 11) to constrain soil
carbon projections in ESMs. In order to evaluate the relative impor-
tance of soil τi and Q10 in soil carbon projections, we performed the
following SE3-SE5 tests. For SE3, we replaced soil τi with our data-
driven estimates, and replaced Q10 for each pool with that derived
from the refined reduced-complexity model (Eq. 11), in which Q10 for
each pool was obtained through calibration against observed soil
carbon stocks (Supplementary Table 9). For SE4, we replaced soil τi
with our data-driven estimates and used ESM’s ownQ10 and associated
reference temperatures. For SE5, we used ESM’s own soil τi, but
assignedQ10 for eachpool to the calibrated one. Themagnitude of soil
carbon loss in SE4 (19.5 PgC averaged across scenarios) is much closer
to that in SE3 (26.3 PgC) than in SE5 (13 PgC), suggesting that soil τi is
more important than Q10 in determining projections of soil carbon
dynamics. In addition, since the use of laboratory incubation experi-
mentswouldhave uncertainties in the quantification of τi ofCpassive, for
SE6, we used the ensemble mean of ESM’s own soil τi of Cpassive, but
assigned τi of Cfast and Cslow, and Q10 to be the same with those in SE4.
The results of SE6 showed that global soils would be a sourceof carbon
to the atmosphere (10 PgC), albeit at a lower magnitude than SE4.

The impact of changes in global soil carbon stock on the
remaining carbon budget
Changed soil carbon sequestration potential due to observational
constraints could affect the remaining carbon budget for limiting
global warming below 1.5 °C and 2 °C35. To estimate the global soil
carbon sequestration potential under the warming targets, we relied
on a strong linear relationship between the change in global air tem-
perature and the observationally-constrained changes in global soil
carbon stock between the end of this century and the historical period
across the five CMIP6 models under the three emissions scenarios
(Supplementary Fig. 11). The change in global air temperature was
calculated using the 1850–1900 mean as a baseline, while the calcu-
lation of the change in soil carbon storage used the 2020 value as a
baseline.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The outputs of the Earth system models can be downloaded from the
CMIP6 website (https://esgf-node.llnl.gov/projects/cmip6/). The
WorldClim and CRU climate data are available at http://www.
worldclim.com/version2 and https://crudata.uea.ac.uk/cru/data/hrg/,
respectively. Soil physicochemical attributes of theGSDE and SoilGrids
data sets can be obtained from http://globalchange.bnu.edu.cn/
research/soilw and https://soilgrids.org/, respectively. The soil car-
bon content of HWSD can be obtained from http://www.fao.org/soils-
portal/data-hub/soil-maps-and-databases/harmonized-world-soil-

database-v12/en/. The global NPP databases of MODIS and GIMMS3g
are available at http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/
and https://wkolby.org/data-code/, respectively. The collected meta-
data and griddedmaps of soil τi and fractions of different carbon pools
have been deposited in the Figshare data repository (https://doi.org/
10.6084/m9.figshare.19641759.v1)66. Source data are provided with
this paper.

Code availability
Data analysis was carried out using R v.4.0.5 andMATLAB R2016a. The
code used in this study is available at the Figshare data repository
(https://doi.org/10.6084/m9.figshare.19641759.v1)66.
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